
Windows

Headless Support - Bridge/Watcher Feature Spec

Microsoft Confidential: This document is considered confidential to and is maintained as a trade secret by Microsoft Corporation. Information in this document is restricted to Microsoft authorized personnel only and any reproduction, distribution, or public discussion of this material is subject to the limits described in your non-disclosure agreement with Microsoft Corporation.

	Feature Information

	Feature Name
	Bridge/Watcher

	GM Technology Sponsor
	

	GM Product Sponsor
	

	Area
	Headless Support

	Related Features
	

	Related Documents
	

	Which boxes does this feature ship in?
	All () Pro () High End Wksta () Server () Adv. Server () Datacenter () Embedded (?)

	Requires Updates to:
	SDK () DDK () Reskit () Online Product Docs and Help (X)

	Document Location
	

	Spec Status
	New

	Document Security
	Public (All MS) (X) Private (Only Jimall’s group) ()

	Contact Information

	PM Author
	Pdemaio

	Dev Author
	Adamba, Sadar

	Test Contact
	Rgeorge

	Design
	James Johnston, Kevin Hodge

	Usability
	James Johnston, Kevin Hodge

	UA
	SueT; ?

	PSS
	Quincy Milton

	Revision Summary

	Author
	Date
	Version
	Comments

	Adam Barr
	1/6/00
	0.1
	First version

	Sada Rajaram
	1/6/00
	0.2
	Add comments

	Pdemaio
	1/16/00
	0.25
	Add comments and Contacts

	RGeorge
	1/25/00
	0.29
	Added test info

	PDeMaio
	1/31/00
	.35
	Added more sections

Table of Contents

61
Introduction

61.1
Feature Summary

61.2
Theme Relevance

61.2.1
Customer Scenarios

71.3
Justification

71.3.1
Business Justification

71.3.1.1
Competitive Justification

71.3.1.2
Customer Justification

71.3.1.3
Industry Impact

71.3.2
Technical Justification

71.4
Goals

71.4.1
Non Goals

81.5
Scope

81.5.1
What does this spec cover

81.5.2
What this spec doesn’t cover

81.6
Related Documents

82
Feature Description

82.1
Detailed Feature Description and Specification

92.1.1
UI Description

132.1.2
API and Interfaces

132.1.2.1
New APIs and Interfaces

132.1.2.2
Changed APIs and Interfaces

142.1.2.3
Removed APIs and Interfaces

142.1.3
Scripting Interfaces

142.1.4
Manageability

142.1.5
Performance Goals

142.1.5.1
Performance Counters

142.1.6
Security Impact

142.1.6.1
Security Context

142.2
Setup Requirements

152.3
Hardware/Environmental Requirements

152.3.1
CPU

152.3.2
RAM

152.3.3
DISK

152.3.4
Network Bandwidth

152.3.5
Boot time

152.4
Source File Impact

152.4.1
Depots Affected

162.4.2
New Trees

162.4.3
New Files

172.4.4
Touched Files

172.5
CD File Impact

172.5.1
Files Added

172.5.2
Files Touched

172.5.3
Files Moved

182.6
Directory Impact

182.6.1
New Objects

182.6.2
Object Changes

182.6.3
Object Deletions

182.7
Registry Impact

182.7.1
New Registry Keys

182.7.2
Registry Key Changes

182.7.3
Registry Key Deletions

183
Other Considerations

183.1
Dependencies

183.1.1
Team Dependencies

193.1.2
Code Dependencies

193.1.3
Scenario Dependencies

193.2
Win64 Issues

193.3
Localization/Globalization Issues

203.4
Accessibility Issues

203.5
Compatibility

203.5.1
Hardware Compatibility

203.5.2
Application/Component Compatibility

203.5.3
Heterogeneous Network Compatibility

203.6
Backup

203.7
Reliability Issues

203.8
URL requirements

203.9
Supportability

203.9.1
Logging/Eventing

203.9.2
Error Messages

213.9.3
Diagnostic Tools

213.9.4
Recovery from Corruption or Error Conditions

213.10
User Assistance Issues

213.11
Key feature interactions

213.11.1
Terminal Services

213.11.2
Clustering

213.11.3
Network Infrastructure

213.11.3.1
Remote Access

213.11.3.2
Multiple Hops

213.11.3.3
Network Media

213.12
Downlevel support

223.13
External Developer Impact

223.14
Sustained engineering Plan

223.15
Patents

224
Information Exposure

225
High Level Test Plan

225.1
Test strategy

235.1.1
Functionality

235.1.2
Regression

235.1.3
Stress

235.1.4
Setup/Upgrade

245.1.5
Interop

245.1.6
Reliability

245.1.7
Robustness

245.1.8
Long haul

245.1.9
Deployment

245.1.10
Y2K

245.2
Globalization

255.3
Geopolitical

255.4
Automation

255.5
WHQL Deliverables

255.6
Ship criteria

255.7
Test Results

256
Schedule/Staffing

256.1
Staffing

256.2
Priorities

256.3
Schedule

256.3.1
Schedule Summary

266.3.2
Detailed Schedule

266.3.2.1
Milestone 0 <repeat section for each milestone>

266.3.2.2
Milestone N <repeat section for each milestone>

267
Capabilities Deferred

278
Q&A

279
Template Instructions

279.1
Feature Process Info

279.2
How to fill out template

279.2.1
Content

279.2.2
How to Create Bullets and Numbered Lists

289.2.3
How to Create Issue Blocks

289.3
How to update the of Contents

Windows

Headless Support - Bridge & Watcher Feature Spec
1 Introduction

1.1 Feature Summary

In version 1.0, out of band management on a headless systems accessed via a serial port. In a multiple server environment, it is useful to “concentrate” serial access to these multiple servers into a single device with network access, generally referred to as a terminal concentrator. Bridge allows an NT machine to function as a serial terminal concentrator, allowing serial traffic from multiple serial ports to be viewed on terminals. Typically a terminal would be accessed via telnet.
Watcher allows a single NT machine to monitor a large number of headless machines at once. It is a multiple telnet client monitors traffic on a terminal and performs predefined actions when certain strings are found.
This is part of our support for headless operation. Its goal is to enable headless in the enterprise and to enable NT in the terminal server space. Neither Bridge nor Watcher run on the actual headless machines. They run on machines that exist to support the headless machines.
1.2 Theme Relevance

This relates to our theme of increasing manageability.
1.2.1 Customer Scenarios

Scenarios are all related to allowing easier administration of headless machines. They include:

· a customer wants to manage multiple headless machines without requiring that the admin station be within a serial cable’s distance of the machine

· a customer wants to allow multiple admins to simultaneously view the output of a headless machine

· a customer wants to monitor multiple machines from a single admin station without continuously scanning their displays.

1.3 Justification

1.3.1 Business Justification

Bridge will allow a cheap NT machine to be used as a replacement for a third-party terminal concentrator, and ensure an end-to-end NT solution in many environments. Watcher starts us on the path from simply being able to view what a machine is doing remotely, to actually reducing the management costs of administering remote machines.

1.3.1.1 Competitive Justification

Third party vendors such as Lucent and Cisco sell third-party terminal concentrators for thousands of dollars. Bridge is bare-bones, it won’t have all the fancy features those do, but it will be much cheaper and provide the core functionality. Watcher offers a very simple form of aggregations and automation enabling better administration by supporting generating WMI events, logging etc.
1.3.1.2 Customer Justification

Bridge is aimed at customers who have a small number of systems to manage in a headless environment. Watcher is aimed at customers who want to automate some of their headless management.
1.3.1.3 Industry Impact

This will put price pressure on competing terminal concentrators in the low end. It may create a new market for embedded NT.
1.3.2 Technical Justification

N/A
1.4 Goals

To provide a cheap terminal concentrator that runs on NT (bridge).

To provide a very basic aggregation and automation tool (watcher).
To integrate with WMI (watcher).
1.4.1 Non Goals

To create a large-scale terminal concentrator.

To provide an end all, be all of management.

To plug into or replace 3rd party Management tools.

1.5 Scope

1.5.1 What does this spec cover

Bridge and Watcher

1.5.2 What this spec doesn’t cover

Telnet server or the standalone telnet client.
1.6 Related Documents

Headless EMS Specification
2 Feature Description

2.1 Detailed Feature Description and Specification

Bridge has four pieces:

TCSERV – TCSERV is a service that runs and owns the COM ports for the purpose of exposing them to TCCLNT. Each COM port has a user friendly name for the device name (\\??\COM1 or \device\serial0, e.g). Multiple TCCLNT can access a single COM port.

TCSERV’s settings are stored in the registry, under TCSERV\parameters key. Currently, we support configuring speed, data bits, stop bits, parity and the user friendly name. To change TCSERV, you have to change the registry, then send the service a parameter change message.

TCCLNT - a serial terminal program that runs on a system running TCSERV. TCCLNT would typically be run inside a telnet session. It requires a parameter for the com port name or the user friendly device name (as configured for the TCSERV in the registry), and supports an optional parameter for an IP address
, allows TCCLNT to access a TCSERV on a different system. Multiple running instances of TCCLNT can be viewing the same COM port. A possible future addition to TCCLNT is the ability to request that a certain amount of buffered data from the port be output after TCCLNT connects.

The reason TCCLNT and TCSERV are split is to allow multiple copies of TCCLNT to view the same COM port. TCSERV may also buffer some amount of data from the COM port and allow TCCLNT to specify (via a parameter) that it wants the last N bytes to be transmitted to it when it starts up.

TCADMIN and the Bridge WMI provider- a command-line utility that lets you display the ports that TCSERV is monitoring, and change them.
It will take care of modifying the registry and sending the appropriate messages to TCSERV
. Possibly in the future we could write a graphical version of this. However the expectation is that the bridge machine will likely be running headless itself, so a WMI provider and a console mode app like TCADMIN are the best way to allow configuration. One addition to TCADMIN would be a way to say "add all com ports on the system" with one command.

Watcher is a GUI-mode app:

It is a multi-session telnet client that can be configured to do various actions when it receives certain sequences of characters in the input stream of a given session. Watcher will have sub-windows beneath its main window, each with a telnet session in it. An option on the menu of the main window will let you select a sub-window to bring to the front by name.

Watcher will allow each session it is monitoring to be configured, in terms of where to telnet to, and what command to issue when it connects (for example if the machine it was connecting to was running bridge, the command to issue might be "tcclient com2"). Optionally it could also store logon and password information. The configuration of this will be done with a GUI window that is part of Watcher.

Initially the only characters that Watcher will look for will be the BEL protocol for blue screens. However this could be extendable and customizable as we wish. The default action will be to generate a popup and maximize the window for that session. This could also be extended, in fact we could allow plug-in DLLs to be called.

Watcher may also be extended to connect directly to a TCSERV instance on this machine (bundling the TCCLNT functionality in Watcher) or to a com port directly. Both of these could be simulated by running bridge on the Watcher machine and then telnetting to itself.

WATCHER will expect data to be in OEM codepages and will do the necessary conversion. It will also optionally be able to handle data in other formats (ANSI codepages, JIS, etc), configurable for each telnet session. This *should* allow a single instance of Watcher to watch different localized builds at the same time.

2.1.1 UI Description

What functions are exposed to the user. What does each function do? How is it exposed to the user? Include screen shots and mock ups where appropriate. It may be useful to use a format where you describe the user action and then describe what takes place based on that action.
Functions of the watcher:

1. Manage – Allows the user to set/edit parameters for the application. This will involve the sessions that are present in the watcher.
2. Multi-Document Features – These include the standard features like HELP, EXIT, WINDOW functions
Arguments to TCCLNT.

1. The first argument is the device / com port name that you want to interact with on the TCSERV service

2. the second optional argument is the machine where the TCSERV service is running. For security reasons this may be removed from the product.
Tcadmin:

The initial prompt is:

0) Exit

1) Browse service settings
2) Add a new com port

3) Send a parameter change message to the service

4) Get current status of service

5) Help

Then each command prints more information as needed.
Here is a screen shot of watcher showing two windows, one with an English build, one with a Japanese build, and a third window minimized:

[image: image1.png]Select a language from the list below. The language you select
determines which language-specific operating system choices and tools
are offered for installation.

¥ BRTT B0, Enter HF—EML T &V,

CD A& ¥R b7 BI8E1d, Windows 2000 CD A% CD-RON
FAER TV DI EERAL T a0,

IDT7ANEREF v PTBICE, Ese F-EMLT IV,

BE: IOT77ALERR v FLERES Eu N7 v TORET,
Windows 2000 OEFLREIFIFRIShELE A

¥y M7y TERTTAICE, F3 F-EHL T ZEV,

This shot shows the manage dialog up, with the three windows minimized behind it:

[image: image2.png]7 watcher - 192.168.0.2 English [-[CIx]

21192 16802 . Foalm] 4| [BR 18206802 Pl [l B | @1 92.168.0.2 .. El[=1EY

e

Watcher will respond to certain events that it sees encoded on the serial line. This data will be sent as XML forms, delimited by the sequence 0x07 0x07 "<?xml?>" 0x07 (10 bytes) at the beginning, and a single 0x07 at the end. The only event currently spec’ed is blue-screens, which will send XML data as follows:

<BS>
<TYPE>WARNING</TYPE>

<GUID>00000…</GUID>
<MACHINENAME>ADAMBA2</MACHINENAME>

<IPADDRESS>1.2.3.4</IPADDRESS>

<STOPCODE>0000001E</STOPCODE>

<PARAM1>xxx</PARAM1> (and so on up to PARAM4 -- these are the stop parameters)

</BS>

When watcher sees this, it will generate a WMI event – details TBD.
What are the top 5 usability issues you’re going to solve?
1. Ease of editing functions for the parameters.

2. Single application to watch over different language and different protocol for the managed machines.
3. The application will call user attention to various events in the managed machines defined by the bell protocol.
Make sure you don’t forget the CUI – every GUI feature should also have a character user interface. See also – scripting interfaces section.
The standard shortcuts are the Alt keys for the menu functions.
Alt –M for Manage

Alt – F4 for exit

Alt – H for Help and so on.
2.1.2 API and Interfaces

Describe all APIs and Interfaces used in this feature. Be sure to note which are internal and which are public APIs. The SDK team will use this section to update their list of APIs.

2.1.2.1 New APIs and Interfaces

None, these are standalone apps.
2.1.2.2 Changed APIs and Interfaces

None.
2.1.2.3 Removed APIs and Interfaces

None.
2.1.3 Scripting Interfaces

Anything a user can do should be scriptable. What specific portions of this features functionality are scriptable? Is this a WMI provider?

2.1.4 Manageability

It would be installed as a app, probably with an MSI package. It could also be part of an embedded config.
2.1.5 Performance Goals

2.1.5.1 Performance Counters

N/A
2.1.6 Security Impact

What impact does this feature have on security?

See http://mste/interface/issue9/home.asp for more information about how to make sure your feature is secure.
Telnet sessions in the watcher are completely automated. The password and the user name are stored in the registry in clear text.

2.1.6.1 Security Context

What security context must be used to perform various tasks with this feature? Do I need to be an admin? If so, why? What can a normal user do? What security context does an application need to modify a parameter? Be sure to think about all the programmatic ways a feature can be accessed and how security context affects them.
It runs in the context of the user who started the app.
2.2 Setup Requirements

Does this feature have any special setup requirements? What does setup need to do to install this feature? What upgrades are supported?
It will follow the same rules as a typical server app.
2.3 Hardware/Environmental Requirements

Describe the various user scenarios and their affect on the items below. Note if scenarios are data dependant and take into account the various types of connectivity a user may have (slow link, etc.).

2.3.1 CPU

This app will likely never be CPU bound.

2.3.2 RAM

Dependent on the number of watcher telnet sessions open. This is not a RAM intensive app.

2.3.3 DISK

Unknown, but the footprint will be small.

2.3.4 Network Bandwidth

Telnet runs well in low bandwidth situations and this application doesn’t send a high volume of traffic.
2.3.5 Boot time

N/A
2.4 Source File Impact

2.4.1 Depots Affected

	(X) Admin
	() DS
	() Multimedia
	() Shell

	() Base
	() EndUser
	() Net
	() TermSrv

	()COM
	() InetCore
	() PrintScan
	() Windows

	()Drivers
	() InetSrv
	() SdkTools
	() Public

2.4.2 New Trees

List full path of any new source tree branches created for this feature
%NT_ROOT%\base\remoteboot\rcc\serial\tcserv
%NT_ROOT%\base\remoteboot\rcc\serial\watcher
2.4.3 New Files

List all new source files added to the project.
%NT_ROOT%\base\remoteboot\rcc\serial\tcsrv*.*

[admin] [client] [inc] [server] dirs
 %NT_ROOT%\base\remoteboot\rcc\serial\tcsrv\admin*.*

[console] [data] dirs

%NT_ROOT%\base\remoteboot\rcc\serial\tcsrv\admin\console*.*

makefile.inc msg.rc msg.mc tcadmin.h

main.c tcadmin.rc makefile utils.c
%NT_ROOT%\base\remoteboot\rcc\serial\tcsrv\admin\data*.*

makefile sources tcdata.h

dll.c res.rc tcdata.def

%NT_ROOT%\base\remoteboot\rcc\serial\tcsrv\client*.*

keymap.h makefile sources tcclnt.rc

console.c main.c parser.c tcclnt.h

%NT_ROOT%\base\remoteboot\rcc\serial\tcsrv\inc*.*

tcsrvc.h

%NT_ROOT%\base\remoteboot\rcc\serial\tcsrv\server*.*

debug.h main.c sources tcsrvt.c

bridge.c handler.c makefile tcsrv.h unlo.c

debug.c init.c proto.h tcsrv.rc utils.c

%NT_ROOT%\base\remoteboot\rcc\serial\watcher*.*

WATCHER.ncb watcher.opt ReadMe.txt watcher.plg

[res] resource.h watcher.pp sources
watcher.rc StdAfx.cpp watcher.rtf StdAfx.h
watcherDoc.cpp ChildFrm.cpp watcher.aps watcherDoc.h

ChildFrm.h watcher.clw WatcherSocket.cpp MainFrm.cpp
watcher.cpp WatcherSocket.h MainFrm.h watcher.dep
 makefile watcher.dsp WatcherTCClient.h WatcherTCClient.cpp

ManageDialog.cpp watcher.dsw ManageDialog.h WatcherTelnetClient.cpp
watcher.GID* WatcherTelnetClient.h ParameterDialog.cpp watcher.h
WatcherView.cpp ParameterDialog.h WATCHER.HLP watcherView.h

pars.wat watcher.hpj

 %NT_ROOT%\base\remoteboot\rcc\serial\watcher\res*.*

Toolbar.bmp WATCHER.ico watcher.rc2 WATCHERDoc.ico
2.4.4 Touched Files

List all sources files touched for this feature.

2.5 CD File Impact

2.5.1 Files Added

Its install package will sit on in a separate directory possibly on a separate sku.
2.5.2 Files Touched

N/A
2.5.3 Files Moved

N/A
2.6 Directory Impact

2.6.1 New Objects

None. There will need to be a record of which machines are being manged by which physical cable. We should look at the directory for doing this.
2.6.2 Object Changes

None.
2.6.3 Object Deletions

None.

2.7 Registry Impact

2.7.1 New Registry Keys

List all new registry keys and their purposes
Bridge resides in HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcserv
Watcher resides in

HKEY_CURRENT_USER\Software\%KEY%\watcher

where KEY can be any key supplied by the user default to Microsoft.
2.7.2 Registry Key Changes

N/A
2.7.3 Registry Key Deletions

N/A
3 Other Considerations

3.1 Dependencies

3.1.1 Team Dependencies

Telnet changes will require dev and test resources.
3.1.2 Code Dependencies

In a sense we depend on the telnet code from sfu since TCCLNT runs inside of a telnet session. We also use the NT console API for the TCCLNT output.
We likely will need some changes from the telnet team in order to make bridge work well, and possibly in the NT console as well. We are trying to mimic a terminal concentrator which just passes data bits through unchanged. However what we actually do is have TCCLNT display them on the NT console, where they are then picked up by the telnet daemon and sent on the net. In that process, there is a possibility of some loss of data. In particular:

vt100 supports inverse, bold and blink mode, but our console does not (explicitly, although it does support foreground/background color setting). Thus that information might get lost.

On localized headless builds, the data will come over the serial port in either DBCS or UTF-8 (still TBD, currently it is DBCS). Need to ensure that we the console and telnet will do the right thing in those cases. Will the telnet daemon be configurable to output DBCS or UTF-8 as needed?

Would also like to make it possible to run bridge on any language of NT and have it “just work” even if the data going through is a localized build. This would require that we could print, as an example, Japanese characters to the console and have the telnet daemon pick them up properly, even if TCSERV/TCCLNT was running on an English machine.
To date we have not gotten timely responses to our queries from the telnet dev team.
3.1.3 Scenario Dependencies

Same comment about telnet in sfu.
3.2 Win64 Issues

N/A
3.3 Localization/Globalization Issues

In order for the watcher to manage different localized builds (Each session in the watcher can be in a different language), the appropriate code page support and font support must be available on the host machine. The bridge program can pass through unchanged.
3.4 Accessibility Issues

3.5 Compatibility

3.5.1 Hardware Compatibility

N/A, they are only apps.
3.5.2 Application/Component Compatibility

N/A

3.5.3 Heterogeneous Network Compatibility

The components themselves (the machines bridge and watcher are running on, the headless machines) must be NT. The rest of the network is not affected however.
3.6 Backup

Steve Olsson will provide some content.

Does this feature use a private data store? If so, how does it get backed up?
3.7 Reliability Issues

Both bridge and watcher run in user mode
.
3.8 URL requirements

N/A
3.9 Supportability

New features should typically be self supporting if at all possible - meaning that they are able to provide appropriate status, diagnostic and or self-repair information without requiring add-on tools from a resource kit. Describe how your feature can 1) help users solve their own problems, and 2) how it can minimize the time during a PSS support call by providing quick access to relevant status and configuration information about both the feature itself and the environment for which it’s configured.

3.9.1 Logging/Eventing

What does this feature log, when does it log it, and what is useful about it?

3.9.2 Error Messages

What are you going to do to improve the error messages in this feature?

3.9.3 Diagnostic Tools

If applicable, what other diagnostic tools are available for this feature?

3.9.4 Recovery from Corruption or Error Conditions

If an error condition or corruption occurs, how can the user recover and how can they track down what caused it?

3.10 User Assistance Issues

Identify your user assistance contact for documenting your feature. You are responsible for reviewing for technical accuracy. Review their outline and the material they write for each major milestone. Refer to the Web site http://wosua or Louise Rudnicki (mailto:louiser) for more information.

Does this feature include external help? If so, who owns it?

Note any issues that UA should be aware of here.
3.11 Key feature interactions

3.11.1 Terminal Services

How does this feature work with terminal services? Are there any limitations or work-arounds that need to be noted?

3.11.2 Clustering

How does this feature work in a clustered environment?

3.11.3 Network Infrastructure

3.11.3.1 Remote Access

How does this feature work when connected via remote access? Over slow links?

3.11.3.2 Multiple Hops

3.11.3.3 Network Media

How does the network media (Ethernet, etc.) affect this feature?

3.12 Downlevel support

Is downlevel client support required for this feature? If so, how will it be delivered and when?

3.13 External Developer Impact

What samples are being provided for each new system interface and API?

At what milestone will the new interfaces and documentation be mature enough for use by external developers?

Is more explanation than standard SDK documentation needed for developers to understand these new interfaces?

Remember – you must talk to the SDK team to get documentation resources for all new interfaces. Send <mailto:sdkpm> alias.
3.14 Sustained engineering Plan

How will this feature be maintained? What team will own maintenance?

Who will be responsible for critical security fixes to this feature?

3.15 Patents

Are there specific technologies, APIs, algorithms or implementations related to this feature that should be considered for patents?

When will this feature be “publicly disclosed” to more than a handful of NDA partners outside of Microsoft?
Submit all patent ideas to the BED Patent website at: http://BEDpatents and contact mailto:DavidCo for more information.

4 Information Exposure

What parts of this project do we expect to expose outside of Microsoft? What should be exposed in the DDK, SDK, Consortium Specs and Papers.

What will remain strictly proprietary?
5 High Level Test Plan

5.1 Test strategy

The Test Strategy is to take each of the components of the bridge and watcher and to test them individually in the areas of their functionality, stress, correctness, and globalization. After component level testing we would proceed to integration testing and interoperability testing of the different components.
5.1.1 Functionality

For functionality testing of TCCLNT and TCSERV we would test if the streams output by the headless server is what the TCCLNT outputs to the watcher. This would include testing with special characters in the stream and with different encoding of the stream. We would also be testing for multiple instances of TCCLNT talking to TCSERV and the TCSERV listening to multiple headless servers. This would involve looking into synchronization issues specially if we consider that TCCLNT could also be writing to the same serial port of the headless server, through TCSERV. For API testing of TCCLNT we would test TCCLNT passing in different parameters at startup.

For tcadmin, we would test the effect of each of the commands on TCSERV. Only the administrator should be able to use tcadmin.

For functionality testing of the watcher we would verify the data displayed is the data output by TCCLNT. Also we would verify and test the various actions it takes on seeing certain sequences of characters in the input stream of a given session. We would also test multiple sessions being handled by the watcher and verify their correctness. These sessions could be running the under different configurations. All the multi-document features of the watcher graphical interface as well as the watcher character user interface should be tested. We would also test the capability of running the watcher to either run telnet sessions or direct TCCLNT sessions.

5.1.2 Regression

Regression tests include functionality tests, setup variations, manual variations, and any other tests that are run on a regular basis.

5.1.3 Stress

For the bridge, test the performance of TCSERV when many TCCLNT’s are connected to it. Multiple TCCLNT’s may be connected to the same COM port. This would be of particular interest since the bridge can and probably will be a low-end machine. Large number of COM ports on a bridge is another interesting scenario.

For the watcher, test the performance with watcher handling multiple telnet sessions and test correct behavior of the UI with multiple windows for each session trying to alert the user or trying to do the appropriate commands. For testing performance under stress for both the bridge and watcher, process counters and any application specific counters would be monitored.

5.1.4 Setup/Upgrade

Setup tests need to verify that the component behaves as expected in all setup and upgrade scenarios.

5.1.5 Interop

The bridge and watcher has to be tested with other third party products in the market. The watcher should be tested with third-party terminal concentrator from Lucent or Nortel. The bridge can be tested with several third-party vt100s.
5.1.6 Reliability

Running the bridge and watcher for a long duration under different configurations and checking for system resources used, memory leaks, and data transmitted can test the reliability of the bridge and watcher.

5.1.7 Robustness

Fault Injection tests could be used to verify the robustness of the bridge and watcher system.

5.1.8 Long haul

Run the bridge/watcher on a set of headless servers for a long duration and measure counters on the machine checking for system resources used, memory leaks, data transmitted.

5.1.9 Deployment

The Bridge and Watcher can be deployed in real life scenarios right here on the Microsoft campus. The Hotmail real-world scenario lab is particularly interesting for the deployment of these headless components.

5.1.10 Y2K

Y2K testing will involve performing all of the tests in the test suite on interesting dates. Attempts must be made to test operation during interesting date changeovers.
5.2 Globalization

Set up: Install the Bridge/ Watcher on an international build and verify that the interactive messages, help, dates, numbers etc during installation should be in the build language and appropriate format.

Functional testing on the different localized platforms. Run all the functional tests and see that all the interactive messages, help, dates, numbers etc should be in the build language and appropriate format.

Test the specific functionality of Watcher that allows it to watch different localized builds.

5.3 Geopolitical

All components should test for geopolitical correctness.

5.4 Automation

All the user interface portions of the functional tests should be automated using Visual Test and batch files. The stress, long haul, and reliability tests will also be designed to run from the harness. The interoperability tests with the third party terminal concentrators will be manual testing.
5.5 WHQL Deliverables

If your testing includes hardware components then the test strategy should include documentation for the test program and meet WHQL requirements to ship on test CDs.

5.6 Ship criteria

The quality bar for shipping this component is no active priority one bugs. It should also meet all long haul and reliability criteria.

5.7 Test Results

Test results will be logged using Test Enterprise.
6 Schedule/Staffing

6.1 Staffing

Descr This work will be done by Adam Barr, Sada Rajaram, and Sean Selitrennikoff.
6.2 Priorities

This is not relevant since the work is already code complete. Any bugs or new requests will be based on testing and actual usage.
6.3 Schedule

6.3.1 Schedule Summary

	Milestone
	Short Description
	Duration

	Spec Complete
	Full functionality described in spec document. All areas of template completed
	ETA – 1/31/00

	Dev Milestone 1
	All features code complete
	Complete

6.3.2 Detailed Schedule

6.3.2.1 Milestone 0 <repeat section for each milestone>
Description

All features described in section 2.

Metric

Usage tests.
Duration

Complete.
Contingency Plan

N/A
6.3.2.2 Milestone N <repeat section for each milestone>
Description

Describe the functionality that will be completed in this milestone

Metric

What is the metric to use to tell that the functionality listed above is complete?

Duration

Duration should take into account regular daily activities (eating, meetings, interviews, paperwork, email, etc.) occurring while this task is going on

Contingency Plan

When can you bail out for this milestone? Describe what changes will need to be made if this milestone is not met. What are the effects on the rest of your schedule and what modifications must be made to the feature.

7 Capabilities Deferred

List all the related feature items that have been deferred to the next release that will build on the features in this release. What must be completed in the next release to complete the vision of this feature?

8 Q&A

Put questions you know people will ask here.

9 Template Instructions

9.1 Feature Process Info

The aim is to have all features for Windows 2001 use the same spec template. It is understood that some sections may not be applicable to you, depending on the area of your feature.

If this template does not fill your needs or has errors, please contact mailto:aliciae . Also, if you have best practice information that could be used to help new PM’s and Dev’s fill out the template, please send suggestions to mailto:aliciae .

In order to be on the schedule for a feature review, you will need to fill out the cover page (contacts, etc.), Section 1 Introduction, Section 3.1 Dependencies and Section 6 Schedule/Staffing. It is understood that you may not be able to fully complete these sections initially. Do your best to complete what you know now and update them as you go. The intention is to outline the major impact of your feature so teams can be prepared for possible interactions.
In order to be prepared for a feature review, you should have 80% of this spec template filled out and have something in each section (even if it’s N/A or TBD).

9.2 How to fill out template

Select File New to open this template as a document. For the body of your spec, use Styles such as Heading 1-5, Body Text, Block Quotation, List Bullet, and List Number from the Style control on the Formatting toolbar.

Be sure to fill in the feature name in the document properties under Documents Title.

9.2.1 Content

There are basic instructions listed in each section to help you understand what should go there. All instructions are listed in BLUE.
9.2.2 How to Create Bullets and Numbered Lists

· To create a bulleted list like this, select one or more paragraphs and choose the List Bullet style from the Style drop-down list on the formatting toolbar. To create a numbered list like the numbered paragraphs above, select one or more paragraphs and choose the List Number style from the Style drop-down list.

9.2.3 How to Create Issue Blocks

You may want to call out issues in-line in your spec. User Issue Blocks to call attention to them. Write the text you would like to be your Issue Block Header and your paragraph(s) of text that you want to be in the issue block. Then highlight the header text and select Issue Block Header from the Style drop down list. Then highlight the paragraph(s) of text you want included in the issue block and select the Issue Block Style from the drop down list.

This is my issue block header

Here is some text for my issue block. I need to resolve this issue by 12/99 for a feature review with my manager.

9.3 How to update the of Contents

To update the Table of Contents for this spec, position your cursor on the TOC page. Right click and select update fields. You can choose to update page numbers only, or the entire table.

� EMBED PBrush ���

� EMBED PBrush ���

�PAGE \# "'Page: '#'�'" ��Why,

�PAGE \# "'Page: '#'�'" ��we need a WMI provider for this…

�PAGE \# "'Page: '#'�'" ��was there a specific reason for this sentence?

�PAGE \# "'Page: '#'�'" ��Is this true

2
28
MICROSOFT Confidential

bridgewatcher-spec Last Saved: 2000-02-21 PM 7:00

[image: image3.png]Select a language from the list below. The language you select
determines which language-specific operating system choices and tools
are offered for installation.

¥ BRTT B0, Enter HF—EML T &V,

CD A& ¥R b7 BI8E1d, Windows 2000 CD A% CD-RON
FAER TV DI EERAL T a0,

IDT7ANEREF v PTBICE, Ese F-EMLT IV,

BE: IOT77ALERR v FLERES Eu N7 v TORET,
Windows 2000 OEFLREIFIFRIShELE A

¥y M7y TERTTAICE, F3 F-EHL T ZEV,

[image: image4.png]7 watcher - 192.168.0.2 English [-[CIx]

21192 16802 . Foalm] 4| [BR 18206802 Pl [l B | @1 92.168.0.2 .. El[=1EY

e

_1008766433

_1008766483

