
Windows

Headless EMS support

Microsoft Confidential: This document is considered confidential to and is maintained as a trade secret by Microsoft Corporation. Information in this document is restricted to Microsoft authorized personnel only and any reproduction, distribution, or public discussion of this material is subject to the limits described in your non-disclosure agreement with Microsoft Corporation.

	Feature Information

	Feature Name
	Headless Emergency Management Services

	GM Technology Sponsor
	

	GM Product Sponsor
	

	Area
	Loader, Blues-Screen, Kernel Driver

	Related Features
	Bridge & Watcher, RIS on Server, attended to unattended, EFI

	Related Documents
	See section 1.6 “Related Documents”

	Which boxes does this feature ship in?
	All () Pro () High End Wksta () Server (X) Adv. Server (X) Datacenter (X) Embedded (X)

	Requires Updates to:
	SDK () DDK () Reskit (X) Online Product Docs and Help (X)

	Document Location
	\\corptools1\headless\docs\currentHeadlessEMS1.0spec

	Spec Status
	New

	Document Security
	Public (All MS) (X) Private (Only Jimall’s group) ()

	
	

	Contact Information

	PM Author
	Pasquale DeMaio – PDeMaio

	Dev Author
	Adam Barr –AdamBa

	Test Contact
	Rajesh George – Rgeorge, Drew M – DrewM

	Design
	

	Usability
	International – Lori Brownell -

	UA
	Sue Turner – SueT; Laura Shepard – ?

	PSS
	

	Revision Summary

	Author
	Date
	Version
	Comments

	PDeMaio
	1/3/00
	.50
	Conversion from other spec

	AdamBa
	1/14/00
	.60
	Added section 6 (schedule information)

	PDeMaio

	1/21/00

	.95

	Integrated review feed back. Completed all remaining sections.

	PDeMaio
	1/25/00
	.96
	Integrate more review feedback

Table of Contents

51
Introduction

1.1
Feature Summary
5
1.2
Theme Relevance
6
1.2.1
Customer Scenarios
6
1.3
Justification
7
1.3.1
Business Justification
7
1.3.1.1
Competitive Justification
7
1.3.1.2
Customer Justification
7
1.3.1.3
Industry Impact
8
1.3.2
Technical Justification
8
1.4
Goals
9
1.4.1
Non Goals
10
1.5
Scope
11
1.5.1
What does this spec cover
11
1.5.2
What this spec doesn’t cover
11
1.6
Related Documents
11
2
Feature Description
12
2.1
Detailed Feature Description and Specification
12
2.1.1
UI Description
17
2.1.2
API and Interfaces
18
2.1.2.1
New APIs and Interfaces
18
2.1.2.2
Changed APIs and Interfaces
18
2.1.2.3
Removed APIs and Interfaces
19
2.1.3
Scripting Interfaces
19
2.1.4
Manageability
19
2.1.5
Performance Goals
20
2.1.5.1
Performance Counters
20
2.1.6
Security Impact
20
2.1.6.1
Security Context
20
2.2
Setup Requirements
20
2.3
Hardware/Environmental Requirements
21
2.3.1
CPU
22
2.3.2
RAM
22
2.3.3
DISK
22
2.3.4
Network Bandwidth
22
2.3.5
Boot time
22
2.4
Source File Impact
22
2.4.1
Depots Affected
22
2.4.2
New Trees
23
2.4.3
New Files
23
2.4.4
Touched Files
24
2.5
CD File Impact
28
2.5.1
Files Added
28
2.5.2
Files Touched
28
2.5.3
Files Moved
29
2.6
Directory Impact
29
2.6.1
New Objects
29
2.6.2
Object Changes
29
2.6.3
Object Deletions
29
2.7
Registry Impact
29
2.7.1
New Registry Keys
29
2.7.2
Registry Key Changes
29
2.7.3
Registry Key Deletions
29
3
Other Considerations
30
3.1
Dependencies
30
3.1.1
Team Dependencies
30
3.1.2
Code Dependencies
30
3.1.3
Scenario Dependencies
30
3.2
Win64 Issues
30
3.3
Localization/Globalization Issues
30
3.4
Accessibility Issues
31
3.5
Compatibility
31
3.5.1
Hardware Compatibility
31
3.5.2
Application/Component Compatibility
31
3.5.3
Heterogeneous Network Compatibility
31
3.6
Backup
31
3.7
Reliability Issues
31
3.8
URL requirements
32
3.9
Supportability
32
3.9.1
Logging/Eventing
32
3.9.2
Error Messages
32
3.9.3
Diagnostic Tools
32
3.9.4
Recovery from Corruption or Error Conditions
32
3.10
User Assistance Issues
33
3.11
Key feature interactions
33
3.11.1
Terminal Services
33
3.11.2
Clustering
33
3.11.3
Network Infrastructure
33
3.11.3.1
Remote Access
33
3.11.3.2
Multiple Hops
33
3.11.3.3
Network Media
33
3.12
Downlevel support
33
3.13
External Developer Impact
33
3.14
Sustained engineering Plan
33
3.15
Patents
33
4
Information Exposure
34
5
High Level Test Plan
34
5.1
Test strategy
34
5.1.1
Functionality
34
5.1.2
Regression
36
5.1.3
Stress
36
5.1.4
Setup/Upgrade
36
5.1.5
Interop
36
5.1.6
Reliability
36
5.1.7
Robustness
36
5.1.8
Long haul
36
5.1.9
Deployment
37
5.1.10
Y2K
37
5.2
Globalization
37
5.3
Geopolitical
37
5.4
Automation
37
5.5
WHQL Deliverables
38
5.6
Ship criteria
38
5.7
Test Results
38
6
Schedule/Staffing
38
6.1
Staffing
38
6.2
Priorities
38
6.3
Schedule
42
6.3.1
Schedule Summary
42
6.3.2
Detailed Schedule
42
6.3.2.1
Milestone 1
42
6.3.2.2
Milestone 2
42
6.3.2.3
Milestone 3
43
7
Capabilities Deferred
43
8
Q&A
43
9
Template Instructions
43
9.1
Feature Process Info
43
9.2
How to fill out template
44
9.2.1
Content
44
9.2.2
How to Create Bullets and Numbered Lists
44
9.2.3
How to Create Issue Blocks
44
9.3
How to update the of Contents
45

Windows

Headless EMS support
1 Introduction

1.1 Feature Summary

A headless server is one that can be completely administered remotely and therefore does not require local keyboard, mouse or video card and monitor. This specification documents the first headless implementation of Windows, called the Emergency Management Services, EMS, and the removal of dependencies on local console hardware and the ability to run Attended in Text Mode Setup with Unattended GUI Mode Setup.

Windows has remote management capabilities that provide the necessary tools to administer the operating system remotely when the OS is functioning properly. For further discussion of these tools see 1.5.2 “What this spec does not cover”.

The purpose of the EMS is to provide a highly reliable back door to a server for use when the server cannot be managed via the normal means. This back door is really conglomeration of multiple binaries that all use the RedPort for a console device and provide capabilities aimed at getting the OS up and fully functional.

The normal means of communications, generally the network, is called the “in band” communication channel. Communication that does not require the in band communication to be available is called “out of band”, or OoB. Out of band management is necessary is when the OS is not running, the OS is not running properly or the link to the in band communication channel is unavailable.

Examples of situations where out of band management is required:
- the in band network is unavailable
- the network stack has failed
- no general purpose network stack is available, e.g. RIS, setup, the loader, blue screen
- the server is extremely low on resources, possibly due to a runaway application.

The goal of all communication with the EMS is to attempt to return the server to a state where the OS is functioning and normal in band tools are available. Since some states and situations, like certain system hangs, are impossible to remedy with a software solution, out of band support for management hardware is key to creating a bullet proof headless solution. When our headless solution is coupled with properly designed hardware and firmware, a system could be entirely managed remotely even when the OS is completely unavailable. A white paper <How to build complimentary HW for Microsoft Headless Operating systems> will be available to aid OEMs in creating systems that integrate well with our headless OS support.
The functionality of the EMS is limited to text mode communication. In order to run setup in a non-automated way, all input that is currently required in setup must be completed in text mode setup. This will allow Windows setup to be competed remotely via the out of band channel. However any remote access to setup files will be through standard in band mechanisms or PXE.

Note: The hardware interface that provides in band communication is sometimes referred to as GreenPort. The hardware interface that provides the out of band management channel is called the RedPort. Since it is only used when all other mechanisms have been exhausted, the RedPort must be highly reliable. Because much of the code that accesses the RedPort is limited in size and complexity the RedPort interface must be simple and uniform across vendors. This first Windows EMS support will be available via a serial port.

It is possible that in future implementations of hardware the RedPort and GreenPort may share the same external physical connector outside the headless server, i.e. a single net card providing both functionalities. Clearly this lowers the reliability of the out of band management channel.

1.2 Theme Relevance

A headless server provides increased manageability and availability. These two areas and scalability are the key areas that we need to improve to compete in the server space. Customers have been asking for these features since NT4.0 was released.

<placeholder– when the theme documents are finished a pointer will be placed here>

1.2.1 Customer Scenarios

The reasons that a typical customer would choose to run a server headless would be to

Scenario 1 – A real customer incident: NatWest Bank in June (or thereabouts) of 1998. The domain controllers on their NT4 network hit 100% CPU utilization and users could not log in. If a DC was restarted, it immediately went back to 100% CPU utilization due to network requests. There was no way for an administrator, even if he was sitting at the machine, to break in, and certainly no way to do so remotely. This brought NatWest’s data center to its knees.

Using the headless capabilities provided by the EMS the NatWest administrators likely could have diagnosed and rectified the problem. Using the Tlist functionality of the SAC , the admin could have determined which process was consuming 100% of the CPU cycles. They then could use the Lower Priority functionality to wrangle the offending process, thus returning their server a usable state.

Scenario 2 – An admin ships a Server, with a known MAC address and PXE compatible NIC, to his server farm with no software installed. There, a local technician plugs in the power cable, the serial cable and the network cable(s), calls in to the administrator, powers on the box and walks away. The serial port is connected to a terminal concentrator.

Using telnet to connect to the terminal concentrator, the administrator is viewing the box boot via the out of band connection remotely. The data center has been setup up to support Remote Install Services (RIS) for installs. When the StartROM.com prompts for F12 (the BINL server has been properly configured to set this server up with the proper configuration) she presses F12. She then selects the appropriate OS from the list of possible choices and returns to her other jobs. A few minutes later she returns to watch the status scroll by as the server continues to setup. When she checks back a few hours later the server has completed setup and fully functional. She pings the server and to make sure is available and logs the server as setup.

With proper automation software on the administrator’s computer this process could be automated. Note: the work to create such automated tools is not work outlined in the spec.

Scenario 3 – A technician goes on site to diagnose system that is failing to even begin to load the operating system because of a disk problem. When he arrives he attaches his laptop the serial port as a console. He determines the problem and replaces the HD with an blank one. Then he inserts the retail Windows SKU and boots to CD. From there he uses the Attended Text Mode to Unattended GUI Mode Setup functionality to load Windows on the HD. Now that the system is back up and running, a remote admin configures the system appropriately.

1.3 Justification

1.3.1 Business Justification

Systems that are remotely managed, groups of systems that are being centrally managed, partitionable systems and embedded devices all require headless support. This feature is necessary to lower Total Cost of Ownership for our server products. It is a checkbox feature for server products. It will allow us to compete with SUN and Unix vendor in the server space. This server space is the lowest tier of computing that Windows does not dominate.

1.3.1.1 Competitive Justification

Nearly all Unix competitors support headless. SUN has been particularly vocal about this lack of functionality. Midrange SUN UE servers all support Out of Band via a serial port connection. Unix vendors, such as IBM and HP, support out of band management via the serial port and network. This is a real world differentiation that customers base their purchases on.

1.3.1.2 Customer Justification

System administrators for data centers, branch offices, highly available systems, telcos and ISP’s have requested the feature specifically. The feature is particularly popular with customers who are used to similar functionality on Unix. Customers also can reduce cabling and rack space by eliminating the KVM switches they currently use. Some customers who we have visited and wish to use the feature are www.loudcloud.com, Goldman Sachs, HotMail, GNAC and Lehman Bros. Numerous customer visitors have demonstrated the customer want and need of this feature.

1.3.1.3 Industry Impact

Competitors are likely to improve their out of band management to try to maintain a competitive advantage.

Hardware vendors will change their designs to better support our headless servers. Hardware vendors will
- improve the out of band management available on there servers by adding features to there current out band solutions.
- change their current out of band management implementations to match and compliment our functionality.
- add out of band management functionality to servers that previously had none.
- spoof serial ports to provide customers with the ability to reach the EMS via other mechanisms such as the network.

ISVs and OEMs, who supply management software, will add support for the this new management technology to their current management offerings by integrating VT100+ compatible terminals and tools for aggregation and automation. Good implementations here would help customers significantly.

KVM switches will become less popular.

1.3.2 Technical Justification

Hardware support:

Serial ports are on 100% of current PC servers.

It is the way many competive solutions are implimented.

A large segment of the current customer base has a serial based infrastructure for their current headless implementations. Further more, many customers were demanding interoperability with their Unix solutions.

Because of the well-understood and simple interface the serial port offered the fastest time to market for a robust implementation. Because of customer’s dire need for headless support, our current ship schedule and our need to get real world experience feedback, on a feature we have never supported before, time to market was a key factor.

Because legacy reduction is a goal, and the serial port is considered legacy, there were other options for hardware we considered and we may support them in the future, such as Network, 1394, PXE and Service Processor. Eventually the RedPort will be something other than serial on many if not all systems.

Software architecture:

Given our goal of Unix interoperability, high reliability and delivery in the next rev of windows it was a relatively easy decision. This architecture was the one the most closely matched with the current implementation of Windows and most specifically the sensitive and well tested windows boot, initialization, blue screen code and debugger. Other choices would have required drastic changes to the windows architecture itself, specifically in areas, which are highly constrained and very sensitive to change, such as the loader. This was fastest, simplest and safest way we could implement headless support that would meet customer needs for functionality and interoperability.

1.4 Goals

The general goal of headless is to provide a mechanism to manage all aspects of the server remotely and therefore not require any local keyboard, mouse or video. Of course adding and replacing hardware will require local access. To do this you must manage all states of the machine not just the OS state.

The work being done to enable headless operation assumes currently available tools, such as MMC snap-ins or Terminal Server Administrator Mode, are to be used to manage the OS remotely via the standard communication channels, such as Ethernet. The headless directive is to manage the system in all other systems states and the OS state only in emergencies.

[image: image1.wmf]Power

Off

Firmware

OS

Loader

Setup

Blue

-

Screen

Hung

Power Off

Firmware

Loader

File Copy,

Text Mode,

& GUI Mode

Setup

Failure

To OS cycle

Setup States

1

st

boot

[image: image2.wmf]Power

Off

Firmware

OS

Loader

OS

Blue

-

Screen

OS in

Distress

Hung

Power Off

Firmware

Loader

OS

Failure

OS States

There are states, including Power Off, Firmware and sometimes Hung (hung in the diagram actually represents many situations where the server is unresponsive to access via an in band connection, some of which are correctable using the SAC), where there is no Microsoft software running on the headless system. Managing these states requires that the OEM/BIOS vendor support out of band management. It is obviously preferable that the OEM solution uses the same protocol (VT100 or <VT100+>) and channel as the Microsoft headless solution, so that users can access both using one set of cables and tools. Furthermore it is valuable to the customer to have uniformity across OEMs so that managing systems from multiple vendors would be simplified.

1.4.1 Non Goals

General Remote Management – While general remote management is key for Windows to competitive in the server market place, work beyond what is currently available is not required for headless operation. It is outside the scope of this document. Work done to enable headless operation will be with the intention of fitting into the overall remote management picture.

Replacing in-band management capabilities. The goal of headless support is always to return to the OS state and manage the system using in-band methods.

Aggregation – Aggregation is the ability to view multiple systems simultaneously at a given instant through a single user interface. Aggregation is subcategory of the larger remote management category of work.

Automation – Automation is the ability act and react without human intervention. The simplest form of automation is scripting, but it would extend to intelligently reacting to events as they happen and predicting outcomes etc. Automation is subcategory of the larger remote management category of work.

Note: Headless implementations must be exposed in ways that allow automation and aggregation but the actual aggregation and automation will be accomplished via management tools on a remote administration machines not the target headless system.

1.5 Scope

1.5.1 What does this spec cover

The EMS Components

· StartROM.com

· OSChooser

· NTLDR

· SAC

· !SAC

· Recovery Console

· Setup

· Blue Screen

Attended Text Mode Setup, Unattended GUI Mode Setup

1.5.2 What this spec doesn’t cover

Lights Out Servers – Although headless is a requirement for a lights out server, the term lights out server has a greater scope than just headless. Lights out implies a certain level or reliability, availability, manageability and automation that are not inherent requirements for headless operation. The work done in headless is with the intention of integrating as part of a light out server in a lights out data center.

Removal of the Windows video card requirement.

1.6 Related Documents

<RIS on Server Spec>

<ACPI Fixed Table Entry to Indicate the Port for Out of Band Management>

<Bridge & Watcher>

Term cap for VT100

<VT100+>

<Network Access in the Recovery Console>

<Headless Vision Doc>
Extensible Firmware Interface Specification

<How to build complimentary HW for Microsoft Headless Operating systems>
2 Feature Description

2.1 Detailed Feature Description and Specification

EMS – The EMS is conglomeration of multiple Windows components providing appropriate management functions via a uniform text mode user interface during the system states of setup, boot, normal operation and failure. The EMS is available whenever possible when Windows software is running system. With the exception of the Secure Admin Console, which is a kernel mode driver that’s only function is headless support, all portions of the EMS are standard Windows components that have had headless functionality added to them. Note that with the exception of StartROM.com and the SAC, there are not separate headless and non-headless versions of the EMS components. They are simply configured by default to run headless or not.

There are certain periods, generally during state transitions when one component is exiting and next is initializing, where the EMS is not available. The goal is to minimize these “black out” periods as much as possible. There are also areas during redirection where only status is being transferred and there is no interaction. These “gray out” areas become interactive, if the EMS component executing errors out and supports a !SAC. A !SAC is a console that becomes available it the system errors out, during one of the states that supports it, and offers a paired down set of the commands available in the SAC.

Setup – Setup itself can be run headless in three ways: Unattend, Attended Text Mode Setup with Unattened GUI Mode Setup or using Remote Install Services. Note: see section 2.2 “Setup Requirements” for details on how to configure the final Windows installation to run headless during setup.

In all 3 modes, SetupLDR is executed. If there is an answer file, SetupLDR will use the configuration specified in it. In the case where there is an Answer File, but there is no headless section SetupLDR will not direct its UI to the RedPort. If setup loader is not run with an answer file, but is launched by OSChooser, setup will use the same settings as OSChooser. If SetupLDR is being run without an answer file, and the BIOS conforms to <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management> spec, it will use the settings the BIOS used for RedPort console I/O, other wise it will not redirect. In the case where the BIOS settings are used because there is no Answer File and no settings are passed from OSChooser, text mode setup will prompt the user before its completion as to whether or not it should continue to redirect using the BIOS settings when the OS is installed.

Unattended Text Mode setup – Setup can be configured to run headless via an Answer File. The text mode portion of setup will run unattended and provide status to the RedPort. With the exception of a RIS install, SetupLDR will read it’s settings from the boot.ini, which will have been determined from the Setup.SIF unattend file. In an RIS install SetupLDR will use the settings passed by OSChooser. Text mode setup will use the same RedPort settings that SetupLDR used. See section 2.2 “Setup Requirements” for details on writing the Setup.SIF file appropriately.

The GUI mode portion of setup must run in an unattended mode, as any pop ups will not be directed out the RedPort console. This may be achieved via an Unattend file or Attended Text Mode Setup, Unattended GUI Mode Setup

The SAC is enabled during GUI Mode setup.

Attended Text Mode Setup, Unattended GUI Mode Setup – All the information necessary to complete setup is entered during a series of text mode dialogs during Text Mode Setup that create an answer file which allows the GUI mode part of setup that would typically require user interaction to run hands free. Any time Text Mode Setup is running headless without an Answer File, Attended Text Mode Setup, Unattended GUI Mode Setup will automatically run. It is unlikely that this will be the optimum method to setup a system or particularly a group of servers, but it would be very userful when a one off install is needed, particularly when combined with El Toritto (CD/DVD boot) and BIOSes that comply with <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management>. These technologies will allow boot heedless using only a standard Windows SKU.

Remote Installation Services – A RIS install can be run headless. StartROM.com and OSChooser both run headless. The BINL server creates an Answer File which allows the rest of setup to run headless.

StartROM.com – Because of the lack of ability to pass perameters to StartROM.com there are four varieties of it, three of which have headless capabilities. The possible Headless configurations are:

COM1
COM2
Use BIOS Settings (see section 2.3 “Hardware/Environment Requirements”)

One of the four variations of StartROM.com is configured on the BINL server to be downloaded to each server. If configured for headless use, StartROM.com directs all of its UI to both the RedPort and the local console, if it exists. See the note below “Note on EFI dependencies”

OSChooser – If StartROM.com was running in a Headless mode OSChooser directs all of its UI to both the local console, if it exists, and the RedPort with the same settings as StartROM.com. See the note below “Note on EFI dependencies”.

Note: There is separate specification for changes to RIS to support server installs appropriately, <RIS on Server Spec>.
Recovery Console – When the Recovery Console is configured for headless operation, it directs all of its UI to both the RedPort and the local console, if it exists. The Recovery Console may be launched in 4 ways. If the recovery console is launched from setup on the Windows Setup CD/DVD, its redirection settings are determined by those passed from SetupLDR’s. If the Recovery Console is launched via key press from OSLoader, its redirection settings are determined by those passed from OSLoader (boot.ini? pressing F1 or F2?). If the Recovery Console is installed as a separate OS on the local hard drive, its redirection settings are determined by those associated with it in the boot.ini. If the Recovery Console is launched from OSChooser, its redirection settings are determined by those passed from OSChooser.

OSLoader/NTLDR – OSLoader directs all of its UI to both the RedPort as specified in the OSLoader section of the boot.ini and the local console, if such section exists. If no boot.ini exists, OSLoader will not redirect the resulting error message, unless the BIOS reports the redirection settings using the mechanism specified in <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management>, in which case the error message will be redirected and the option to restart will be presented to the user. See the note below “Note on EFI dependencies”. As it loads files the OSLoader logs status and events. The log is a circular buffer stored in memory that can be accessed if an error occurs. The OSLoader supports a !SAC. The OSLoader !SAC supports the following commands.

G
Display the GUID (may only be available on EFI systems)
D
Display all log entries, paging is on.
help
Display this list.
restart
Restart immediately.
?
Display this list.

See the note below “Note on EFI dependencies”

Kernel, during initialization, – As initialization progresses, it will log status and events. After the first boot driver, the SAC driver, is loaded the kernel supports the SAC. . The settings for the kernel, during initialization, are passed on from NTLDR. The log is a circular buffer stored in memory that can be accessed if an error occurs. Some example events:

Initializing XXXXXX subsystem
Initializing driver XXXXXX
Driver XXXXXX intialization successful
Driver XXXXXX initialization failed.

Secure Admin Cosnsole – The Secure Admin Console, SAC, is a kernel mode driver that presents a Console to allow recovery of a system when the OS is running but the normal mechanisms of managing the system are unavailable. Its settings are abstracted by the kernel, which provides an interface to the RedPort. The red port settings are determined by those of NTLDR or SetupLDR. It offers a set of commands aimed at returning the system to functionality.

	Command name
	Command
	Parameter(s)
	Action

	dump
	d
	
	Dump the kernel log.

	t-list
	t
	
	Lists the process and threads currently running.

	togglet-list format
	f
	
	Toggles full tlist info to just processes, or visa-versa.

	kill
	k
	<pid>
	Kills the given process.

	lower priority
	l
	<pid>
	Lowers the priority of a process to the lowest possible.

	limit memory
	m
	<pid>
<MB-allowed>
	Limits the memory usage of a process to MB-allowed megabytes.

	toggle t-list paging
	p
	
	Toggles paging the display.

	GUID
	g
	
	Returns the System GUID

	shut down
	Shutdown
	
	Shutdown the machine.

	raise priority
	r

	<pid>
	Raise the priority of a process

	restart
	restart
	
	Shuts downs and restarts the machine.

	IP address(es)
	i
	
	List all the IP network numbers and their IP addresses

	set IP address
	i
	<#> <IP> <sub-net>
	Sets the IP address for the given network number.

	time and date
	s
	
	Displays the Time Date

	set time and date
	s
	<mm/dd/yyyy>

<hh:mm>
	Sets the Time and Date

	list commands

	?

	
	Lists the available commands.

	crash dump
	crashdump
	
	Crash the system. Crash dump must be enabled for a dump to be generated.

Blue Screen – In the general case the Blue Screen can be configured to restart or wait and to create a dump file or not. These settings are not affected if the system is running headless. All blue screen information and the Date and Time from the headless sytsem is output via the RedPort. If the server is configured to wait (i.e. not to restart), a prompt for the blue screen !SAC will be available.

The blue screen !SAC supports the following commands

G
Diplay the GUID
D
Display all log entries, paging is on.
help
Display this list.
restart
Restart immediately.
?
Display this list.

Note on EFI dependencies: On systems with EFI compliant firmware, the components that execute while the EFI bootime services are available must use the EFI console for all console I/O. The EFI console service will appropriately write all output to the RedPort if it is configured to. Also note: There is no boot.ini. After EFI_Exit_Firmware is called by NTLDR (or the kernel depending on our EFI implimentation), NTLDR (or the kernel depending on our EFI implimentation) will always use what the console device path returns as the console with the exception of the case where the admin has configured the boot settings in the EFI boot variables for that OS fro no headless redirection. If the console boot service does not return a serial (or other acceptable RedPort) device path, headless will not be supported on that system. . If the user wishes to turn off headless support on the serial port, they may do so by configuring the firmware to not use the serial port (or other acceptable RedPort) as a console, provided the EFI firmware supports that configuration, or by specifying redirection off in the NVRAM variables associated with that OS in the EFI boot manager.

Boot.Ini settings – The boot.ini contains the settings for OSLoader in a specific section. Each OS entry in the boot.ini that supports headless operation may contain the configuration information for the appropriate port for the EMS UI with redirect= in the [boot loader] section. Possible settings are (See the note on 19200 baud):

Off
COM1
COM2
COM1at19200
COM2at19200
UseBIOSSettings

see section 2.3 “Hardware/Environment Requirements”

Sample boot.ini

[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\WINNT
redirect=com1

[operating systems]
multi(0)disk(0)rdisk(0)partition(1)\WINNT="Microsoft Windows 2000 Professional" /fastdetect /redirect

Note on the Serial port – There is no logical error correction or error detection provided by the EMS components, such a check sums.

Note on console redirection refresh – There is no support for refreshing the display on the remote screen for those components that redirect text. This is not an issue for the SAC or !SAC, which respond by sending a prompt if an unknown command is issued.

Note on the OS timeouts – We may have to increase certain UI entry timeouts when running headless. This is because serial latency and the difficulty of entering some non-VT100 supported keys could affect the ability of an admin to enter a command in the time required.

Note on the need for hardware – In many cases there is no way for the EMS to provide server, e.g. the system is off, system hangs hard, the HD dies, the admin misses hitting F12 on system with no installed OS or the admin chooses to load a non headless OS)? In all these cases the EMS alone will not provide a solution, so the ability to control the server using out of band management hardware in conjunction with the EMS is valuable.
Note on the 19200 baud – The 19200 settings are provided for backwards compatibility with current Out of Band HW/FW solutions such as the Compaq IRC. There will not be support for 19200 in StartROM.com. These solutions typically offer console redirection, so StartROM.com support is not needed.

Note on Bootvid.dll – We do not plan to redirect bootvid.dll output, such as the chkdsk. We do redirect the blue screen, which utilizes bootvid.dll, but this is done a lever above bootvid.dll.

Note on the removal of hardware requirements – The goal of headless is to not require keyboards mice or video hardware. Currently Windows 2000 supports operation without a mouse, without a keyboard plugged if the bios supports booting without one, without a monitor attached and without a keyboard controller in an ACPI system. For headless, the requirement for a video card must be eliminated. This work is not included in this spec. Although the keyboard, mouse and video hardware are not required on a headless server they may be present.

2.1.1 UI Description

All the EMS UI is command line based and viewed on a remote terminal. It would be optimal to make all the UI in each of the EMS components flow together as seamlessly and cohesively as possible. However, because of the different functions and legacy of the local user interfaces of each state, the interfaces vary in look in feel. The administrators who use this interface appreciate simplicity and functionality over bells, whistles and pretty pictures. If customers demand it a more complicated UI that masks the text nature of the EMS can be generated on the administrative machine. Tools could be created to aggregate and automate management of multiple EMS’s. That functionality is beyond the purview of this doc or the work to be done by Adam’s team. Suffice it to say, any complicated GUI will be generated at the administrative system.

From a technical standpoint there are two types of UI presented to the user. One type is console redirection of text that would appear on the local console. The majority of this non-interactive status such as the driver load list with occasional interactive prompts such as the OS Selection screen. The other type is UI is the console presented by the headless tools like the SAC and !SACs that offer a command set and are always interactive. A third category of UI interface will emerge which is status that is not displayed locally but is displayed remotely for logging. By minimizing the amount of blackout between components and maintaining a uniform look and feel to all UI we can provide a cohesive experience for the admin.

Sample screen shot of the OSLoader

Sample screen shot of Text Mode Setup

Sample all screens of Attended Text Mode, Unattended GUI Mode Setup screens

Sample screen shot of the Driver load list

Sample screen shot of the SAC (Tlist)

Sample screen shot of the Blue Screen SAC (showing the blue screen redirection as well)

EFI dependencies:

2.1.2 API and Interfaces

The WMI provider for changing configuration provides additional interfaces; see section 2.1.4 “Manageability”.

2.1.2.1 New APIs and Interfaces

HeadlessEnableTerminal

HeadlessCheckTerminalForReboot

HeadlessPutString

HeadlessDisplayClear

HeadlessDisplayClearToEOD

HeadlessDisplayClearToEOL

HeadlessDisplayAttributesOff

HeadlessDisplayInverseVideo

HeadlessDisplaySetColor

HeadlessDisplayPositionCursor

HeadlessTerminalPoll

HeadlessTerminalGetByte

HeadlessTerminalGetLine

2.1.2.2 Changed APIs and Interfaces

These are now exported:

NtShutdownSystem

RtlTimeToElapsedTimeFields

ZwAssignProcessToJobObject

ZwCreateJobObject

ZwOpenJobObject

ZwQueryInformationJobObject

ZwSetInformationJobObject

ZwTerminateJobObject

2.1.2.3 Removed APIs and Interfaces

N/A

2.1.3 Scripting Interfaces

There are no interfaces to script except for those provided by the WMI provider to allow enabling and configuration of the EMS code. Because the WMI provider model is used, all configuration changes will be scriptable via the Windows Scripting Host. See 2.1.4 manageability for specific configuration options.

It is possible to automate response to information sent by the EMS. This code would be in the form of a management application on the administration terminal, not on the headless server.
2.1.4 Manageability

For install information, see section 2.1 “Detailed Feature Description and Specification” and section 2.2 “Setup Requirements” . The most convenient mechanism for deployment is via a Windows Answer File.

The headless settings in the boot.ini will be configured via WMI provider. On EFI systems the only setting is to turn off EMS RedPort output despite the EFI/FW settings. The server must be restarted for the settings to take effect. There is an open issue for allowing changing the firmware serial console settings via ACPI or some other mechanism. The possible boot.ini settings are:

Off
COM1
COM2
UseBIOSSettings
COM1at19200
COM2at19200

Note: With this implementation, StartROM.com would have to be changed manually on the BINL server to mach any new settings unless the system was running in “use BIOS settings” mode, i.e. the change was accomplished by changing the BIOS settings (in the firmware) only, or the machine was an EFI machine.
2.1.5 Performance Goals

2.1.5.1 Performance Counters

There are no items that it is deemed interesting to instrument performance counters.

2.1.6 Security Impact

Because of requirements of multiple simplistic and varying components, out band management must rely on the communication medium for security. In the case of serial, that security is provided by the physical limitations of the serial connect. Serial cables are short, don’t support routing, they are single point to single point and in order to attach one you need to local to the machine and either remain local or use some other system which can employ logical security, such as terminal concentrator, convert the serial stream to a suitable medium.

EMS console relies on physical security. No logon or password is required. Anyone who accesses the terminal can do significant damage to the system and possibly it’s peers.

Note: OSChooser presents a login screen to the user, but in fact the individual keys typed in the password would be sent in plain text across the serial cable.

See http://mste/interface/issue9/home.asp for more information about how to make sure your feature is secure.
2.1.6.1 Security Context

The EMS runs as part the kernel. It requires no log on. A normal user should never have access to the EMS. The WMI provider that configures the EMS runs in user mode and requires administrator privileges.

2.2 Setup Requirements

There are substantial changes to setup required in terms of making it run headless. Those are covered in section 2.1 “Detailed Feature Description and Specification”. The information in this section is how the OS can be enabled and configured for headless use once setup has completed. There are 4 ways that headless can be enabled.

Attended Text Mode, Unattended GUI Mode – Attended Text Mode, Unattended GUI Mode allows a manual setup to be run on a headless server. All the information necessary to complete setup is entered during text mode thus allowing the GUI mode part of setup that would typically require user interaction to run hands free. See section 2.1 “Detailed Feature Description and Specification” for information related to Attended Text Mode, Unattended GUI Mode setup.

Unattended setup – There is a section in the unattend file that provides the settings for configuring the server to run headless. These settings are also used by setup to run headless. See section 2.1 “Detailed Feature Description and Specification” for details of how setup is enabled to run headless. The Setup.SIF headless settings are written to both the boot.ini entry for the final OS installation and all the temporary setup entries.

Off
COM1
COM2
Use BIOS settings
COM1 19200
COM2 19200

Sample Setup.SIF headless section:
Note for EFI Compliant Systems: There is no boot.ini. NTLDR will always use what the console serial device path (or eventually, other acceptable RedPort) returns unless headless is configured to be Off in the EFI boot manager. If the there is no serial (or other acceptable RedPort) device path returned from the console boot service, headless will not be supported on that system. . If the user wishes to turn off headless support on the serial port, they may do so by configuring the firmware to not use the serial port (or eventually, other acceptable RedPort) as a console, if this is supported by the EFI firmware, or by specifying off in the boot manager.

RIS – See the separate specification < RIS on Server Spec > and section 2.1 “Detailed Feature Description and Specification” for related information on RIS requirements for headless.

WMI provider – If an administrator wishes to enable headless support after the system has been setup, the admin may use the headless WMI provider to and enable headless support. This requires no changes to setup. See 2.1.4 “Manageability” for more details.

2.3 Hardware/Environmental Requirements

A serial port at the standard location of COM1 or COM2 is required. There is a specification for the BIOS to indicate which COM port and the settings it used for redirecting the console, <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management>. On a system with EFI compliant firmware, see the Extensible Firmware Initiative specification, the device path for the console will be used to determine the proper COM port and associated settings, if applicable. If the system firmware does not support <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management> or the EFI serial console device path, the EMS can be configured for COM1 or COM2 using the boot.ini, see section 2.1 “Detailed Feature Description and Specification”.

COM Port
COM1 (preferred) or COM2
Baud
9600 or 19200*
Parity
no
Data Bits
8
Stop Bit(s)
1

Service Processors or ASICs can be supported as long as they can be configured to release the serial port for use by the OS once StartROM.com or NTLDR are running.

*Note: 19200 is provided for compatibility in with legacy out of band management solutions provided by OEMs, such as Compaq’s IRC. These systems are common among customers who have been running NT headless with it’s current limitations. These customers rely on the increased reliability of being able to restart the server with a hardware solution and are one of the key targets of the our first rev (one example is Goldman Sachs). This is only an issue on legacy systems with BIOS that don’t support <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management>. In this case all the EMS components that get their settings from the boot.ini may be configured to 19200 baud. It isn’t necessary for the other components to support redirection on these legacy systems because they support hardware redirection.

2.3.1 CPU

N/A

2.3.2 RAM

N/A

2.3.3 DISK

N/A

2.3.4 Network Bandwidth

N/A

2.3.5 Boot time

There may be slight delay during boot while a remote screen is painted. This is unlikely to affect boot time in a noticeable manner.

Note: The removal of legacy video cards may cause a delay as calls to VGA time out during boot. This is beyond the purview of this spec.

2.4 Source File Impact

2.4.1 Depots Affected

	(X) Admin
	() DS
	() Multimedia
	() Shell

	(X) Base
	() EndUser
	(X) Net
	() TermSrv

	()COM
	() InetCore
	() PrintScan
	() Windows

	(X)Drivers
	() InetSrv
	() SdkTools
	(X) Public

2.4.2 New Trees

Driver/SAC

List full path of any new source tree branches created for this feature
2.4.3 New Files

//depot/Lab01_N/base/boot/startrom/hdlscom1.n12/makefile#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom1.n12/makefile.inc#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom1.n12/sources#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom1/makefile#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom1/makefile.inc#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom1/sources#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom2.n12/makefile#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom2.n12/makefile.inc#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom2.n12/sources#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom2/makefile#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom2/makefile.inc#1 - add default change (text)

//depot/Lab01_N/base/boot/startrom/hdlscom2/sources#1 - add default change (text)

//depot/Lab01_N/drivers/sac/dirs#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/cmd.c#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/data.c#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/daytona/makefile#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/daytona/sources#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/dirs#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/dispatch.c#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/event.c#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/init.c#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/memory.c#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/sac.h#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/sources.inc#1 - add default change (text)

//depot/Lab01_N/drivers/sac/driver/version.rc#1 - add default change (text)

//depot/Lab01_N/drivers/sac/readme.txt#1 - add default change (text)

//depot/Lab01_N/root/public/internal/base/inc/hdlsterm.h#1 - add default change (text)

2.4.4 Touched Files

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/cmdcons.h#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/cmds1.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/console.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/copy.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/dispatch.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/expand.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/logon.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/main.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/map.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/msg.mc#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/cmdcons/util.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/i386/bootini.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/setupdd.def#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/sources.inc#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/sparc.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spconfig.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spdr.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spdrpset.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spdrutil.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spdsputl.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/sphw.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spkbd.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spkbd.h#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spntfix.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spnttree.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spntupg.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/sppart2.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/sppartit.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spsetup.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/sptarget.c#1 - edit default change (text)

//depot/Lab01_N/admin/ntsetup/textmode/kernel/spterm.c#1 - add default change (text)

//depot/Lab01_N/admin/ntsetup/textmode/kernel/spterm.h#1 - add default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spudp.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/sputil.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/spvidvga.c#1 - edit default change (text)

//depot/Lab01_N/Admin/ntsetup/textmode/kernel/textmode.h#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bd/alpha/port.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bd/bd.h#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bd/comio.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bd/i386/port.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bd/init.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bd/poll.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bldr/i386/initx86.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bldr/i386/parsboot.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bldr/msg.usa#1 - edit default change (text)

//depot/Lab01_N/Base/boot/bldr/OSLoader.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/efi/arcemul.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/efi/biosdrv.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/efi/ia64/input.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/efi/ia64/port.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/inc/bldr.h#1 - edit default change (text)

//depot/Lab01_N/Base/boot/inc/bldria64.h#1 - edit default change (text)

//depot/Lab01_N/Base/boot/inc/bldrx86.h#1 - edit default change (text)

//depot/Lab01_N/Base/boot/inc/netboot.h#1 - edit default change (text)

//depot/Lab01_N/Base/boot/lib/alpha/port.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/lib/blload.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/lib/i386/arcemul.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/lib/i386/biosdrv.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/lib/i386/input.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/lib/i386/port.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/lib/netboot.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/oschoice/i386/initx86.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/oschoice/msg.usa#1 - edit default change (text)

//depot/Lab01_N/Base/boot/oschoice/oschoice.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/oschoice/parse.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/oschoice/regboot.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/setup/arcdisp.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/setup/arci386/i386/sources#1 - edit default change (text)

//depot/Lab01_N/base/boot/setup/arci386/stubs.c#1 - add default change (text)

//depot/Lab01_N/Base/boot/setup/i386/initx86.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/setup/msgs.usa#1 - edit default change (text)

//depot/Lab01_N/Base/boot/setup/setup.c#1 - edit default change (text)

//depot/Lab01_N/Base/boot/setup/SetupLDR.h#1 - edit default change (text)

//depot/Lab01_N/Base/boot/startrom/dirs#1 - edit default change (text)

//depot/Lab01_N/Base/boot/startrom/i386/exp.asm#1 - edit default change (text)

//depot/Lab01_N/Base/boot/startrom/i386/su.asm#1 - edit default change (text)

//depot/Lab01_N/Base/boot/startrom/i386/su.inc#1 - edit default change (text)

//depot/Lab01_N/Base/boot/startrom/i386/sudata.asm#1 - edit default change (text)

//depot/Lab01_N/Base/boot/startrom/makefile.inc#2 - edit default change (text)

//depot/Lab01_N/Base/boot/startup/i386/exp.asm#1 - edit default change (text)

//depot/Lab01_N/Base/boot/startup/i386/sudata.asm#1 - edit default change (text)

//depot/Lab01_N/Base/fs/rdr2/inc/ntddnfs2.h#1 - edit default change (text)

//depot/Lab01_N/Base/fs/rdr2/rdbss/smb.mrx/devfcb.c#1 - edit default change (text)

//depot/Lab01_N/Base/fs/rdr2/rdbss/smb.mrx/openclos.c#1 - edit default change (text)

//depot/Lab01_N/base/ntos/inc/hdlsblk.h#1 - add default change (text)

//depot/Lab01_N/Base/ntos/init/bootvid.c#1 - edit default change (text)

//depot/Lab01_N/Base/ntos/init/init.c#2 - edit default change (text)

//depot/Lab01_N/Base/ntos/init/ntoskrnl.src#1 - edit default change (text)

//depot/Lab01_N/base/ntos/init/port.c#1 - add default change (text)

//depot/Lab01_N/Base/ntos/init/up/sources#1 - edit default change (text)

//depot/Lab01_N/base/ntos/io/hdlsterm.c#1 - add default change (text)

//depot/Lab01_N/Base/ntos/io/ioinit.c#1 - edit default change (text)

//depot/Lab01_N/Base/ntos/io/report.c#1 - edit default change (text)

//depot/Lab01_N/Base/ntos/io/sources.inc#1 - edit default change (text)

//depot/Lab01_N/Base/ntos/ke/bugcheck.c#1 - edit default change (text)

//depot/Lab01_N/Base/subsys/sm/server/smss.c#1 - edit default change (text)

//depot/Lab01_N/Net/dhcp/server/binl/menu.c#1 - edit default change (text)

//depot/Lab01_N/Net/dhcp/server/binl/osc.c#1 - edit default change (text)

//depot/Lab01_N/Net/dhcp/server/binl/osc.h#1 - edit default change (text)

//depot/Lab01_N/Net/dhcp/server/binl/utils.c#1 - edit default change (text)

//depot/Lab01_N/Root/Public/internal/base/inc/arc.h#2 - edit default change (text)

//depot/Lab01_N/Root/Public/internal/base/inc/inbv.h#1 - edit default change (text)

//depot/Lab01_N/Root/Public/internal/base/inc/oscpkt.h#2 - edit default change (text)

//depot/Lab01_N/Root/Public/internal/base/inc/remboot.h#1 - edit default change (text)

2.5 CD File Impact

2.5.1 Files Added

hdlscom1.com

hdlscom1.n12

hdlscom2.com

hdlscom2.n12

sacdrv.sys

sacdrv.inf

List of all files added to product. What does setup need to do with these files? Where should they reside on the cd?

2.5.2 Files Touched

spcmdcon.sys

setupdd.sys

osloader.exe

setupldr.exe

ntldr

oschoice.exe

startrom.com

startrom.n12

ntoskrnl.exe

binlsvc.dll

2.5.3 Files Moved

N/A
2.6 Directory Impact

2.6.1 New Objects

N/A

2.6.2 Object Changes

N/A

2.6.3 Object Deletions

N/A

2.7 Registry Impact

2.7.1 New Registry Keys

We are adding a driver with the prerequisite registry keys.

2.7.2 Registry Key Changes

N/A

2.7.3 Registry Key Deletions

N/A

3 Other Considerations

3.1 Dependencies

3.1.1 Team Dependencies

RIS on server – There is no RIS development team, although oddly enough there is a test team. There is very little code change here.

Removal of video card requirement – The video subsystem team will have to remove the blue screen code. Some of the test for this might fall under the headless team.

3.1.2 Code Dependencies

N/A

3.1.3 Scenario Dependencies

If IHV’s fail to provide systems that conform to <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management> or EFI, and aren’t designed to compliment our headless implimentation it negatively affect the customer experience quite severely. This is unlikely as long as we provide appropriate evangelism. It would also be beneficial if those companies that provide management solutions integrated support for headless into there general management products. This is of less importance and is also likely.

3.2 Win64 Issues

Because much of the EMS code runs during bootstrap and load of the systems the move from BIOS to EFI has major impact on EMS. For specific information, see the “EFI dependencies:” sections of 2.1 and 2.1.1. This is shouldn’t present to much of an issue, but it is a incremental work item and a test hit to support both legacy BIOS and EFI.

3.3 Localization/Globalization Issues

The output on the serial port on a headless system is VT100 which does not support localization. A separate spec, <VT100+>, is aimed at creating a better terminal type that still maintains backward compatibility with VT100 in the western character set case. This will require the appropriate support for displaying alternative languages on the administrator’s console and that the appropriate code page(s) be available on the administrators machine. Note: The current loader etc. use DBCS to for representing non-western characters, but EFI requires Unicode. In the 5.1 time frame it will likely make sense for the loaders to switch entirely to Unicode.

3.4 Accessibility Issues

Text sizes and brightness and contrast can be adjusted using the administrative terminal software. This requires these features to be present in the administrative terminal. This is beyond the scope of this document and the scope of what AdamBa’s team is doing.

3.5 Compatibility

3.5.1 Hardware Compatibility

We are compatible with standard serial ports as long as they use the standard serial ports addresses for COM1 or COM2.

One of requirements is VT100 compatibility.

Current HW out of band solutions. Because of the design of many OEM out of band solutions which do not release the serial port at boot time, there will be incompatibility with them. This doesn’t break an previous functionality we provided, as this is new technology. We have made some design decisions based on compatibility with certain HW vendors.

3.5.2 Application/Component Compatibility

N/A

3.5.3 Heterogeneous Network Compatibility

N/A Any network issues would be due to the equipment attached to the RedPort. This might include an NT server running Bridge and Watcher or a terminal concentrator. This external hardware and software may have limitations in heterogeneous Networks, but the limitations would not be a result of the EMS.

3.6 Backup

Steve Olsson will provide some content.

Does this feature use a private data store? If so, how does it get backed up?

No private data store.

3.7 Reliability Issues

With the exception of the WMI provider, the EMS components run entirely in kernel mode and at a very high priority, when applicable. This is because it is designed to be available when the rest of the system is not. It must be kernel mode to function. Bugs in the EMS will certainly be disastrous for system reliability. That is why the code is being kept simple and we are avoiding large or sweeping changes to the current components.

The EMS components can not be thought of in the on the same way typical Windows components are, it is closer in function to the debugger than it is to most Windows components.

The EMS has many features that if misused will render a server useless. It is aimed skilled administrators not novice or even power users. The EMS actually allows the user to restart the server on command as a feature to improve availability. This command is aimed at getting the system back up when all else fails.

If configuration changes are made to the boot.ini settings, they require a restart to take effect. This is similar to changing the debugger configuration.

3.8 URL requirements

N/A

3.9 Supportability

Once again it’s important to note that only skilled admins would or should be using this feature. It is extremely non-obvious (it’s accessed externally to the machine) and it requires an understanding of serial ports and terminal programs to get it working. If users are having trouble with the EMS, it generally means the system is such bad shape that nothing will work.

There are likely to be problems in the area of identifying the proper serial port internally and externally and determining which one the bios is using. Also many vendors use different “Esc code” to represent the keys that aren’t available through standard terminals, like F1-F12. The spec <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management> is designed specifically to help alleviate initial configuration of the port and simplify tasks like entering firmware setup. The spec <VT100+> is aimed at eliminating differences in how you actually express the same keys and commands across different vendors. Both of these will take time to be adopted.

3.9.1 Logging/Eventing

EMS keeps a log of the OS during certain parts of boot. This is detailed in section 3.1.

3.9.2 Error Messages

We use the same error messages as the standard windows components such as setup. We will reflect any changes they make.

3.9.3 Diagnostic Tools

N/A

3.9.4 Recovery from Corruption or Error Conditions

The EMS is the mechnanism for recovery for the OS. Because of the circumstances in which the EMS runs, if it fails, there are no additional mechanisms for recovery except to reset the box.

3.10 User Assistance Issues

We will work with UA for the text messages and errors. We will also work with UA on any GUI mode configuration tools.

3.11 Key feature interactions

3.11.1 Terminal Services

 N/A This feature runs below that level.

3.11.2 Clustering

N/A This feature runs below that level.

3.11.3 Network Infrastructure

3.11.3.1 Remote Access

N/A, it’s only function is to run remote over a slow link.

3.11.3.2 Multiple Hops

N/A

3.11.3.3 Network Media

N/A
3.12 Downlevel support

Is downlevel client support required for this feature? If so, how will it be delivered and when?

3.13 External Developer Impact

N/A
3.14 Sustained engineering Plan

AdamBa’s team
3.15 Patents

Currently no patents have been disclosed.

4 Information Exposure

It existence as a feature must be promulgated. A white paper for designing HW will be created; this may include references to some of the documents listed in 1.6 (the related docs section of this spec.).

5 High Level Test Plan

5.1 Test strategy

The test team will develop a cohesive set of test cases and scenarios, which will expose as many bugs as possible in the Headless EMS component before it is shipped. There are several sub-sections that will be addressed:

· Setup (Remote Install, Attended, Unattended setup).

· Headless WMI provider

· Recovery console (with Net Use command)

· Kernel message redirector

· Headless Blue-screen scenarios

· APIs and Interfaces (new and changed)

· Secure Admin Console (SAC)

· !SAC for OSLoader/ NTLDR

· !SAC for Blue screen redirection

The test strategy for the SAC and !SAC is as follows. The states we are interested in are OS Loader, kernel initialization, normal operation, blue screen, and OS in distress states. Using tools, facilitate transitions into any of these states so that we can test the SAC and !SAC where applicable. Now verify the operation of SAC and !SAC. In addition, the SAC functionality has to be tested in GUI mode setup of the operating system also.

The new API’s and interfaces listed in sections 2.1.2.1 have to be tested. Simple parameter tests and typical usage tests will be done on these APIs. The changed API’s listed in 2.1.2.2 have to be delegated to the appropriate NT test developers.

5.1.1 Functionality

Under the umbrella of Functionality Testing, we must develop the following test cases:

· Test the interfaces and classes exposed by the headless WMI provider. This will take the form of automated tests implemented using the Microsoft Scripting Host.

· Various setup scenarios should be performed to ensure that various combinations of hardware and inputs are tested. This is mentioned here as opposed to the Setup/Upgrade section below, since Setup is a large part of the headless functionality.

Note that since the headless component will allow text-mode setup to be redirected to the headless terminal, it will be possible to perform the setup testing in an automated fashion. To do this, test software to imitate a terminal will be developed. There will also be a requirement for various supported hardware platforms to be tested, to ensure that there are no problems running the headless functionality. For more see the WHQL section below.

· It will be necessary to simulate blue-screen conditions on the machines under test, to ensure that the correct information is sent to the terminal, and the correct mini-dumps are created.

· The recovery console will also be redirected to the headless terminal. It will be necessary to test the recovery console to ensure that it operates properly when run through the headless terminal. Note that in the remote install scenario, the recovery console will include a “net use” command, to allow the machine to connect to network resources. This “net use” command should be fully tested.

· It will be necessary to ensure that the kernel messages are redirected properly during kernel initialization. Since each machine and scenario will have different drivers being initialized at different times, this may require manual verification.

· The new headless API’s will be tested with various valid and invalid parameters testing for boundary conditions, in the appropriate states.

The commands supported by the !SAC are present during the following Phases: OSLoader/ NTLDR and Blue screen redirection. The SAC is supported after kernel initialization. The functionality tests will concentrate on verifying the proper working of SAC and !SAC in the various OS states. Constraining the resources needed by SAC and !SAC like red port hardware with console (?), Memory, CPU, Libraries, etc. are interesting cases. For example, the CPU utilization is 100%. For the !SAC, the following functionalities should be tested:

a. The system restarts with the Restart command. Verify whether any settings done prior to restart are lost.

b. The system shuts down after the shutdown command. Verify whether any settings done prior to shutdown are lost.

c. Dump the log and verify its contents if possible. Check the status and events logged.

d. Verify the system GUID.

e. Make sure the help and ? work.

The SAC testing will be focused on scenarios aimed at getting the system to normal state using the SAC commands after the system management mechanisms are down.

a. Verify that the information retrieved by the tlist command is accurate. Toggle the tlist info to processes and vice versa

b. Change the settings of a process, like priority, and memory limits. Kill the erroneous process using the kill command. Try the same with invalid process id.

c. Verify the system GUID returned.

d. Check the shutdown and restart of the machine. Verify the settings. Try large number of shutdown and restarts.

e. List all the available commands with the ? key.
5.1.2 Regression

These items have been included in the Functionality section above. All the high priority functional tests have to be regressed with each build of NT, with all other tests being run on a regular basis.

5.1.3 Stress

Tests will be developed for stress testing the headless WMI provider and SAC/mini-SAC functionality.
5.1.4 Setup/Upgrade

Setup tests need to verify that the component behaves as expected in all setup and upgrade scenarios. This includes the items mentioned above in 5.1.1. Please note that we will probably be able (by imitating the headless console) to automate most of the setup scenarios. This will make setup testing much easier and cost effective. The different setup scenarios to be considered are unattended install (using remote install and using answer files) as well as text-mode attended setup. The text-mode attended setup leads to an unattended GUI mode setup.
5.1.5 Interop

The test strategy needs to describe how the component/subsystem under test will interact with other parts of the system and/or other systems. The interoperability test plan will include information on the tests that need to be run to determine that all components of the operating system will co-operate properly with the headless component. The kernel mode driver for Headless does not appear to have any software interoperability issues. There may be various hardware interoperability issues, which will have to be tested for.
5.1.6 Reliability

Long haul testing is not really suited to testing the headless component, since the headless terminal is only used in the event that a server crashes or is in distress. It may be an idea to put the headless services on long-haul servers, as this will provide the typical user scenario in the event of the long-haul server crashing (or becoming distressed). This is more applicable to the SAC/mini-SAC testing.

5.1.7 Robustness

Driver verifier, IO Verifier, and fault injection must be used to expose robustness bugs in the headless component.
5.1.8 Long haul

Long haul testing can be done by adding the headless component to long-haul servers, and ensuring that the component works in the event of the long haul server crashing or becoming distressed. The component cannot be made to make maximum use of available resources, but the services being tested on the long-haul servers can be. This may expose issues in the headless component.
5.1.9 Deployment

The component can be deployed in real life scenarios right here on the Microsoft campus. Servers being used can be equipped with headless hardware, and have the component installed. This can be done, for example, in the remote install lab or in the build lab.

Also, when interim releases of the operating system are sent out to Beta sites, testers can be encouraged to use the headless component. This will expose more bugs, as usage scenarios change.

5.1.10 Y2K

Y2K testing will involve performing all of the tests in the test suite on interesting dates. Attempts must be made to test operation during interesting date changeovers.
5.2 Globalization

Globalization applies mainly to the Bridge/Watcher section of the headless component, and its test plan is not within the scope of this document.
5.3 Geopolitical

The headless component should be tested for geopolitical correctness.

5.4 Automation

Most of the tests for this component will be automated.

The following tests will be automated by and application which will be simulating the headless terminal:

· Headless remote install, attended/unattended setup

· Headless blue-screen scenarios

· Recovery console (with net use command)

· Kernel message redirector.

· Secure Admin Console (SAC)

· !SAC for OSLoader/ NTLDR

· !SAC for Kernel during initialization

· !SAC for Blue screen redirection

The following tests will be automated using the Microsoft Scripting Host, and a script running on the server under test:

· Headless WMI provider.

Automated API tests for new API’s added for the headless component will be tested using automated regression tests.

5.5 WHQL Deliverables

There will be a test developed to allow WHQL and OEMs to test hardware for compatibility with the <ACPI Fixed Table Entry to Indicate the Port for Out of Band Management> specification.

5.6 Ship criteria

The quality bar for shipping this component is as follows:

· No active priority one bugs

Meets all long haul, reliability and robustness criteria.

5.7 Test Results

Test results will be logged using Test Enterprise.
6 Schedule/Staffing

6.1 Staffing

The work will be done by Adam Barr, Sada Rajaram, and Sean Selitrennikoff.

6.2 Priorities

Here is our schedule with expected completion dates for each sub-item. Note that almost all the items are almost complete. Every item is priority 1 except as noted:

Adam:

f. Add GUI to system to add/remove Remote Administration Components.

 Need info from the WMI team on how to expose this via WMI – 1/31/00

a. Getting the current code checked in, and built as a single set of binaries

 This will be done once the Odyssey Source Depot tree is up - 1/31/00

h. Define “Sean’s Bell Protocol” and add it to specs and evangelize it.

 Need to get BryanWi involved in this, once defined, need some blue-screen/watcher work to support it - 1/31/00

i. Add EFI support.

 EFI spec handling of serial redirection needs to be clarified, then implemented, then we can start - unknown

j. On machines with BIOS redirection, figure out how to get parameters used by BIOS and transfer those to redirected NT components.

 Need to work this out with BIOS vendors – unknown (priority 2)

Sean

b. Adding switches to the current code to enable/disable serial redirection at the various stages

 Done

c. Make which serial port we redirect configurable thru all the stages

 Done

q. Add serial redirection to StartROM.com, all loader variations, and blue screen.

 Done

s. Add serial redirection to recovery console.

 Done

w. Change the kernel to grab the required serial port exclusively very early in the boot process (suggested just after KdInit() is called).

 Done

u. Must be a way to enable serial redirection from a CD, right from the beginning.

 hit F11 or F12 to enable it - 12/15/99

z. Change RCC design to use new kernel APIs to take over the serial port.

 APIs are exposed, need to use them - 12/15/99

y. Change the kernel to accept restart, shutdown, and dumplog commands until told not to.

 If the RCC is not running, this allows some simple tasks - 12/15/99

x. Change the kernel to log boot information until told not to.

 Need some clarification on what to log - 12/31/99

r. Add a rescue console for killing processes, lowering priority, etc.

 Mostly working -- needs time change and raise/lower priority - 1/15/00

t. Add network access to recovery console

 Was working, but now broken, need to investigate - 1/15/00

v. Allow restart from serial port if any loader errors out.

 Similar to what you see with item y. - 1/15/00

e. Add GUI to setup to install Remote Administration Components (RCC and Serial Redirection)

 For now, will just enable redirection from boot.ini, item f. (WMI control of boot.ini/RCC) will let you enable more - 1/31/00

g. Define escape sequence for keys not available on a vt100, e.g. F12.

 These are in use now, need to spec them officially - 1/31/00

aa. Add a parameter to the unattend file to allow redirection to be turned on, with the expected values: no, com1, com2, and biossettings. SetupLDR would read this and immediately start redirecting if it detects it (we would try to have this test done as early as possible) – 2/15/00

bb. Support a parameter to the recovery console lines in boot.ini instructing it to redirect (com1/com2/biossettings) -- note that changing winnt32 itself to actually write this parameter is not our responsibility – 2/15/00

cc. Enable redirection in SetupLDR/setupdd if this is machine supports BIOS redirection, we can detect it is on, and there is no other info about redirection available (we did not boot through StartROM.com, F1/F2 was not hit, there is no answerfile key about redirection) – unknown, based on BIOS support (priority 2).

dd. In the previous case, and the case where redirection was enabled via F1/F2 (that is, the two cases where we redirect but there is no answerfile), in addition to presenting Sada's new screens for machine name, organization, user, timezone etc, we also present a screen asking if the user wants to continue with redirection enabled (in boot.ini). Hitting Enter should keep it on, a different key should disable it. – 2/15/00 (priority 2)
Sada

l. Add netshell command to RCC.

 Done

o. Ensure that setup works on a system with 2 net cards, one on a private net w/DHCP and RIS, the other on Internet with a fixed IP address.

 Have a solution that runs rcc with netsh at the end of setup, but otherwise configures the n/w cards with default settings - should be OK for now

m. Create a “watcher” program which will poll and log multiple vt100 conversations over TCP/IP. When “watcher” recognizes any of the items defined in (h) above, it wakes and notifies the user.

 Need to internationalise it. Some more work needed on reading the sessions from a file and getting watcher to save sessions in an understandable manner. - 12/15/99

k. Determine how to deal with localized loaders, bootfont.bin, and vt100.

 At first this may only work when running tcclnt directly under watcher - 12/31/99

n. Create a “bridge” program which bridges TCP/IP to a serial line, simply passing bytes across with no translation, nor interpretation.

 Need to look into how this will work with localized data, may need telnet changes. Tcadmin needs to be written - 12/31/99

d. Make textmode setup, oschooser, recovery console, etc, work well in the number of lines available on a vt100, and with no color

 Done, but need to talk to telnet guys about better inverse/bold support - 1/31/00

p. Ensure that setup works on a system with no RIS present, boots of CD, gets static IP address during textmode setup.

 Working, need to make sure added screens are OK - 1/31/00 (priority 2)
6.3 Schedule

6.3.1 Schedule Summary

	Milestone
	Short Description
	Duration

	Spec Complete
	Full functionality described in spec document. All areas of template completed
	Jan 31, 2000

	Dev Milestone 1
	All items except EFI support and Using BIOS redirection parameters..
	Feb 15, 2000

	Dev Milestone 2
	Support for EFI machines
	TBD based on spec changes and other code

	Dev Milestone 3
	Support for using BIOS redirection parameters
	TBD based on evangelizing standard way for BIOSes to announce this, and availability of hardware that supports it.

6.3.2 Detailed Schedule

6.3.2.1 Milestone 1

Description

All items except EFI support and Using BIOS redirection parameters..

Metric

TBD based on test plan being completed.

Duration

Scheduled to be done by 2/15/00

Contingency Plan

We could ship only the completed items, which is the vast majority of the work.

6.3.2.2 Milestone 2
Description

Support for EFI machines

Metric

TBD based on test plan.

Duration

Unknown; it depends on factors beyond our control – EFI spec changes, availability of machines that support changes, and conversion of the current loaders to be proper EFI-compliants binaries.

Contingency Plan

We can simply not support EFI. This will have no effect on non-EFI machines.

6.3.2.3 Milestone 3
Description

Support for using BIOS redirection parameters

Metric

TBD based on test plan

Duration

Unknown, requires that we define a standard (currently being done by program management), evangelize it, and get hardware that supports it. Actual work should not be very complicated.

Contingency Plan

The contingency plan, if we do not get machines in time, is to not support this, thus any time that redirection is configured in “use BIOS settings mode”, this will be the same as “no redirection” – which is the way the code works now.

7 Capabilities Deferred

List all the related feature items that have been deferred to the next release that will build on the features in this release. What must be completed in the next release to complete the vision of this feature?

8 Q&A

9 Template Instructions

9.1 Feature Process Info

The aim is to have all features for Windows 2001 use the same spec template. It is understood that some sections may not be applicable to you, depending on the area of your feature.

If this template does not fill your needs or has errors, please contact mailto:aliciae . Also, if you have best practice information that could be used to help new PM’s and Dev’s fill out the template, please send suggestions to mailto:aliciae .

In order to be on the schedule for a feature review, you will need to fill out the cover page (contacts, etc.), Section 1 Introduction, Section 3.1 Dependencies and Section 6 Schedule/Staffing. It is understood that you may not be able to fully complete these sections initially. Do your best to complete what you know now and update them as you go. The intention is to outline the major impact of your feature so teams can be prepared for possible interactions.

In order to be prepared for a feature review, you should have 80% of this spec template filled out and have something in each section (even if it’s N/A or TBD).

9.2 How to fill out template

Select File New to open this template as a document. For the body of your spec, use Styles such as Heading 1-5, Body Text, Block Quotation, List Bullet, and List Number from the Style control on the Formatting toolbar.

Be sure to fill in the feature name in the document properties under Documents Title.

9.2.1 Content

There are basic instructions listed in each section to help you understand what should go there. All instructions are listed in BLUE.
9.2.2 How to Create Bullets and Numbered Lists

· To create a bulleted list like this, select one or more paragraphs and choose the List Bullet style from the Style drop-down list on the formatting toolbar. To create a numbered list like the numbered paragraphs above, select one or more paragraphs and choose the List Number style from the Style drop-down list.

9.2.3 How to Create Issue Blocks

You may want to call out issues in-line in your spec. User Issue Blocks to call attention to them. Write the text you would like to be your Issue Block Header and your paragraph(s) of text that you want to be in the issue block. Then highlight the header text and select Issue Block Header from the Style drop down list. Then highlight the paragraph(s) of text you want included in the issue block and select the Issue Block Style from the drop down list.

This is my issue block header

Here is some text for my issue block. I need to resolve this issue by 12/99 for a feature review with my manager.

9.3 How to update the of Contents

To update the Table of Contents for this spec, position your cursor on the TOC page. Right click and select update fields. You can choose to update page numbers only, or the entire table.

2
12
MICROSOFT Confidential

headlessEMs1.0spec Last Saved: 1/27/2000 3:02 PM

