Windows NT Group

Mutli-OS Preinstallation Toolkit

Author: Ted Miller

Revision 0.3,July 20, 1997
11.
Introduction

1.1
Operating System and File System Independence
1
1.2
Straightforward Operation for OEMs
1
1.3
Simple, Fast, and Recoverable End-User Experience
2
1.4
Easy Localization/Internationalization
2
1.5
Reasonable Security
2
1.6
Recoverability
2
1.7
Non-Goals
2
2.
The Tools
4
2.1
Usage Overview
4
2.2
Imagpart.exe
5
2.3
Makemast.exe
6
2.3.1
Program Operation
6
2.3.2
Command-Line Arguments
7
2.3.3
Configuring the Bootstrap Partition
8
2.4
Diskstat.exe
8
2.5
Enduser.exe
8
2.6
Text Handling
9
3.
OEM MPK Scenarios
10
4.
Technical Information
10
5.
Revision History
10

1. Introduction

This document discusses a toolset that enables OEMs to preinstall more than one operating system on a single computer, with the end-user making the ultimate choice of the single operating system he wants. The operating systems preinstalled for user selection can be any combination of separate OS products, different language versions, or different versions or variations of the same product. After the user has made and confirmed his selection, the computer behaves as if the selected operating system is the only one that had been preinstalled.

The toolset is referred to in this document as the Multi-OS Preinstallation Toolkit, or MPK for short. The MPK consists of a set of tools for use by the OEM at their factory to generate multi-OS preinstallation masters, and an end-user component that guides the end-user in his choice of OS and puts that OS in place.

This document does not include information about the Windows NT and Windows 9x OPKs. It is assumed that the target audience has sufficient familiarity with preinstallation procedures for the operating systems they wish to preinstall using the MPK.

1.1 Operating System and File System Independence

The MPK is not tied to any particular operating system. The OEM performs the usual preinstallation steps for each operating system to be shipped, and then uses the MPK to aggregate the results into shippable form, such that the end-user can select a single OS from among them. No files or file system structures are shared among the preinstalled operating systems. No changes to any OPK are required.

In addition, the MPK works with file systems currently used by Microsoft OS products (FAT, FAT32, NTFS). It is possible to ship a computer preinstalled with Windows NT on an NTFS partition, and Memphis on a FAT32 partition. Requirements dealing with drive state are minimized; drives may be in an almost arbitrarily fragmented state so OEMs will not need to perform special disk zeroing or defragmentation steps when using the MPK.

1.2 Straightforward Operation for OEMs

The MPK neither interferes with nor requires changes to existing OPKs. The disruption to the OEM’s current preinstallation methodology is minimized to the extent possible and the toolset provides reasonable flexibility in managing the pieces involved in creating a multi-OS preinstall master.

The tools will be DOS- and BIOS- based to ensure maximum flexibility and compactness.

Also note that the MPK is independent of any particular disk geometry to the extent possible. This allows the OEMs to switch hard drive parts and suppliers at their convenience without having to redo all the OS’ preinstallation steps.

1.3 Simple, Fast, and Recoverable End-User Experience

When the end-user turns on the computer for the first time, he will be presented with a series of simple and straightforward screens that request selection of the user’s preferred operating system. The presentation is such that the user’s choice is confident and non-accidental.

After the end-user has made his OS selection, the MPK’s end-user component will restore the hard drive to make it appear that the selected OS was the only one that had been preinstalled. At that point the computer is rebooted and that OS’ regular end-user experience begins. This restoration time will be as minimal as possible, consisting of little more than the time it takes to move the data at a sector level from one point on the hard drive to another. It is expected that the time will be in the 5 minute range for a typical OS with preinstalled applications.

Also, the MPK’s end-user component will ensure a minimal to zero timing window where power outages, etc, could eliminate the ability for the end-user to recover by simply turning the machine back on.

1.4 Easy Localization/Internationalization

The MPK tools will be easily localizable; no recompilation will be necessary. Given that the end-user component will specifically allow selection of different language versions of operating system products, that component will at the OEM’s option allow the language in which it itself is operating to be user-selectable.

Reasonable Security

After the end-user has made his OS selection, the end-user component will remove all other preinstalled OS data from the hard drives so that it is not possible to retrieve another OS image from the hard drive for installation to another machine.

Recoverability

/TBD. It is possible that if we can get the OEMs to ship a bootable DOS floppy with CD support, that the toolset could restore a partition image to the hard drive, or it could restore the entire image of the multi-OS master to the hard drive and let the user start over. The tools really don’t care too much whether they are reading the partition image for the selected partition from disk sectors or from a file on a CD./

1.5 Non-Goals

The following items are explicitly declared to not be goals for the first implementation of MPK due to technical reasons or time or testing constraints. We may revisit some or all of these in future MPK revisions.

· Support for RISC platforms

The MPK is DOS-based and works with a single OS partition. Both factors preclude support for RISC platforms at present. In the future it may be possible to port the tools to the ARC environment.

· GUI end-user component

Accomplishing this would require a significant amount of work in the MPK implementation for questionable end-user benefit, since the time the user interacts with that component is minimal. Besides the obvious need to manipulate more files to install a GUI environment such as mini-Win3.1, there are technical constraints, such as the fact that the DOS extender for mini-Win3.1 is not compatible with BIOS extended int13 services. Additionally, the OEMs’ use of the MPK would be considerably complicated.

· Extreme security measures, encryption

The end-user could conceivably duplicate his computer’s hard drive at the sector level before ever allowing it to boot, and thus steal several OS images. This is little different however, from the standard single preinstalled-OS case. Measures to prevent this would require significant implementation time, add only marginally more security, and might interfere with the end-user experience for the honest user.

· Use of non-int13 devices

The MPK does all disk I/O via int13 (standard and, where available, extended). There is no support for disk devices that are not visible through the BIOS under DOS. The primary reasoning for this is technical: there is simply no reliable way to read and write to such devices at the sector level independent of a partition, and the partition-based I/O that is available for such devices (int 25/26) will work only on partitions that are recognized by DOS (i.e., no NTFS).

· Multiple partition scenarios

It is not possible to have a small C: partition with the operating system installed on D:. The operating system in its entirety must be installed on a single partition.

· Dynamic volume expansion at end-user time

If the OEM preinstalls, for example, Windows NT on a 2.5 GB partition, the MPK tools will not grow the resulting partition if the machine is actually shipped with a 4 GB drive. The user will end up with a 2.5GB partition with Windows NT as the OEM preinstalled it, and 1.5GB of unpartitioned disk space.

The Tools

The MPK consists of the following tools:

IMAGPART.EXE — image an operating system’s partition to a file

MAKEMAST.EXE — prepare a multi-OS preinstall master disk

ENDUSER.EXE — get user’s OS selection and fix up hard disk so only selected OS is present

DISKSTAT.EXE — dump disk information (geometry, preinstall master, etc)

The tools share a common text-handling/localization model (described in section 2.5, “Text Handling”). Also, there is one command-line argument accepted by all the tools:

/x[:int13unit] — disable use of extended int13 services on the given int13 unit, expressed as a decimal number such as 128, or a 0x-prefixed hex number such as 0x80. If the int13 unit is not given, or is 0, extended int13 is disabled for all units. Multiple /x parameters may be given. Note that if some of the drive is not accessible via conventional int13, use of this switch essentially shrinks the drive. Because of this, this switch should be used consistently by the OEM to avoid situations where one tool can’t access part of a disk written to by an OS or another tool, etc.

Note that the sector size of all disks used with the MPK must be 512 bytes. The tools do not check for this; use of drives with other sector sizes will result in unpredictable behavior.

1.6 Usage Overview

The general sequence of events for use of these tools is described below. (More detailed information is provided in section 3, “OEM MPK Scenarios”).

1) Perform usual preinstallation steps for an operating system using its OPK.

2) Boot DOS (such as from a floppy disk with network support) and run imagpart.exe to create a partition image file for the operating system, which is stored elsewhere, such as on a server.

3) Clean off the machine and repeat from step 1 for each desired operating system.

4) Boot DOS and use makemast.exe to make a physical disk into a multi-OS preinstall master, specifying the partition image file for each desired operating system. This transfers the partition images to the disk and creates a tiny bootstrap partition.

5) Reboot DOS and set up the bootstrap partition by formatting it and copying enduser.exe and associated files onto it.

6) Duplicate the preinstall master as required (the MPK does not supply tools for this). Note that with a simple batch file, steps 4 and 5 could be performed on each individual machine in the factory, which would provide an alternate method for OEMs who do not wish to use a disk-duplication method.

The MPK tools are described in detail in the sections that follow.

1.7 Imagpart.exe

Imagpart.exe processes a partition and generates an output file for later application to a multi-OS preinstall master. The partition must be formatted with FAT, FAT32, or NTFS. For NTFS drives, there are some restrictions:

1) The volume must not have more than 2^32 sectors. This “limits” the size of the drive to something around 2 terabytes.

2) There must be 32 or fewer sectors (16K) per cluster. A 4GB NTFS drive uses 4K clusters by default, so this is not believed to be a problem in real-world applications.

3) There must be 32 or fewer sectors (16K) per file record segment. The current maximum used by the file system is 4K, so this is not problematic.

4) Attribute list attribute streams (if present) for the MFT and volume bitmap must be 8K or less, whether resident or non-resident. Exceeding this would require an extraordinarily fragmented drive.

If the file system is not recognized, or if any of the above assumptions are violated, imagpart displays a message and aborts.

When invoked, imagpart displays a list of all partitions on all (int13-addressable) drives and requests selection of one of them. In most cases the selected partition will be the first one on the list, since the MPK only works with a single OS partition. However there are scenarios where other possibilities arise, e.g., install an operating system on a drive which is then detached and imaged on a different computer.

A:\>imagpart

 1) DISK 80 NTFS 2047 MB
 2) DISK 81 FAT32 2030 MB

Select a source partition from the list above: 1

Imagpart then requests the name of the output file. The output file can be any legal DOS filename, but the user must take care not to put the output file on the drive being imaged; imagpart does not check for this case. The filename will often be on an OEM’s server, but for example could also be on second hard drive attached temporarily to the machine for this purpose.

Enter filename for output partition image file: \\mpk\images\ntfs01.img

The source partition is processed and the output file created.

For FAT/FAT32:

Scanning FAT: 100%
Transferring file system structures to output file: 100%
Transferring file data to output file: 100%
Processing output file: 100%

Done

For NTFS:

Reading NTFS data structures......
Reading NTFS volume bitmap: 100%
Generating cluster bitmap: 100%
Transferring file data to output file: 100%
Processing output file: 100%

Done

Imagpart does not precalculate required space; to avoid errors the user should ensure that sufficient space exists for the output file. The size of the output file will vary, but will be somewhat more than the amount of space used on the source.

The command line arguments to imagpart.exe are as follows. Note that by specifying /f and /q, totally automated operation can be achieved.

/f:<filename> — specifies the target file name for the partition image. The file must not already exist. Specifying this argument suppresses the prompt for the output filename.
/q — suppresses the partition selection prompt and automatically selects the 0th partition, which is expected to be the active primary partition on BIOS unit 80h.
/x[:int13unit] — disable use of extended int13 services on a disk or all disks.

1.8 Makemast.exe

Mastmast.exe creates or adds partition images to a multi-OS preinstallation master disk. A multi-OS preinstallation master disk consists of a small bootstrap partition, partition images for operating systems selectable by the user, and some additional data, all laid out in the format enduser.exe expects and will make use of when the end-user turns a new machine on for the first time.

1.8.1 Program Operation

When invoked, the program presents a menu of (int13-addressable) disks found on the system and allows the user to select one of them. The disk selected may already be a multi-OS preinstallation master, in which case the user has the option of adding more images to it or starting over. The maximum number of partition images on any master disk is 10.

The case where there’s a disk attached to the machine that’s already a master disk and the user selects it:

A:\>makemast

 1) DISK 80 NTFS 2047 MB
 2) DISK 81 FAT32 2030 MB (master)

Select a disk from the above list to be made a
multi-os preinstall master: 2

This disk is already a master disk. You can reinitialize it or preserve it
and add partition images to it. If you elect to reinitialize it, ALL data
on the disk (including partitions and partition images) will be lost.
Reinitialize the disk (y/n)?

The case where there is no master disk attached to the machine or the user doesn’t select a disk that is already a master disk:

A:\>makemast

 1) DISK 80 NTFS 2047 MB
 2) DISK 81 FAT32 2030 MB (master)

Select a disk from the above list to be made a
multi-os preinstall master: 1

Making the disk a master disk will remove all partitions currently on it.
Continue (y/n)?

Once the operation has been confirmed, makemast prompts the user to enter filenames for each partition image to be placed on or added to the selected disk, and then creates transfers the images to the master disk and creates the bootstrap partition.

Up to 20 more partition images allowed.
Enter filename for image 1 or ENTER to end list: x:\image01.bin
Enter filename for image 2 or ENTER to end list: x:\image02.bin
Enter filename for image 3 or ENTER to end list:

Transferring x:\image01.bin (100%)
Transferring x:\image02.bin (100%)

Done

Note: the partition images placed on the master disk by makemast.exe are not part of any partition. They exist in unpartitioned space on the disk and are therefore not accessible as files.

1.8.2 Command-Line Arguments

This section describes command-line arguments to makemast.exe. Note that by specifying /f, /m, /q, and optionally /r, totally automated operation can be achieved.

/f:<filename> — instructs makemast to read the names of the image files from the given file instead of prompting the user to enter them. Each line in the file must be a valid DOS path specification without leading or trailing whitespace.

/m:<int13unit> — specifies that the target is to be the master disk with the given int13 unit number (specified as a decimal number such as 128 or a 0x-prefixed hex number such as 0x80). If this switch is specified, the drive selection menu is suppressed.

/q — specifies quiet operation; confirmations are suppressed.

/r — if the selected disk is already a master disk and quiet operation has been specified via /q, this flag indicates that the disk is to be reinitialized as a master disk, throwing out the existing bootstrap partition and partition images. If the selected disk is already a master disk and quiet operation has been specified but /r has not been specified, partition images will be added to the existing master disk. If the selected disk is not already a master disk or quiet operation has not been specified, this flag is ignored.

/x[:int13unit] — disable use of extended int13 services on a disk or all disks.

1.8.3 Configuring the Bootstrap Partition

The bootstrap partition makemast.exe creates will be approximately 2 MB (larger in cases where a cylinder on the disk is larger than 2MB) and will be marked ‘active’ in the partition table. The OEM is responsible for formatting it with MS-DOS, placing the end-user component files on it, and creating an autoexec.bat that invokes enduser.exe with the appropriate arguments.

1.9 Diskstat.exe

/x[:int13unit] — disable use of extended int13 services on a disk or all disks

1.10 Enduser.exe

Note: In order to prevent generation of errors from which the end-user would have little chance of recovering, invalid arguments to enduser.exe are simply ignored. The OEM should take care to ensure that enduser.exe is invoked with the correct arguments.

/l:<count> — specifies the number of languages that should be presented to the user as choices for operation the rest of enduser.exe. Enduser.exe expects to find the names of the languages (which will be presented to the user in a menu) in messages [10000] through [10000+count-1] in enduser.msg. After the user makes a language selection, enduser.exe will reload messages from n.msg (0.msg, 1.msg, etc), where n is a number from 0 through count-1 and represents the ordinal value of user’s selection. If this switch is not supplied, the end-user will not be presented with the language menu and the program will continue to operate with the messages originally loaded from enduser.msg.

/m:<int13unit> — specifies the int13 unit number of the master disk, expressed as a decimal number such as 129 or a 0x-prefixed hex number such as 0x81. Note that this switch cannot be used to restore from the master disk to a different disk; the partition image selected by the user will be restored from the disk specified with /m to the disk specified by /m. This switch may be omitted; the default value is 0x80.

/t — specifies that operation is to be non-destructive, for testing purposes. Write operations are not performed and the final reboot is suppressed.

/x[:int13unit] — disable use of extended int13 services on a disk or all disks

1.11 Text Handling

When run, each tool in the MPK requires the presence of a text file containing all localizable text for the program. The text file must be in the same directory as the tool itself, with a filename whose base part is the same as the tool’s filename and whose extension is .msg. For example, if the tool is a:\imagpart.exe, the message file is a:\imagpart.msg. Localization or message customization is accomplished by editing the text file; recompilation is not needed.

The format of the text file is similar to a Windows “.ini” file. The name of each section is a decimal representation of a message number. The body of each section contains the message. The order of the sections is not significant. The following rules apply:

1) Lines before the first section are ignored. This provides a mechanism for comments at the start of the file.

2) Lines with [as the first character on the line are interpreted as section name lines. The next characters must represent a valid base-10 number in the range 0-65535, followed by a terminating]. Spaces are not allowed. Characters following the terminating] are ignored and thus provide another means for introducing comments into the file.

3) Trailing space on lines in the text file is ignored. Leading space is preserved.

4) The line formatting used in the text file is preserved. This means that where text is broken into lines in the text file, newlines will be introduced in the internal representation of the message. This includes blank lines within a message (but not at the end of a message).

5) The final newline(s) of a message are ignored. This means that the final line in the message is not newline-terminated.

Following is a simple example message file.

Sample message file, this is a comment

[1] This is another comment
This is message 1. It is one line long, with no terminating newline.

[2]

This is message 2.

It has 4 lines (2 are empty). There are a total of 3 newlines.

[100]
This is message 100. It has one newline.
 This second line of message 100 has 4 spaces at the beginning.

Note that the message numbers are meaningful only to the program using the text message file. They should simply be left alone when localization or customization is performed. Also note that no character set conversions or other interpretations are performed on the text. In general the text is simply manipulated as a byte stream and passed as necessary to printf(), poked into the video buffer, etc.

2. OEM MPK Scenarios

3. Technical Information

4. Revision History

Original Draft, Revision 0.3, June 9, 1997

Revision 0.4 Month Day, Year (tedm)

Added different stuff.

Microsoft Corporation Company Confidential

Microsoft Corporation Company Confidential

