HCT Common Library Routines
By: Jason Allor (JasonAll)

Needed Files
All files are located in testapps\hct\hctlib

hctlib.lib: This file must be linked into the program via the sources file. It is located under testapps\hct\hctlib\lib*\hctlib.lib

hcttools.h, logutils.h, ntlog.h: must be included by your program

NOTE: if you add any new functions to this library, please update this file accordingly.

Interface

HctTools.c

Memory Management Routines:

NOTE: All memory management and assert functionality can be turned off by compiling the library without the –Debug flag.

VOID InitializeMemoryManager()

Call this function at the very beginning of the test, before any memory allocations are made.

VOID CheckAllocs()

Call this function at the very end of the test, just before the test exits. This function will verify that all memory has been freed. If any memory is left unfreed, the function will create a MessageBox pointing to the malloc locations of the memory that is unfreed, and the program will exit abnormally.

BOOL _Malloc(void **ppv, size_t size)

Use this routine anytime you wish to allocate memory. The routine will allocate the memory, shred the contents of the memory, and keep a record of this memory allocation. The function will return TRUE if the memory allocation succeeded, and FALSE if the memory allocation failed. The interface to this function is different from that of the standard malloc function. Following is an example of how to call this function:

PSAMPLE_STRUCT pSampleStruct;

BOOL bResult;

Old Malloc:

pSampleStruct = (PSAMPLE_STRUCT)malloc(sizeof(SAMPLE_STRUCT));

New Malloc:

bResult = Malloc(&pSampleStruct, sizeof(SAMPLE_STRUCT));

VOID _Free(void **ppv)

Use this routine anytime you wish to free previously allocated memory. The routine will check to make sure that ppv points to memory that was actually allocated, free the memory, and set the value of ppv to NULL. Example of how to call the function:

Old Free:

free(pSampleStruct);

New Free:

_Free(&pSampleStruct);

Other Routines:

VOID _ASSERT(BOOL bExpression)

This function will assert if bExpression is FALSE. If the function asserts, it will create a MessageBox containing the line number and file name of the _ASSERT call, and the program will exit abnormally.

PTCHAR ErrorMsg(IN ULONG ulError,

 IN OUT PTCHAR tszBuffer)

Converts a standard windows error number (of the type returned by GetLastError()) into a word description of the error. If a word description of the error cannot be found, the number stored in ulError is converted into a string and this string is returned.

ulError is the error number to convert.

tszBuffer is a buffer in which to store the word description. This buffer will be returned from the function.

PWCHAR AnsiToUnicode(IN PCHAR cszAnsi,

 OUT PWCHAR wszUnicode,

 IN ULONG ulSize)

Converts an ANSI string to a UNICODE string, and returns the new Unicode string.

cszAnsi points to the ANSI string to convert.

wszUnicode points to a buffer large enough to store the new Unicode string. ulSize must be equal to the length of the wszUnicode string.

PCHAR UnicodeToAnsi(IN PWCHAR wszUnicode,

 OUT PCHAR cszAnsi,

 IN ULONG ulSize)

Converts a Unicode string to an ANSI string, and returns the new ANSI string. wszUnicode points to the Unicode string to convert.

cszAnsi points to a buffer large enough to store the new ANSI string.

ulSize must be equal to the length of the cszAnsi string.

PTCHAR ConvertAnsi(IN PCHAR cszAnsi,

 OUT PWCHAR wszUnicode,

 IN ULONG ulSize)

Receives an ANSI string, and returns the same string in either its ANSI or Unicode version, depending on whether the program was compiled as ANSI or Unicode.

cszAnsi points to the ANSI string to (possibly) convert.

wszUnicode points to a buffer large enough to hold the new Unicode string, if needed.

ulSize must be equal to the length of the wszUnicode string.

The function will either return cszAnsi or wszUnicode depending on whether the ANSI version or the Unicode version must be returned.

PTCHAR ConvertUnicode(IN PWCHAR wszUnicode,

 OUT PCHAR cszAnsi,

 IN ULONG ulSize)

Receives a Unicode string, and returns the same string in either its ANSI or Unicode version, depending on whether the program was compiled as ANSI or Unicode.

wszUnicode points to the Unicode string to (possibly) convert.

cszAnsi points to a buffer large enough to hold the new ANSI string, if needed. ulSize must be equal to the length of the cszAnsi string. The function will either return cszAnsi or wszUnicode depending on whether the ANSI version or the Unicode version must be returned.

LogUtils.c

Logging Routines:

HANDLE InitLog(IN PTCHAR tszLogName,

 IN PTCHAR tszTitle,

 IN BOOL bConsole)

Initializes a log. If ntlog.dll is present on the system, the log will be in ntlog format. If not, the log will be in a format that resembles ntlog.

tszLogName specifies the name of the log, such as “program.log”.

tszTitle specifies the title of the console window in which the log output will be displayed.

bConsole specifies whether or not a console window must be created. If the program is a windows program, a console should probably be created. If the program is a console program, a console might not need to be created.

VOID ExitLog()

Closes the log file.

VOID Log(IN double dFunctionNumber,

 IN DWORD dwLogLevel,

 IN PTCHAR tszLogString,

 IN …)

Prints out a line of output to the log. This function will automatically format the log output so that it will not run past the end of the line. If the string is longer than one log line, the string will be broken up into multiple log outputs, each printed on a new line. This gives the appearance of word wrap formatting. If the log is being run without ntlog.dll installed, TLS_INFO log lines will be printed to the console in gray, PASS lines will be printed in green, and SEV lines will be printed in red.

dFunctionNumber can be any number. This is used to record where in the program the log line originated. One possible format is to give each function its own function number, so that every log line in that function would begin with that unique number.

dwLogLevel may be either TLS_INFO, TLS_SEV2, TLS_PASS, etc. Or you may use the shorter versions, INFO, SEV2, and PASS.

tszLogString is a printf style string that will be printed to the log.

… is the arguments to the tszLogString, if any.

VOID LogBlankLine()

Prints a blank line to the log.

VOID AddLogParticipant(IN HANDLE hLog)

Adds a new thread or process to the log. This is only necessary if the log is using ntlog.dll. hLog must be equal to the value returned from the InitLog function.
VOID RemoveLogParticipant(IN HANDLE hLog)

Removes a thread or process from the log. This is only necessary if the log is using ntlog.dll. hLog must be equal to the value returned from the InitLog function

