 ACPI Docking for Windows Operating Systems — 20

Windows Platform Design Notes

Designing Hardware for the Microsoft(Windows(Family of Operating Systems

ACPI Docking for Windows Operating Systems

Abstract: This paper describes how to implement ACPI-based docking in the BIOS for machines running Windows operating systems. The information in this paper applies to Microsoft® Windows® 98, Windows Millennium Edition (Me), Windows 2000, and the next release of Microsoft Windows, codenamed Windows “Whistler.”

Contents

Contents
2
Introduction to ACPI
4
Expansion Units
6
Identifying Expansion Units in an ACPI Namespace
6
Minimum Hardware Requirements for Expansion Units
8
Pass-through Devices and Ports
8
Describing Pass-through Devices and Ports in ACPI
8
Electrical Isolation and Pass-Through Devices
11
Multiple Expansion Units on a Single System
13
Supporting Different Expansion Units
13
Supporting Stacked Expansion Units
15
Handling Serial Numbers
15
Physical Security
16
Physical Keylock
16
Software-Controlled Locking Mechanism
17
Suppressing the Safe Removal Message for Windows 98/Windows Me
17
Use of PCI-to-PCI Bridges in Docking Stations
18
Undocking
18
Warm Undocking
18
Surprise Undocking
19
Windows Logo Program Requirements for Docking Stations
19
Call to Action
20
Related Resources
21
Disclaimer: The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented. This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property rights except as expressly provided in any written license agreement from Microsoft Corporation.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or mer​chantability, Fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you.

Microsoft, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

© 2001 Microsoft Corporation. All rights reserved.

Introduction to ACPI

The Advanced Configuration and Power Interface (ACPI) Specification is an open industry specification that was developed to establish industry common interfaces enabling robust operating system (OS)-directed motherboard device configuration and power management of both devices and entire systems. ACPI is the key element in Operating System-directed configuration and Power Management (OSPM).

ACPI evolves the existing collection of power management BIOS code, Advanced Power Management (APM) application programming interfaces (APIs), PNPBIOS APIs, Multiprocessor Specification (MPS) tables, and so on into a well-defined power management and configuration interface specification. ACPI provides the means for an orderly transition from existing (legacy) hardware to ACPI hardware, and it allows for both ACPI and legacy mechanisms to exist in a single machine and to be used as needed.

Further, new system architectures are being built that stretch the limits of current Plug and Play interfaces. ACPI evolves the existing motherboard configuration interfaces to support these advanced architectures in a more robust and potentially more efficient manner.

ACPI run-time components. ACPI is neither a software specification nor a hardware specification. Rather, ACPI is an interface specification that comprises both software and hardware elements. ACPI has three run-time components:

· ACPI system description tables describe the interfaces to the hardware. Some descriptions limit what can be build, but most descriptions allow the hardware to be built in arbitrary ways and can describe arbitrary operation sequences needed to make the hardware function. ACPI tables that contain definition blocks can use ACPI Machine Language (AML), a type of pseudocode that is interpreted by OSPM.

· ACPI registers represent the constrained part of the hardware interface. Their locations are described by ACPI description tables.

· ACPI system firmware refers to the portion of the firmware that is compatible with the ACPI specification. Typically, this is the code that boots the machine and implements interfaces for sleep, wake, and some restart operations.

Device Descriptions. Devices are described in a hierarchical ACPI namespace in which devices are arranged according to their bus topology. Because this namespace comes from the BIOS, only devices that are built into the machine (motherboard devices) or the docking station can be described in the namespace. Further, the namespace only lists devices that have some feature not controlled by an industry standard specification.

For example, COM ports are always listed in the namespace because there is no other mechanism for setting an ISA COM port's hardware resources. However, a device that is fully compliant with Peripheral Component Interconnect (PCI) 2.2, such as a network adapter chip soldered onto the motherboard, does not need to be listed in the namespace, because its power management and Plug and Play functions can be controlled entirely by the PCI bus.

Control methods. A control method defines how the OS can perform a simple hardware task. For example, the OS invokes control methods to read the temperature of a thermal zone. Control methods are written in AML and are interpreted and executed by the ACPI-compatible OS. An ACPI compatible system must provide a minimal set of control methods in the ACPI tables. The OS provides a set of well-defined control methods that ACPI table developers can reference in their control methods. Control methods are also used for system-wide tasks such as event handling.

Events. ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events. The event model consists of two registers: an event status register and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the corresponding bit in the enable register is set, the core logic asserts the system control interrupt (SCI) to signal the OS. When the OS receives this interrupt it runs the control methods that correspond to any bits set in the event status register. These control methods use AML commands to tell the OS which event occurred. For example, when a mobile PC is docked, the core logic sets the status bit and signals the SCI. The OS checks the status bit and runs the control method for that bit. The control method checks the hardware and determines that the event was a docking event. It then signals to the OS that a docking event has occurred, and can tell the OS specifically where in the device hierarchy the new devices will appear.

ACPI events are either fixed events or general-purpose events. When OSPM receives a fixed event, it directly reads and handles the event registers itself. When OSPM receives a general-purpose event (GPE), it either passes control to an ACPI-aware driver or it uses an OEM-supplied control method to handle the event. An OEM can implement up to 128 general-event inputs in hardware per GPE block, each as either a level-triggered or edge-triggered event. It is also possible to implement a single 256-pin block if it is the only block defined in the system.

The OEM AML code can perform OEM-specific functions that are customized to each event the particular platform might generate by executing a control method that matches the event. For GPE events, OSPM will execute the control method of the following name:

_GPE._TXX

where

XX is the hexadecimal value of the event to be handled

T indicates the event handling type: ‘E’ for an edge-triggered event or ‘L’ for a level-triggered event

The _LXX or _EXX control method determines what happened and calls the Notify function to tell the operating system what to do. Notify takes two parameters: the name of the device in the ACPI namespace that is affected by this event, and a notification code that tells the operating system which action to take. Some standard event notifications are:

0 - Enumerate this bus

1 - Check device (a specific device has been added or removed)

2 - Device is asserting Wake

3 - Request Eject

Dock event notifications are:

0 – Dock attached

1 or 3 – Eject dock

Expansion Units

This paper uses the term “expansion unit” to refer to docking stations, port replicators, and similar devices such as hardware slices (units that typically add one or two capabilities to a portable computer, such as storage and battery). ACPI docking treats all such devices in the same way.

Identifying Expansion Units in an ACPI Namespace

The ACPI specification describes a device as having docking station capabilities if it implements a _DCK method. System manufacturers might implement _DCK methods for several different types of expansion units (including port replicators and slices) because a _DCK method causes the Windows Start menu to display an Eject PC command. A _DCK method also supports profile-specific settings, such as video resolutions, for the expansion unit.

As originally envisioned by the authors of the ACPI specification, devices such as network controllers and PCI-to-PCI bridges were augmented in the ACPI namespace to include the necessary support code for isolation (_DCK), identification (_UID), and ejection (_EJx). Unfortunately, this design does not allow the expansion unit to be “branded" by the operating system. The Windows 98, Windows Me, and Windows 2000 operating systems always identify a _DCK device as a generic “Docking Station” in messages and dialog boxes, rather than using the name of the _DCK device. This spares the user from messages that are accurate to the operating system but meaningless to users, such as “It is now safe to detach your laptop from the ‘Intel 82380PB PCI to PCI Docking bridge.’”

However, system manufacturers might want to customize the name of the expansion unit displayed to the user for several reasons. For example:

· If a mobile PC can be attached to a slice and a full docking station at the same time, the message that is displayed during a successful Eject PC request (“It is now safe to detach your mobile PC from the Docking Station”) is ambiguous, because both units are called “Docking Stations” in the message.

· A port replicator is also labeled as a “Docking Station” by default. A system manufacturer might prefer to reserve the name “Docking Station” for a higher-end expansion unit in its product line.

Windows Whistler provides support for branding _DCK devices only for namespace objects that are dedicated entirely to controlling the expansion unit. A BIOS indicates this by using a device with *PNP0C15 for the _CID and a manufacturer-defined ID for a _HID for the expansion unit.

The following example shows the ACPI source language (ASL) code from an ACPI BIOS for a dock that contains a PCI-to-PCI bridge. In this example, the _HID is *OEM1234.

Example 1. An ACPI Namespace Object Dedicated to Controlling an Expansion Unit

Device(_SB)

 // Replicator device, replace *OEM1234

 // with a vendor specific ID

 Device(DOCK)

 _HID *OEM1234

 _CID *PNP0C15

 _DCK {...}

 _STA {...}

 _EJ0 {...}

 _EJ3 {...}

 _EJ4 {...}

 Device(PCI0)

 ...

 Device(P2PB)

 //

 // PCI to PCI bridge, d = Device, f = function

 // EJD associates this device with the

 // docking station.

 _ADR 0xddddffff
 _EJD _SB.DOCK

When a signed vendor-supplied INF that matches the _HID identifier is found, the operating system will display the description specified in the INF in any messages about the expansion unit. A vendor-supplied INF can also be used to add features to a dock, such as keylock support as described in “Physical Security” later in this paper.

If a vendor-supplied INF that matches the identifier specified in the _HID method is not found, Windows 2000 and Windows Whistler will use system-supplied INFs that identify *PNP0C15 as a Docking Station.

Note Neither Windows 98 nor Windows Me supply default INF entries for the *PNP0C15 ID. If a vendor-supplied INF is not present on those operating systems, devices in the dock may not start.

The following sample INF shows device-specific strings in italic. A manufacturer would substitute strings specific to the expansion unit.

Example 2. A Sample INF Showing Device-Specific Strings

[Version]

Signature="$WINDOWS NT$"

Class=System

ClassGuid={4D36E97D-E325-11CE-BFC1-08002BE10318}

Provider=%OEMName%

DriverVer=01/15/2001,1.0.0.0

[ControlFlags]

ExcludeFromSelect=*

[Manufacturer]

%OEMName%=OemSection

[OemSection]

%DockModel.DeviceDesc% = DockModelSection, *OEM1234

[DockModelSection]

[DockModelSection.NT]

[DockModelSection.NT.Services]

AddService = , 0x00000002 ; null service install

[Strings]

OEMName=OEM company name

DockModel.DeviceDesc=Dock Model Description for user

Minimum Hardware Requirements for Expansion Units

An expansion unit that is described by a _DCK method must support the following features:

· Presence Notification. The BIOS must be able to determine whether the expansion unit was physically attached or detached. Specifically, the BIOS must be able to do the following:

· Call Notify(,0) when an expansion unit is attached

· Call Notify(,1) when an expansion unit is detached

· Be able to provide correct presence information through the _STA method if the expansion unit was detached while the machine was asleep

· Electrical Isolation. Windows 2000 and Windows Whistler require electrical isolation only for PCI and IDE pass-through devices and ports. Windows 98 and Windows Me require electrical isolation for all pass-through devices and ports. For more information, see “Pass-Through Devices and Ports” later in this paper.

· Serial Numbers. The Windows Logo Program for hardware requires unique serial numbers on all docking stations. The serial number can be supplied in any number of ways as long as there is no chance another identical docking station will supply the same number. Common sources for serial numbers include MAC addresses from network adapters, EUI64 identifiers from IEEE 1394 controllers, and EPROMs burned in the factory.

Port replicators and slices do not need to supply unique serial numbers. However, the BIOS for such devices must supply a false serial number if the replicator or slice has a _DCK method. For information, see “Handling Serial Numbers” later in this paper.

Note Windows Logo Program requirements for docking stations are summarized at the end of this paper. The most current Windows Logo Program requirements are available online at http://www.microsoft.com/hwdev/winlogo

Pass-through Devices and Ports

This section discusses issues related to pass-through devices and ports.

Describing Pass-through Devices and Ports in ACPI

Most pass-through devices and ports require the BIOS to implement an _EJD method that associates the device with the dock in the ACPI namespace, as described in this section. Exceptions are PS/2 ports and video ports:

· PS/2 ports. Nothing needs to be done in the BIOS for PS/2 ports. All PS/2 port devices can be removed safely, and the operating system automatically rescans PS/2 ports during any dock or undock event.

· Video ports. VGA ports need not be described in the ACPI namespace. Display-specific settings such as gamma adjustments and refresh rates are tied to the Plug and Play ID returned by modern monitors. The operating system automatically switches to the correct settings if a monitor appears or disappears during a docking or undocking operation, or at any other time.
The portion of the ACPI specification that describes the _ADR method documents the values appropriate for devices on particular buses (PCI, USB, and so on). For additional information, see “Implementing Hot-Swapping Device Support in ACPI” at http://www.microsoft.com/hwdev/onnow/HotSwap.htm.

PCI Devices

A PCI device that disappears when the expansion unit is detached must be described in the ACPI namespace unless its parent device is already associated with an expansion unit. Failure to do so may cause the system to hang when the expansion units is detached.

Example 3. A PCI to PCI docking bridge

Device(P2PB) // PCI to PCI bridge

 _ADR 0xddddffff // Device dddd, function ffff

 _EJD _SB.DOCK // Expansion unit in namespace

USB Ports

A USB port that is passed through a mobile PC to an expansion unit must be described in the ACPI namespace. Failure to do so may result in data corruption when the user undocks a hard drive attached to the USB port. Corruption occurs when applications or the operating system fail to flush cached changes to the volume.

Example 4. USB port 1 Passed Through a Mobile PC to a Port Replicator

Device(USBC) // PCI USB controller

 _ADR 0xddddffff // Device dddd, function ffff

 Device(RHUB) // USB root hub

 _ADR 0 // Root hub is always 0

 Device(USBA)

 _ADR 1 // Port 1 on USB controller

 _EJD _SB.REPL // Expansion unit in namespace

The following example shows how a mobile PC with an integrated hub passes USB port 2 through the hub to a docking station.

Example 5. USB Port 2 Passed Through an Integrated Hub to a Docking Station

Device(USBC) // PCI USB controller

 _ADR 0xddddffff // Device dddd, function ffff

 Device(RHUB) // USB root hub

 _ADR 0 // (Root hub is always 0)

 Device(IHUB)

 _ADR 1 // Internal hub on USB ctrl port 1

 _RMV { return 0; } // Let OS know hub is internal

 Device(UPST) // Hub port #2

 _ADR 2

 _EJD _SB.DOCK

COM Ports

A COM port that is passed through a mobile PC to the expansion unit must be described in the ACPI namespace. Failure to do so may result in surprise removal warnings when the expansion unit is detached if an enumerable serial device such as an older digital camera is attached to the expansion unit through the COM port.

It is not possible to describe a device behind a COM port in ASL, so the BIOS must associate the COM port itself with the expansion unit in the ACPI namespace. During an eject operation, the operating system shuts down the COM port and the device behind it. When the eject operation is complete, the BIOS reports the COM port as present, so the operating system restarts the COM port.

Example 6. A Mobile PC with a Pass-Through Serial Port

Device(ISA0) // PCI to ISA bridge

 _ADR 0xddddffff // Device dddd, function ffff

 Device(COM1) // Com port 1

 _HID *PNP0501

 _STA {...}

 _EJD _SB.DOCK

 ...

IEEE 1394 Controller

The ACPI specification currently does not define a mechanism for describing a device or port behind an IEEE 1394 controller. If an IEEE 1394 port is passed through a mobile PC to an expansion unit, the IEEE 1394 controller must be associated with the expansion unit in the ACPI namespace. Failure to do so can definitely lead to data corruption if an IEEE 1394 storage unit is attached to the expansion unit.

Describing the IEEE 1394 controller in the namespace means every IEEE 1394 device, even internal ones, must be shut down during an undocking operation. If a system uses an internal IEEE 1394 hard drive for operating system installation, the mobile PC cannot pass an IEEE 1394 port through to the docking station, because the boot drive can never be shut down.

Describing a device or port behind an IEEE 1394 controller would require an amendment to the ACPI 2.0 specification. Operating system support would be included in a future release of the operating system after such an amendment was approved.

Example 7. A Mobile PC with a Pass-Through IEEE 1394 Port

Device(1394) // 1394 controller

 _ADR 0xddddffff // Device dddd, function ffff

 _EJD _SB.RPLR // Port replicator

LPT Port

An LPT port that is passed through a mobile PC to an expansion unit must be described in the ACPI namespace. Failure to do so may result in data corruption when the user undocks the expansion unit if a storage device such as a ZIP drive is attached to the expansion unit.

As with COM ports, there is no way in ASL to describe the device behind the LPT ports, so the BIOS must associate the LPT port itself with the docking station.

Windows 2000 will sometimes block an undocking operation if a printer is attached to the parallel port. This issue is fixed in Windows Whistler, so the BIOS should explicitly test for Windows 2000 and “disable” the _EJD for that version of Windows. For information about detecting the version of the operating system, see the list of resources at the end of this paper.

Windows 2000 will bugcheck the system with a Bad BIOS error if the _EJD points to a node that does not exist, so the ASL code should be written as shown in the following example.

Example 8. A Mobile PC with a Pass-Through LPT Port

Device(ISA0) // PCI to ISA bridge

 _ADR 0xddddffff // Device dddd, function ffff

 Device(LPT1) // LPT port 1

 _HID *PNP0401

 _STA {...}

 Method(_EJD)

 {

 Store (_OS,local0)

// SCMP (string compare function), implementation

// dependent. Takes two inputs and returns 0 if

// true, one or ones if false

 Store (SCMP(local0,"Microsoft Windows NT"),local1)

 If (local1)

 {

 // Windows 9x, ME, or other.

 return _SB.DOCK

 }

 // It is Windows 2000 or better. Check _OSI

 // against Windows 2001 in case _OSI support

 // was added to Windows 2000 in a service pack.

 If (CondRefOf(_OSI,Local0))

 {

 if (_OSI("Windows 2001"))

 {

 // Windows Whistler or better.

 return _SB.DOCK

 }

 }

 // Win2K - Point to never present device.

 return “_SB.PCI0.ISA0.DMMY”

 }

 Device(DMMY) // Dummy device for Win2K printer _EJD

 _HID *PNP0C02

 _STA 0

Electrical Isolation and Pass-Through Devices

Version 1.0 of the ACPI specification assumes that all hot-removable expansion units provide full electrical isolation between the mobile PC and any devices. For both Windows 2000/Windows Whistler and Windows 98/Windows Me, a BIOS should perform full electrical isolation in the _DCK method for buses that require it (PCI and IDE).

Pass-through devices that are not electrically isolated are handled differently by Windows 98/Windows Me and Windows 2000/Windows Whistler:

· Windows 98/Windows Me do not support pass-through devices without electrical isolation, so there is no way to prevent “surprise removal” notifications or storage removal notifications when non-isolated pass-through devices are detached on these operating systems. Full electrical isolation is necessary to prevent these messages from appearing.

· Windows 2000/Windows Whistler do support hot removal of pass-through devices that are not electrically isolated. However, proper support requires the system manufacturer to pend the _EJ0 method for Windows 2000/Windows Whistler but not for Windows 98/Windows Me, because the hot-undocking sequence differs between the two operating systems. Pending the _EJ0 method on Windows 98/Windows Me would cause the OS to display a “safe to detach” message after the user had physically detached the mobile PC.

This section describes differences between the hot-undocking sequence for Windows 2000/Windows Whistler and Windows 98/Windows Me, and it provides guidelines for adjusting an _EJ0 method based on operating system version.

Hot-Undocking Sequence for Windows 2000 and Windows Whistler

The hot undocking sequence for Windows 2000/Windows Whistler is as follows:

1. The OS unloads drivers for devices in the expansion unit.

2. The OS calls _DCK(0) method.

3. The OS displays the safe removal notification to the user:

“Windows has finished undocking the system. If you need to remove the system from the Docking Station, please do so now.”

4. The OS begins asynchronous execution of the _EJ0 method.

The BIOS pends the _EJ0 method until the user detaches the mobile PC from the expansion unit.

5. The BIOS completes the _EJ0 method.

The OS restarts any devices that did not disappear during the undocking operation.

Windows 2000 and Windows Whistler display the safe removal notification message after the _DCK method finishes, because the _DCK method should have electrically isolated all pass-through devices on buses that require it (such as PCI or IDE).

The BIOS pends the _EJ0 method until after the expansion unit is detached to prevent the operating system from prematurely restarting any devices that are still visible via the pass-through ports. It is possible that the user may request an eject operation and subsequently forget to detach the notebook. If the expansion bay has a physical interlock, the BIOS could optionally "redock" the mobile PC if no user activity occurs after 30 seconds.

This solution has two disadvantages that BIOS writers should be aware of:

· Windows 2000/Windows Whistler display the safe removal dialog before running _EJ0, so it is not possible to fail an undocking attempt on a physically locked system.

· The hot-undocking sequence for Windows 98 and Windows Me does not support pass-through devices without electrical isolation, so the _EJ0 method must operate differently for Windows 98/Windows Me and Windows 2000/Windows Whistler, as described later in this section.

Hot-Undocking Sequence for Windows 98 and Windows Me

Windows 98 and Windows Me use the following hot undock sequence:

6. The OS unloads drivers for devices in the expansion unit.

7. The OS calls the _DCK(0) method.

8. The OS calls the _EJ0 method and waits for it to finish.

9. The OS displays the safe removal notification to the user:

“Windows told the computer to undock. If you need to eject the system by hand, please do so now.”

10. The OS restarts any devices that did not disappear during the undocking operation.

If a BIOS pends the _EJ0 method until the dock is detached from the expansion unit on Windows 98/Windows Me, the user will not be told that it is safe to detach the expansion unit until after the expansion unit is already physically detached, making the notification message meaningless.

Adjusting an _EJ0 Method Based on the Operating System Version

A BIOS that is intended for both Windows 2000/ Whistler and Windows 98/Windows Me should adjust the _EJ0 method's behavior based on the operating system, as shown in the following example:

Example 9. Adjusting an _EJ0 Method Based on the Operating System Version

Method(_EJ0)

{

 //

 // Set lights or other indicators

 //

 Store (_OS, local0)

 // SCMP (string compare function), implementation

 // dependent. Takes two inputs and returns 0 if

 // true, one or ones if false

 if (Not(SCMP(local0, "Microsoft Windows NT")))

 {

 //

 // Windows 2000, Windows Whistler, or later version.

 // Wait for physical detach of expansion unit.

 //

 }

}

Multiple Expansion Units on a Single System

This section provides guidelines for supporting multiple expansion units on a single system.

Supporting Different Expansion Units

Pass-through devices present special difficulties for a BIOS that exposes more than one expansion unit. Consider the following three objects in an ACPI namespace:

Example 10a. Full Docking Station

Device(FDCK)

 _HID *OEM1234
 _CID *PNP0C15

 _DCK {...}

 _STA {...}

 _UID {...}

 _EJ0 {...}

Example 10b. Mini-Dock

Device(MDCK)

 _HID *OEM1235
 _CID *PNP0C15

 _DCK {...}

 _STA {...}

 _UID {...}

 _EJ0 {...}

Example 10c. COM Port 1

Device(COM1)

 _HID *PNP0C15

 _EJD _SB.GDCK

In the above example, both the full dock and the mini-dock pass through the COM port. However, the ACPI specification allows _EJD to point to only one namespace object. Furthermore, there is no defined mechanism to tell an OS to reevaluate an _EJD method. Windows 98 and Windows Me would read the value when the COM port was started. Windows 2000 and Windows Whistler both read the _EJD once during table load and never evaluate it again. As a consequence, the BIOS must collapse the code for both docking stations into one global dock.

Example 11a. A “Global” Docking Station That Combines a Full Docking Station with a Mini-Dock

Device(GDCK)

 _HID *OEM1236
 _CID *PNP0C15

 _DCK {...}

 _STA {...}

 _UID {...}

 _EJ0 {...}

Example 11b. COM Port 1

Device(COM1)

 _HID *PNP0C15

 _EJD _SB.GDCK

Unfortunately, this solution makes branding the expansion unit very difficult. Turning _HID into a method is not sufficient, because Windows 2000 and Windows Whistler evaluate the _HID method as soon as the namespace table for the device is loaded. To brand a dock, the BIOS would have to load the table containing the GDCK object before it notifies the OS that a docking event has occurred, and then unload the table after undocking. However, unloading a table is likely to expose problems with Windows 98 and is not recommended.

Microsoft is actively investigating ways to solve the issues related to pass-through devices as described in this section.

Supporting Stacked Expansion Units

Some mobile PCs can support more than one expansion unit at the same time. A common example is a mobile PC attached to a slice, which is in turn attached to a full docking station (both with _DCK methods). The proper ASL to support such a scenario is shown in the following example.

Example 12. ASL for Stacked Expansion Units

Device(_SB)

 Device(SLCE)

 //

 // Slice

 //

 _HID *OEM1234
 _CID *PNP0C15

 _DCK {...}

 _STA {...}

 _UID {...}

 _EJ0 {...}

 Device(DOCK)

 //

 // Full dock that attaches only to

 // slice

 //

 _HID *OEM1235
 _CID *PNP0C15

 _DCK {...}

 _STA {...}

 _UID {...}

 _EJ0 {...}

If the DOCK object is not placed under the SLCE object, Windows 2000 and Windows Whistler create an extraneous hardware profile. This can happen because during boot the OS may find the DOCK before the SLCE. The resulting four profiles would be Undocked, SLCE, SLCE+DOCK, and DOCK.

If the Eject PC option on the Start menu is invoked in a system with more than one expansion unit, Windows 2000 and Windows Whistler will always select the deepest device in the namespace. There is currently no way to specify different behavior.

Note that stacked expansion units require extra PNPBIOS serial number code. For more information, see “Handling Serial Numbers” later in this paper.

Handling Serial Numbers

All of the ACPI-enabled versions of Windows retrieve the PNPBIOS docking serial number during the real-mode loader phase of boot. This allows the OS to select the correct hardware profile and boot with its settings without having to first load the HAL and the ACPI driver. As a consequence, Windows operating systems must be able to correlate the PNPBIOS serial number with the ACPI serial numbers returned by one or more docking stations. The algorithm used to match these two numbers depends on the operating system.

Windows 98/Windows Me. These versions of Windows ignore the serial number specified by the _UID method and instead execute the _BDN method. The _BDN method must return an integer that exactly matches the serial number returned by PNPBIOS. If two expansion units are attached, the BIOS must ensure the PNPBIOS number uniquely represents the combination of the two units. Furthermore, each _BDN must return that number.

Windows 2000/Windows Whistler. These versions of Windows ignore the _BDN method and rely solely on the _UID method. The _UID method can return any string as long as the characters belong to the ASCII set 0x21 (“!”) to 0x7F (“DEL”) except 0x2C (“,”). As with Windows 98 and Windows Me, the serial number returned by PNPBIOS must be a unique combination of the two units. The strings returned in the _UID method do not need to be identical and should be different strings.

Slice/Port Replicator. Although neither slices or port replicators are required to have unique serial numbers, the BIOS must still present the appearance of a serial number to the OS if the slice or replicator has a _DCK method. For example, consider a mobile PC that can be attached individually to a replicator, a slice, a dock, or the combination of a replicator and dock. The BIOS for such a mobile PC might calculate serial numbers as shown in the following tables.

Table 1. PNPBIOS Serial Number Calculated by _BDN Method for Windows 98/Windows Me

	Case
	Value Returned by _BDN Method

	Nothing attached to mobile PC
	Fail PNPBIOS serial number request

	Replicator present
	Return 1

	Slice alone present
	Return 2

	Slice and dock present
	Return 2 + Serial number

Table 2. PNPBIOS Serial Number Calculated by ACPI _UID Method for Windows 2000/Windows Whistler

	Case
	Value Returned by _UID Method

	Nothing attached to mobile PC
	N/A

	Replicator present
	Replicator _UID returns 1

	Slice alone present
	Slice _UID returns 2

	Slice and dock present
	Slice _UID returns 2

Dock _UID returns Serial number

Physical Security

Physical security refers to the ability to prevent the removal of a mobile PC from a docking station. An expansion unit can be secured with a physical keylock or with a software-controlled locking mechanism. If an expansion unit is physically locked, the BIOS should fail attempts to undock the unit through software and, if possible, suppress safe removal messages that might confuse users.

Physical Keylock

If the mobile PC is physically locked into the docking station, BIOS designers might want the BIOS to fail any attempts to undock the mobile PC, because the safe removal dialog might tempt users to apply excessive force to their hardware. Failing _EJ0 on dock devices has no effect on Windows 2000 and Windows Whistler for reasons described earlier in this paper.

To present the proper user interface, the manufacturer might supply a driver that loads against the docking station. Such a driver would run a method to determine whether the station is locked, and if so, fail the undocking operation. For information about writing drivers for Windows operating systems, see the Windows DDK. Availability of the DDK is listed at the end of this paper.

Software-Controlled Locking Mechanism

If the docking station has a non-defeatable locking mechanism (that is, a locking mechanism that a user cannot overcome with physical force), the mobile PC can be secured by operating system software. The BIOS on such a system should ignore any requests to undock the mobile PC while the machine is off, and it should wake the machine if a request is registered to physically undock the mobile PC.

By default, Windows 2000 and Windows Whistler allow any user to eject the mobile PC via the Start menu. The Local Security Policy editor “User Rights/Remove computer from docking station” option in the Control Panel can be used to restrict which users are allowed to eject the mobile PC.

Windows 2000 does not block any undocking attempt that is initiated from a physical eject button. A manufacturer who also wants to restrict this option must write a service or application that registers for hardware profile changes and vetoes any changes that are initiated from an unqualified user. For information about registering for hardware-related notifications, see the Microsoft Platform SDK, which is available through Microsoft MSDN Professional subscription.

Windows Whistler provides a built-in option to restrict undocking attempts that are initialized from a physical eject button. The Local Security Policy editor “Security Options/Allow undock without having to log on” option in the Control Panel blocks undocking attempts that are initiated from a physical eject button unless the user who is currently logged onto the console has the “Remove computer from docking station” privilege.

Suppressing the Safe Removal Message for Windows 98/Windows Me

For the sake of usability, a BIOS on a locked system should fail attempts to undock a mobile PC that is physically locked, because the safe removal message might mislead a user into attempting to forcibly undock the mobile PC, which might damage the hardware.

It is not possible for the BIOS to fail the _LCK and _DCK methods or to retrieve the current locked state of a device. For Windows 98/Windows Me, the BIOS can suppress the safe removal message for a physically locked mobile PC by failing the _EJ0 method during a hot undocking operation.

This technique does not work for Windows 2000/Windows Whistler because those operating systems display the safe removal message before running _EJ0, so the message appears even if the BIOS fails _EJ0.

For information about implementing an _EJ0 method that works differently on different operating systems, see “Adjusting an _EJ0 Method Based on the Operating System Version” earlier in this paper.

Use of PCI-to-PCI Bridges in Docking Stations

Issues concerning PCI bridges are covered in detail in a separate paper, “PCI-to-PCI Bridges and CardBus Controllers on Windows 2000 and Windows Whistler,” listed at the end of this document. This section summarizes two areas of special concern to docking.

Positive Decode versus Subtractive Decode. A PCI-to-PCI bridge can be configured for positive decode or subtractive decode.

Subtractive decode has significant disadvantages for the system as a whole because of the restrictions it places on memory allocation. However, if a docking station has no PCI slots but does have PC Card slots, the bridge should be configured for subtractive decode. This ensures that the small minority of PCMCIA cards that require legacy addresses will work.

If the docking station has PCI slots, it should be configured for positive decode. This maximizes performance for devices in the PCI slot and allows peer-to-peer DMA for devices behind the bridge, which is not possible when the bridge is configured for subtractive decode.

Bridge in Dock versus Bridge in Mobile PC. A PCI-to-PCI docking bridge should either always be visible or should only be visible based on the _DCK method. It is up to the manufacturer to decide whether to install a bridge in the docking station or in the mobile PC.

One advantage of having the bridge always present in the mobile PC is that it allows the BIOS to preconfigure the bridge with a large resource window. By default, Windows 2000 and Windows Whistler will configure newly detected bridges with only 4K of I/O space, which sometimes prevents devices behind the bridge from starting due to insufficient hardware resources.

Undocking

This section provides guidelines for support of warm undocking and surprise undocking.

Warm Undocking

Warm undocking refers to the ability to simultaneously undock and put a machine to sleep. The ACPI specification identifies warm undocking support through the presence of _EJ1-_EJ4 methods in the namespace of a _DCK object. Windows can support docking stations with both hot and warm undock capabilities.

Windows 2000 and Windows Whistler choose the appropriate _EJx method based on the following algorithm:

11. Windows first attempts a hot eject (S0).

This state is disallowed if the BIOS does not supply an _EJ0 method or if the total battery power available in the mobile PC is less than the hot undock threshold.

12. If the hot eject is not possible, Windows next attempts to undock into a sleep state (S1 - S3, in that order).

These states are disallowed if the BIOS does not supply any _EJ1 - _EJ3 methods or if the total battery power available is less than the sleep undock threshold.

13. If undocking into a sleep state is not possible, Windows attempts to undock into hibernation (S4) if the BIOS supports it through the presence of an _EJ4 method.

Windows 2000 and Windows Whistler can support any combination of _EJx methods on the same ACPI object (for example, _EJ0, _EJ3 and _EJ4).

The defaults for the undocking power thresholds are:

· Hot undock threshold: Minimum 10% remaining battery power

· Sleep undock threshold: Minimum 0% remaining battery power

Windows uses a minimum sleep threshold of 0% because many systems have hidden power reserves that can sustain a machine in S3 for long periods of time. Manufacturers can change the power thresholds for the entire system by creating the following binary value key:

HKLM\CurrentControlSet\Control\Session Manager\Power\UndockPowerPolicy

The binary data contains the following 16-byte structure:

typedef struct _UNDOCK_POWER_RESTRICTIONS {

 ULONG Version;

 // 1 (Version 1.0)

 ULONG Size; // 0x10 (16 bytes)

 ULONG HotUndockMinimumCapacity; // In percent

 ULONG SleepUndockMinimumCapacity; // In percent

} UNDOCK_POWER_RESTRICTIONS, *PUNDOCK_POWER_RESTRICTIONS

A machine set to sleep before 15% and hibernate below 5% would supply an _EJ0 method, _EJ1 – 3 methods, and an _EJ4 method. The binary registry value would contain the following 16 bytes:

[01 00 00 00 10 00 00 00 15 00 00 00 05 00 00 00]

Surprise Undocking

Surprise undocking refers to the action of removing a mobile PC from a docking station while the system is asleep. Surprise undocking is not supported for Windows 2000 or Windows Whistler. Whenever possible, manufacturers should design systems that wake the operating system if the eject button is pressed while the machine is in a sleep state.

Surprise undock is not supported for the following reasons.

1. The Windows Driver Model currently doesn’t have a mechanism to make a device “safe for removal” other than shutting the device down.

2. Shutting down all removable hardware prior to sleeping can add several seconds to both suspend and resume times.

3. Shutting down all removable hardware prevents devices in the dock from waking the system.

4. Some devices may not shut down when they are in use, which would block suspend. A common example is a hard drive, CD drive, or floppy disk drive with an open file.

Microsoft is investigating ways to support surprise removal of docking stations in future versions of Windows operating systems.

Windows Logo Program Requirements for Docking Stations

This section lists the Windows Logo Program requirements for docking stations or docked mobile PCs. For purposes of these requirements, a docking station includes the functionality of a port replicator along with additional expansion in the form of enumerable devices or slots and connects to the mobile PC’s PCI bus.

Complete current Windows Logo Program requirements are available at
http://www.microsoft.com/hwdev/winlogo.

MOBL–0073. Docked mobile PC has the ability to identify the specific model of the dock and to uniquely identify the dock itself

MOBL–0074. Docked mobile PC combination meets PC 2001 Mobile requirements

MOBL–0075. Docking station includes driver support

MOBL–0076. Docked mobile PC meets PC 2001 BIOS requirements

MOBL–0077. Pre–PC 2001 docking station requirements

· The user cannot experience resource conflicts.

· All drivers for earlier docking stations must be made available as necessary to support the preinstalled operating system.

MOBL–0078. Mobile/docking station interface uses ACPI-defined mechanisms

MOBL–0079. Docking station supports warm docking

MOBL–0080. Docking system supports fail-safe docking

Call to Action

Manufacturers should implement ACPI-based docking in the BIOS for Windows 2000 and Windows Whistler as described in this paper. In particular:

· Implement a _DCK method for each supported expansion unit to customize the name of the expansion unit that is displayed to the user.

· Support the minimum hardware requirements described in this paper for expansion units:

· Presence notification

· Electrical isolation

· Serial numbers

· Implement an _EJD method that associates a pass-through device or port with the dock in the ACPI namespace for all types of devices or ports except PS/2 ports or video ports.

· Design an _EJ0 method to adjust for differences between Windows 98/Windows Me and Windows 2000/Windows Whistler in handling electrical isolation of pass-through devices.

· Calculate PNPBIOS serial numbers for slices or port replicators that have _DCK methods, as described in this paper.

· Design the BIOS to prevent the user from attempting to undock a mobile PC that is physically locked to the docking station, as described in this paper.

· Configure a PCI-to-PCI bridge for positive decode unless the docking station has PC Card slots.

· Design systems that wake the operating system if the physical eject button is pressed while the machine is in a sleep state.

· To provide feedback to Microsoft about the technology described in this DRAFT article, please send your comments by e-mail to ihv@microsoft.com with ACPI Docking in the Subject line. Please include your name, title, company name, and phone and fax numbers.
Related Resources

· Implementing Hot-Swapping Device Support in ACPI
http://www.microsoft.com/hwdev/onnow/HotSwap.htm
· Identifying Windows “Whistler” in ASL Using _OSI
http://www.microsoft.com/hwdev/onnow/_OSI-method.htm

· PCI-to-PCI Bridges and CardBus Controllers on Windows 2000 and Windows Whistler
http://www.microsoft.com/hwdev/pci/pcibridge-cardbus.htm

· Windows Logo Program for Hardware
http://www.microsoft.com/hwdev/winlogo
· Windows DDK
http://www.microsoft.com/ddk

· Windows Platform SDK
http://msdn.microsoft.com/subscriptions/prodinfo/overview.asp
· ACPI specifications, Revisions 1.0b and 2.0
http://www.teleport.com/~acpi/

