Windows XP Native Processor Performance Control 9

Windows Platform Design Notes

Designing Hardware for the Microsoft(Windows(Family of Operating Systems

Windows XP Native Processor Performance Control

Abstract: Microsoft® Windows® XP includes built-in processor performance control to take advantage of microprocessors that utilize performance states to operate the processor more efficiently when it is not fully utilized. This paper outlines the new BIOS implementations needed to expose this capability in Windows XP; this paper also details the functionality and policies employed by Windows XP for processor performance control.

The current version of this paper is available on the web at http://www.microsoft.com/hwdev/tech/onnow/ProcPerfCtrl.asp
Version 1.0 — February 1, 2002
Disclaimer: The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented. This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property rights except as expressly provided in any written license agreement from Microsoft Corporation.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or mer​chantability, Fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you.

Microsoft, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

© 2001 Microsoft Corporation. All rights reserved.

Contents

Introduction
1
Overview of Native Processor Performance Control
1
Processor Performance Control
1
Processor Performance Control Policy
1
BIOS Implementations for Native Processor Performance Control
2
Support via ACPI
2
Implementing Intel SpeedStep Technology
3
SpeedStep Legacy Applet Interface
3
Implementing Intel SpeedStep using the ACPI 2.0 Objects
5
Implementing for AMD PowerNow!
7
Implementing for the K6/2+
7
Implementing for the K7
7
"Designed for Windows XP" Logo Program Requirements
8
References
9
Introduction

Historically, processors for mobile PC systems ran at lower voltages than processors for desktop PCs; consequently, processors for mobile PC systems also had to run at slower clock speeds. This was not usually an issue because mobile PCs have relatively slow disk and memory subsystems. Mobile PC processors are usually idle when most business applications are being used.

The situation is different if high bandwidth I/O subsystems are implemented or if the user is doing something that has high CPU utilization and low I/O bandwidth requirements. This can be the case with many games, and also with DVD playback. Many games will try to use all available CPU. The DVD playback case is different because most soft DVD players will only use about 500MHz of the processor capability.

Understanding these limitations in a market environment where “speed” is an important sales factor, CPU manufacturers have introduced processors that employ performance states. These CPUs provide high voltage/high frequency states for use when processor utilization is high and low voltage/low frequency states to conserve battery life. This technology gives OEMs the ability to design a system that can compete both in the speed and battery life benchmark tests.

Windows XP implements built-in support for processor performance states. This paper explains the BIOS implementations needed to use the native support and outlines the policies that Windows XP uses for processor performance control. The paper covers implementation of Intel SpeedStep, AMD PowerNow!, and Transmeta LongRun processor performance control technologies.

Overview of Native Processor Performance Control

The built-in support for processor performance control in Windows XP consists of two components: Processor performance control and processor performance control policy. Processor performance control is the function that must be done to perform a performance state change. Processor performance control policy is the set of behavior rules used to determine the appropriate performance state to be used.

Processor Performance Control

Windows XP implements a processor driver architecture to take full advantage of the individual technologies from different CPU vendors. This architecture allows Windows XP to support currently shipping processors, and supports future advances in processors by providing an easy update path for new functionalities and technologies by shipping a new processor driver. Windows XP supports processor performance control via the Processor Objects defined in the Advanced Configuration and Power Interface (ACPI) specification, version 2.0, and the legacy SMI interface defined by Intel for SpeedStep. Implementation details for each CPU vendor are provided later in this paper.

Processor Performance Control Policy

In Windows XP, the processor performance control policy is linked to the Power Scheme setting in the standard control panel power options applet. No additional UI is employed to set the policy.

Windows XP defines four control policies for processor performance control:

Constant
Always runs at lowest performance state

Adaptive
Performance state chosen based on CPU demand

Degrade
Starts at lowest performance state, then uses linear performance reduction (stop clock throttling) as battery discharges

None
Always runs at highest performance state

The following table shows the relationship between the Power Scheme selected and the control policy used.

	Power Scheme
	AC Power
	DC Power

	Home/Office Desk
	None
	Adaptive

	Portable/Laptop
	Adaptive
	Adaptive

	Presentation
	Adaptive
	Degrade

	Always On
	None
	None

	Minimal Power Management
	Adaptive
	Adaptive

	Max Battery
	Adaptive
	Degrade

BIOS Implementations for Native Processor Performance Control

Windows XP supports processor performance control via ACPI and some legacy interfaces. This section explains the ACPI support. For legacy interface implementations, see sections specific to the processor you are implementing.

Support via ACPI

In addition to supporting ACPI 1.0b, Windows XP utilizes the processor objects defined in section 8.3.3 of the ACPI 2.0 specification. The objects were defined in ACPI 2.0 to allow performance switching by the operating system without additional BIOS support.

Implementing the ACPI 2.0 Processor Objects for Windows XP

The Windows XP operating system does not support all of the ACPI 2.0 specification. When adding the objects to your ACPI 1.0b BIOS, place objects in the processor object’s object list under the _PR scope. The object list should include _PCT, _PSS, and _PPC. Other than location, use the objects exactly as defined in the ACPI 2.0 specification.

Provide the control value in the PSTATE_CNT field of the Fixed ACPI Description Table (FADT) at byte offset 55 as defined in the ACPI 2.0 specification. Byte offset 55 was reserved in ACPI 1.0b. Add the control value for the operating system to write to SMI_CMD to the ACPI 1.0b FADT at byte offset 55. This is the only modification needed to the FADT. The FADT revision field should not be set equal 3, because it is not an ACPI 2.0 table; it is still an ACPI 1.0b table with a reserved field used.

Implementation Tips

Coding the _PCT

The _PCT is defined in the ACPI 2.0 specification to use the Generic Register Descriptor. The ASL Macro for the Generic Register Descriptor is not implemented in any of the current Microsoft ASL Assemblers, dictating that the ASL code for _PCT generate the data.

This is a sample _PCT that returns the data in the Generic Register Descriptor format.

Name (_PCT, Package (2) // Performance Control Object

{

//
ResourceTemplate () {Register(SystemIO, 8, 0, 0xB2)} // Control

Buffer () {

0x82, // B0-Generic Register Descriptor (section 6.4.3.7)

0xC,0, // B1:2-length (from _ASI thru _ADR fields)

1, // B3-Address space ID, _ASI, SystemIO

8, // B4-Register Bit Width, _RBW

0, // B5-Register Bit Offset, _RBO

0, // B6-Reserved

0xB2,0,0,0,0,0,0,0, // B7:14-register address, _ADR (64bits)

0x79,0}, // B15:16-End Tag (section 6.4.2.8)

// ResourceTemplate () {Register(SystemIO, 8, 0, 0xB3)} // Status

 Buffer () {

0x82, // B0-Generic Register Descriptor (section 6.4.3.7)

0xC,0, // B1:2-length (2 bytes)

 1, // B3-Address space ID, _ASI, SystemIO

 8, // B4-Register Bit Width, _RBW

 0, // B5-Register Bit Offset, _RBO

 0, // B6-Reserved

 0xB3,0,0,0,0,0,0,0, // B7:14-register address, _ADR (64bits)

 0x79,0}, // B15:16-End Tag (section 6.4.2.8)

}) // End of _PCT object

Reporting _PPC

When coding _PPC, note that Windows XP implements an adaptive performance control policy to take advantage of the higher-performance states when CPU utilization is high.

Important If a system can support the higher performance states when on battery, do not report in _PPC that only the lower power states are supported. Windows XP will always use the evaluated value of _PPC to determine the number of available performance states.

Implementing Intel SpeedStep Technology

Windows XP can support Intel SpeedStep using the legacy applet interface or the ACPI 2.0 processor performance objects. It is recommended that systems based on the 440BX chipset use the legacy applet interface. The ACPI 2.0 objects should be used on ICH-based and 440MX systems.

SpeedStep Legacy Applet Interface

For systems that were developed and shipped before the Windows XP release, and for all 440BX-based systems, performance switching will be done through the legacy applet interface. Windows XP uses the INT15H/AX=E980h defined in the “Mobile Pentium III Processor Featuring Intel SpeedStep Technology BIOS Writer’s Guide” to obtain the Command Data Value and the Command Port Address.

Important Windows XP uses the same performance state switching mechanisms through the SMI port as the Intel SpeedStep applet to do performance switching. For systems that implement the recommendations set forth in the “Mobile Pentium III Processor Featuring Intel SpeedStep Technology BIOS Writer’s Guide,” the Command Data Value should equal 82h (the Applet CMD value). The Command Port Address should equal B2h. Native Windows XP processor performance control will not automatically be enabled on systems that use the legacy applet interface unless the registry modifications explained in the next section are implemented. The registry entries will be required for all systems using the legacy applet interface that carry the “Designed for Windows XP” logo. Under the logo requirements, systems must use only the native Windows XP processor performance control. The Intel SpeedStep Applet cannot be used on systems shipping Windows XP.

Enabling Native Performance Control

For systems that use the legacy applet interface, performance control must be enabled through a registry key. The registry key used enable the legacy Intel SpeedStep applet interface is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\HackFlags==0x1

HackFlags definitions:

Bit 0 :
Use SpeedStep Applet interface

Bit 1 :
Set by OS if applet parameters

migrated during upgrade

Bit 2 :

System can support all modes when

running on battery

Bit 3-31 :
Reserved

Note: All registry key values listed are DWORD values.

Registry entry for a system that can only run the highest performance state on AC would be:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\HackFlags==0x1

Registry entry for a system that can support all performance states on battery would be:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\HackFlags==0x5

After this registry key entry is made, Windows XP will assume processor performance control upon next boot.

Overriding Command Values via the Registry

For systems shipped with wrong values in the INT15/E980 or without the INT15/E980, the command values can be entered through registry keys. The registry keys used to override INT15/E980 values or report nonexistent values are:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\HackFlags==0x5
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\SmiCmdPort==SMI Cmd Data Port
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\SmiCmdData==SMI Cmd Data Value

For systems following the “Mobile Pentium III Processor Featuring Intel SpeedStep Technology BIOS Writer’s Guide,” the entries will be:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\HackFlags==0x1
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\SmiCmdPort==0xb2
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\P3\Parameters\SmiCmdData==0x82

Implementing Intel SpeedStep using the ACPI 2.0 Objects

ICH-based based systems should use the ACPI 2.0 processor performance control objects to describe the performance states and control data. For the performance switching on current ICH-based systems, Windows XP uses a SMI interface similar to the Intel SpeedStep applet SMI interface. However, the ports and data values will now be defined using the processor performance control objects as defined in ACPI 2.0. It is highly recommended to follow the Intel BIOS writer’s guide for the chipset in the system when implementing SMI interface.

ASL Example for ICH-based Systems

 Scope(_PR)

 {

Processor(CPU0,
// A unique name given to each processor

0x00,

// A unique ID given to each processor

0x1010,

// ACPI P_BLK address = ACPIBASE + 10

0x06)

// ICH has a P_BLK length of 6 bytes.

{

Name(_PCT, Package()

{

Buffer()

{

0x82,
// Resource Template Start

0x0C,

0x00,

0x01,
// IO

0x08,
// Width

0x00,
// Bit offset

0xB2,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x79,
// Resource Template End

0x00

},

Buffer()

{

0x82,
// Resource Template Start

0x0C,

0x00,

0x01,
// IO

0x08,
// Width

0x00,
// Bit offset

0xB3,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x00,

0x79,
// Resource Template End

0x00

}

})

// End of PCT object

Name (_PSS, Package()

{

Package(){750, 22000, 250, 200, 0x83, 0x00},
// State zero.

Package(){600, 10000, 250, 200, 0x84, 0x01}
// State one.

})

Method (_PPC, 0)

{

// This routine should reflect capabilities

// of the platform. If all states can be utilized

// always report (0).

If (ACON)

{

Return(0)
// All states available.

}

Else

{

Return(1)
// State one only available.

}

}

}

 }
// End _PR

FADT Entries

Provide the control value in the PSTATE_CNT field of the Fixed ACPI Description Table (FADT) at byte offset 55. This nonzero value will be written for Windows XP to assume control of performance states. This value should be 80h to disable the SpeedStep Applet interface as described in the Intel BIOS writers guide.

The FADT revision field should not be set to 3.

Implementing for AMD PowerNow!

Windows XP supports processor performance control on K6/2+ and K7 PowerNow! processors. The K6/2+ support uses the SMI interface and BIOS description table to read capabilities. The K7 is only supported via the ACPI 2.0 objects. Once processor capabilities are determined, Windows XP will perform all P-state control directly with no support needed from the system BIOS.

Implementing for the K6/2+

The K6/2+ processor driver in Windows XP uses the SMI interface and the Gemini BIOS Descriptor Table (GBDT) as defined in the “Gemini SMI API Specification version 0.80” available from AMD. The SMI interface is used to query the processors capabilities. If the processor is K7 PowerNow! enabled, the driver will then locate the GBDT and read the performance states supported and control values associated with each state in the system.

Implementing for the K7

Windows XP requires the ACPI 2.0 objects for systems with K7 PowerNow! processors. The implementation is straightforward and documented in detail by AMD in the “BIOS Support for Windows XP Processor Driver Application Note Revision 1.04.” The mechanism for control and status of the K7 PowerNow! processors are defined in Model Specific Registers (MSRs). This dictates that when defining the _PCT in the namespace use the Functional Fixed Hardware (FFixedHW) address type.

Coding the _PCT

This is a sample _PCT for FFixedHW as described in the ACPI 2.0 specification, which returns the data in the Generic Register Descriptor format.

Name (_PCT, Package (2) // Performance Control Object

{

//
ResourceTemplate () {Register(FFixedHW, 0, 0, 0)} // Control

Buffer () {

0x82, // B0-Generic Register Descriptor(section6.4.3.7)

0xC,0, // B1:2-length (from _ASI thru _ADR fields)

0x7F, // B3-Address space ID, _FFixedHW

8, // B4-Register Bit Width, _RBW

0, // B5-Register Bit Offset, _RBO

0, // B6-Reserved

0x0,0,0,0,0,0,0,0, // B7:14-register address, _ADR (64bits)

0x79,0}, // B15:16-End Tag (section 6.4.2.8)

// ResourceTemplate () {Register(FFixedHW, 0, 0, 0)} // Status

 Buffer () {

0x82, // B0-Generic Register Descriptor(section6.4.3.7)

0xC,0, // B1:2-length (2 bytes)

 0x7F, // B3-Address space ID, _FFixedHW

 8, // B4-Register Bit Width, _RBW

 0, // B5-Register Bit Offset, _RBO

 0, // B6-Reserved

 0x0,0,0,0,0,0,0,0, // B7:14-register address, _ADR (64bits)

 0x79,0}, // B15:16-End Tag (section 6.4.2.8)

}) // End of _PCT object

Implementing for Transmeta LongRun

Windows XP supports processor performance control on Transmeta Crusoe processors with Transmeta LongRun Power Management technology. The Crusoe is supported through the ACPI 2.0 processor objects. After Windows XP determines processor capabilities, it will perform all P-state control directly with no support needed from the system BIOS.

For details about implementing the _PSS method for Crusoe processors, contact your Transmeta technical sales representative for the appropriate Transmeta documents and collateral material.

Coding the _PCT

The following code shows a sample _PCT method for FFixedHW as described in the ACPI 2.0 specification. This method returns the data in the Generic Register Descriptor format.

Name (_PCT, Package (2) // Performance Control Object

{

//
ResourceTemplate () {Register(FFixedHW, 0, 0, 0)} // Control

Buffer () {

0x82, // B0-Generic Register Descriptor(section6.4.3.7)

0xC,0, // B1:2-length (from _ASI thru _ADR fields)

0x7F, // B3-Address space ID, _FFixedHW

8, // B4-Register Bit Width, _RBW

0, // B5-Register Bit Offset, _RBO

0, // B6-Reserved

0x0,0,0,0,0,0,0,0, // B7:14-register address, _ADR (64bits)

0x79,0}, // B15:16-End Tag (section 6.4.2.8)

// ResourceTemplate () {Register(FFixedHW, 0, 0, 0)} // Status

 Buffer () {

0x82, // B0-Generic Register Descriptor (section 6.4.3.7)

0xC,0, // B1:2-length (2 bytes)

 0x7F, // B3-Address space ID, _FFixedHW

 8, // B4-Register Bit Width, _RBW

 0, // B5-Register Bit Offset, _RBO

 0, // B6-Reserved

 0x0,0,0,0,0,0,0,0, // B7:14-register address, _ADR (64 bits)

 0x79,0}, // B15:16-End Tag (section 6.4.2.8)

}) // End of _PCT object

"Designed for Windows XP" Logo Program Requirements

Requirements for the Windows Logo Program for hardware that apply specifically for systems or peripherals that will receive the "Designed for Windows Whistler" are defined in Microsoft Windows Logo Program System and Device Requirements, Version 2.0,
available on the web site at http://www.microsoft.com/winlogo/hardware/.

From Microsoft Windows Logo Program System and Device Requirements, Version 2.0:

Windows XP: Systems implementing processor performance states must use native Windows support. This means that all performance policy and switching must be done by the operating system.

References

For information about implementing ACPI processor performance objects as described in this paper, see the Advanced Configuration and Power Interface Specification, versions 1.0b and 2.0, available at:
http://www.acpi.info/index.html
Contact the processor manufacturer to obtain copies of the BIOS writer’s guides mentioned in this paper:

· Mobile Pentium III Processor Featuring Intel SpeedStep Technology BIOS Writer’s Guide, available from Intel

· Gemini SMI API Specification version 0.80, available from AMD

· BIOS Support for Windows XP Processor Driver Application Note, Publication Identification Number: 24723A, Rev 1.04, available from AMD
PAGE
© 2001 Microsoft Corporation. All rights reserved.

