
Mantis Architecture 1.2

[image: image7.png]

[image: image1.jpg]Micresoft

Mantis: Windows Embedded

Mantis Architecture

"Mantis Shrimp (Stomatopod) The scourge of the marine reef aquarium. These guys often turn up in live rock and if not removed they can wreak havoc on tank inhabitants."
Synopsis

This document provides complete details of the Mantis architecture, including the component database, scripting model, dependency model, CMI, the Windows Embedded product, and support tools.

Note This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

	Version
	1.2

	Date
	06/12/2000

	Document Owner
	timhill

	Distribution
	MS Internal

	Schema Revision
	1

Copyright © 1999-2000 Microsoft Corporation. All Rights Reserved.

Revision History

	Date
	Revised By
	Revisions

	8/12/99
	timhill
	(0.1) Initial version

	10/15/99
	timhill
	(0.2) Revised based on feedback, added generate process details.

	11/10/99
	timhill
	(0.3) Revised based upon second design meetings.

	11/27/99
	timhill
	(0.5) Updates and revisions

	12/29/99
	timhill
	(0.7) Final architectural updates

	02/20/2000
	timhill
	(1.0) Derived from "Mantis Componentization Database" doc

	04/24/2000
	timhill
	(1.1) Major rework to sync up with CMI and DTD

	06/12/2000
	timhill
	(1.2) Constraints and other info updated

Contents

2Contents

6Tables

7Figures

8Introduction

8Requirements

8The Windows Embedded Product

9The Mantis Architecture

10Component Database Clients

11Database Population

12Definitions

14Architectural Overview

14Carriers

14Repositories

15Components

16Groups

17Configurations

17Platforms

18Build Process

18Database Overview

20Data Storage and Formats

20Data Types

22Data Representation

23Element Data

23Attribute Data

24Extended Data

25XML Representation

26Descriptive Properties

26Constraints

27Object Model

27Mantis Objects

28Root Objects

29Collections

29Extended Properties

30Versioning Model

32End of Life Objects

35Component Model

36Group Model

37Dependency Model

37Simple Dependencies

38Dependency Types

40Dependency Contradictions

41Revision Constraints

41Dependency Classes

43Dependency Examples

45Script Model

46Platform Script Management

46Component Script Management

49Resource Script Management

49Scripted Properties

50Script Error Handing

50CMI Events

51Instance Editing and Configuration

52CMI Object

52Properties

52Description

52Constraints

53Component Object

53Properties

54Description

54Constraints

55Config Object

55Properties

55Description

55Constraints

56Dependency Object

56Properties

56Description

56Constraints

57Group Object

57Properties

57Description

58Constraints

60Instance Object

60Properties

60Description

60Constraints

61Platform Object

61Properties

61Description

63Constraints

64PropType Object

64Properties

64Description

64Constraints

65Repository Object

65Properties

65Description

65Constraints

66Resource Object

66Properties

66Description

66Constraints

67ResType Object

67Properties

67Description

67Constraints

68Carriers

69Inherited Properties

69Constraints

70Resources

72XML Format

73Constraints

74Platforms

76Platform Versioning

76XML Format

77Constraints

78Repositories

81Removable Media

81XML Format

81Constraints

82Groups

82Package Groups

83Category Groups

83Dependency Groups

84XML Format

84Constraints

85Components

85Component Properties

87Component Versioning

88Group Membership

88Files

89Registry Keys

90Dependencies

91Raw Dependencies

92Editing and Configuration

92XML Format

93Constraints

94Configurations

95Creating New Configurations

96Configuration File List

96Configuration RegKey List

96XML Format

97Constraints

98Configuration Scripting

100Instances

100XML Format

100Constraints

101Instance Scripting

102Build Processing

Tables

1Revision History

9Table 1: Example Windows NT Embedded 4.0 Footprints

20Table 2: Mantis Data Types and Formats

23Table 3: Data Representation Characteristics

26Table 4: Standard Descriptive Properties

30Table 5: Versioning Properties

32Table 6: Revision and Upgrade Scenarios

38Table 1: Dependency Type Values

39Table 2: Include Dependency Type Semantics

41Table 3: Dependency Class Values

42Table 4: Build Before Dependency Type Semantics

43Table 5: Build After Dependency Type Semantics

49Table 999: Procedure Invocation

70Table 6: ResType Object Properties (Immutable)

71Table 7: PropType Object Properties

71Table 8: Resource Object Properties

75Table 5: Platform Object Properties

78Table 6: Repository Object Properties

82Table 7: Group Object Properties

82Table 8: Group Class Values

85Table 9: Component Object Properties

88Table 10: File Object Properties

90Table 11: RegKey Object Properties

91Table 12: Dependency Object Properties

91Table 13: Raw Dependency Types

94Table 14: Config Object Properties

98Table 15: Configuration Script Procedures

Figures

10Figure 1: Mantis Modules

28Figure 2: Mantis Object Model

31Figure 3: Component Versioning

34Figure 4: Component Fission Example

48Figure 5: Component Instance Script

Introduction

Mantis is both an architecture and a product. The Mantis architecture defines a generic component database and the tools and interfaces that manipulate that database, while the Mantis product is Windows Embedded (and future versions thereof).

This dual aspect is a result of the requirements of the project:

· To define the schema and generate the metadata required to describe Windows 2000 (and future releases) as a set of discrete components.

· To create and ship the Windows Embedded product.

· To create tools that will work unchanged with future versions of the Embedded product.

The first two requirements are in fact closely related, since the Windows Embedded product relies upon the Mantis architecture for most of its functionality. The final requirement has resulted in the creation of a generic architecture that is decoupled from the specific needs of the Windows Embedded product.

Related Documents

The Windows Embedded web site contains a complete glossary of terms used throughout the Mantis project. See http://nte/general/glossary.asp for more information.

Specializations of the Mantis architecture for particular platforms and projects are not specified in this document. For individual platform details, consult the appropriate Platform Specialization document. These documents describe details such as special extended properties, resource types, and script implementation details that are specific to a particular platform or group of platforms.

Requirements

This is not a requirements document. However, the requirements summary below will help in understanding the rationale behind the Mantis architecture.

Mantis requirements include:

· Scalability The component database must scale from a small stand-alone system, perhaps running on a laptop, to an enterprise system. The system should support in excess of 100,000 components without serious performance degradation.

· Extensibility New components may be added to the database at any time, both by Microsoft and 3rd parties (OEMs).

· Multiple Platforms A single Mantis database must support multiple platforms with variations such as different operating systems, CPU types, different locales, free or checked builds of individual components, and multiple co-existing discrete versions of individual components.

· Predictability Building a configuration from the database should result in a consistent run-time image, regardless of additions to the database such as new components or new versions of components.

· Tool Neutrality The core functionality of the architecture must be de-coupled from the presentation of features via the UI tools.

· Scriptable For large installations the ability to automate all operations is essential.

· Platform Neutral Architecture The architecture must be de-coupled from the specifics of individual OS requirements.

The Windows Embedded Product

Windows Embedded is a "componentized" version of the Windows 2000 operating system. The componentization process dissects the retail OS into a series of distinct components each of which describes an atomic unit of functionality. A subset of these components is then combined in a build process to generate a run-time image. This compact image contains only the functionality implied by the included components, and is typically much smaller (in terms of both storage and execution footprint) than the full retail Windows 2000 product.

The reduced footprint is critical to the success of the Windows Embedded product. Table 1 shows some example footprints that apply to Windows NT Embedded 4.0, the previous Embedded product.

Table 1: Example Windows NT Embedded 4.0 Footprints

	Application
	Features
	RAM
	Storage

	Stand-alone Device w/o Network
	Minimal OS + Command Console
	12 MB
	8 MB

	LAN Router
	Minimal OS + Network + Routing and RAS
	16 MB
	25 MB

	Server Appliance
	Minimal OS + Network + IIS + PDC + DHCP + WMI
	32 MB
	40 MB

As table 1 shows, the footprint of the Embedded product is far below that achievable with the retail product. This reduced footprint allows NT technology to be deployed in the various new product categories that are emerging in the "PC Plus" era, such as set-top boxes and information appliances. These devices are typically fixed-function devices with lower COGS and are therefore much more sensitive to BOM issues than the traditional PC architecture.

The Windows Embedded product thus consists of a database that describes the individual components, the standard retail product binaries, and tools that allow the user to define a subset of these components (a configuration) that are then combined into the final run-time image.

The Mantis Architecture

The Mantis component architecture provides a generalized framework for the management of components and configurations and the generation of run-time images. However, by making the framework generic and decoupling OS specific requirements from the architecture, the entire system can be adapted to other uses for other platforms.

To realize the generation of the run-time image, the Mantis environment contains the following core modules (shown in Figure 1):

· One or more User Interface Tools that interact with the other modules to manage configurations and build run-time images.

· A Configuration Management Interface (CMI) that provides a COM based interface between the user interface tools and the other Mantis modules.

· A Component Database that contains metadata describing all of the components available for inclusion in a run-time image.

· One or more Repositories that contain the files that comprise the various components. Files from the repositories are copied to the run-time image during the build process.

· A Configuration that describes (among other things) which components are to be included in the run-time image, and how these components are to be configured.

Figure 1 below shows the relationship between these modules.

[image: image2.wmf]CMIM

UI Tools

Configuration Management Interface (CMI)

Component

Database

Run-time

Image

Configurations

Repositories

Figure 1: Mantis Modules

Component Database Clients

Potential clients for the Mantis architecture include:

· Windows Embedded This is the obvious client for the Mantis architecture. The Windows Embedded product will consist of a populated database and repository along with tools (Target Designer and Component Designer) to configure and build run-time images.

· Derived Products The Windows Embedded product is essentially a horizontal platform. It will be possible to derive additional products from this platform aimed at vertical markets, such as appliances, set-top boxes etc.

· Windows 2000 Setup In the future, Windows 2000 retail Setup can become a front-end for the Mantis architecture and construct the users installation by choosing components and then initiating a build.

· Service Packs and QFE/SE The Mantis architecture defines a robust versioning mechanism that offers the ease of use of slipstream approaches to SPs with the robustness and backward compatibility of discrete SP shipments.

· Self-healing strategies within Windows 2000 Existing technologies such as SFP can leverage the database to extend their functionality from a simple "file copy" to performing a full component-level recovery.

· Additional Windows 2000 derivatives, subsets, and supersets.

Database Population

Population of the database with components is beyond the scope of this document. However, some possible sources of component metadata are:

· INF files and MSI files

· DLL static dependencies

· Fixed (always present) functionality (i.e. core components)

· Windows 2000 build tree DIRS and SOURCES files

· Windows 2000 project files

· Windows 2000 Setup

· Windows NT Embedded 4.0 component database

· Path name references in Windows 2000 source tree

· GUID references in Windows 2000 source tree

· Building 26 developers brains

· INX and other information maintained by the NT build lab

Other parts of the Mantis project will define tools that automate the extraction of metadata from the sources noted above.

Architectural Overview

TODO: Rework to match rest of document (last)

The CMI provides the sole interface between the various Mantis elements and the users of Mantis (i.e. the user interface tools such as Target Designer). The interface is exposed as a series of COM Automation objects that map onto the core features of the architecture (components, packages etc.). Some of the core logic behind these objects is wired into the CMI, however most of the key functions associated with a configuration are implemented as script that is part of the configuration. This provides inherent flexibility and extensibility without the need to rebuild or alter the CMI. Typically, however, script is not required to implement basic features and functionality (for example, when defining component metadata). This reduces the learning curve associated with creating data for Mantis.

The extensive use of script within a configuration provides great flexibility in the Mantis architecture. For example, the architecture defines the concept of a "build" operation that is invoked through the Config.Build method. However, the actual processing of the build operation is handled entirely by script defined by the platform. Therefore, each platform can totally redefine the semantics associated with a "build" operation.

Carriers

The component database is populated with data by an import process. Once imported, data in the database is not editable—the entire component database is essentially read-only. Thus the database is actually more like a "data warehouse", since the data contained within it is essentially static.

The import process imports component database data from XML files. These files contain the definitions of all the object types within the database, including platforms, groups, resources, and components. There is no significance to the placement of information in a carrier file—a single carrier file may contain (for example) an entire set of components and files. Alternatively this same information may be arbitrarily split across multiple carrier files.

Carrier XML files have a file type (extension) of .SLD.

After a carrier file is imported the file is no longer required. However, any files referenced by Resource objects within the carrier file are not copied into the database, and are referenced in-place during the build process. These files are stored in a location known as a repository.

Repositories

A repository is an archive that is used as a source of binary files during the construction of the run-time image. All the files that comprise the run-time, with the exception of the registry hives and any other files constructed on the fly, originate in one or more repositories.

Each repository may comprise either a single folder that contains the repository files, or a CAB file containing the files. The CAB file is the preferred method of repository distribution, but Mantis also supports direct access to files in a folder so that pre-existing folders may be used as-is. Note that each repository is a single folder, not a complete folder tree.

Repositories are described as entries in a carrier file. Before a repository can be used as the source of files the carrier file describing the repository must be imported into the database.

Repositories also play a special role in the selection of "free" and "checked" (debug) builds of the run-time image. Each repository is marked as either a "free" repository or a "checked" repository. When a configuration is built either the free or checked build can be constructed, and the appropriate files are automatically selected from the correct repository.

When a carrier is imported into the database, the repository files can be referenced "in place" (which might happen if the repository came from a CDROM or a network share) or can be copied to another location (more typical for service packs or 3rd party components). Regardless of which option is chosen, the repository retains its identity within the component database: repositories are never "merged" during an import process.

Repositories may be deleted from the component database.

Components

Components within the database define discrete packets of functionality that can be included in the final run-time image. The functionality defined by a component is expressed as a set of resources, properties and optional script. Even if script is not present, the component prototype mechanism (described below) supplies default script to implement the component functionality.

Typically, the functionality of a component is defined as a series of files that can be copied from one or more repositories to the run-time image and a set of registry keys/values that must be added or edited. The functionality defined by an individual component can vary widely. A simple component (such as one that enables automatic logon) might simply set one or more registry keys. Other components might define device drivers, services, or complete applications.

To ensure that a component has all the required resources to run correctly, the component can specify a set of dependencies. These dependencies specify which other components are needed, or which other components conflict with the current component.

There are three types of dependencies: "include", "build" and "registry". Include dependencies cause the automatic addition or exclusion of components as necessary during configuration. Build dependencies control the order in which components are built during the build process, but they do not cause the automatic inclusion of components. Registry dependencies also control the build order, but they are generated automatically by the CMI as the result of an analysis of component registry inter-dependencies.

Dependencies may be specified directly between components (X depends on Y) or indirectly through the use of dependency groups. Each component can belong to zero or more dependency groups. For example, all NIC drivers might belong to a "NICDriver" group. Dependencies are then specified indirectly (X depends on group G, Y is a member of G). The dependency mechanism is flexible and can specify constructs such as "at least one of" and "only one of". Thus it is possible to specify dependencies such as ”X depends on at least one of group G”. Note that one possible dependency is “None”, which is interpreted as a conflict, i.e. “X depends on none of G” means that X cannot be included in the same build as any component that is a member of G.

Groups are particularly useful with build dependencies, as they can ensure that certain sets of components are built before (or after) a particular component. Thus a component that relies upon state information that is preset by another component can specify a "build after" dependency to ensure that it is built after the other component.

Components can also inherit the properties of other components via a component prototype. Each component can have a single prototype component, which may in turn also have a prototype. Thus there may be an entire chain of prototypes. This chain always ends with a "root" prototype component from which all others are derived (directly or indirectly).

When a component is instantiated into a configuration, an instance is created by merging the properties of the entire prototype chain in a process known as "collapsing". This allows properties that are common to many components to be stored in a single common prototype and then inherited by all the components that are derived from that prototype.

This simple inheritance model is particularly important for component scripting. Ultimately, all the logic associated with a component is expressed as script that is stored in the component. Without prototype inheritance, this would imply that all components contain script. However, prototype inheritance allows most components to simply inherit the default script from the root prototype component.

Finally, the Mantis component model also supports a well-defined versioning mechanism that allows different versions of components to co-exist within the database. Component instances within configurations are then tied to specific versions of a component, which reduces issues of "DLL hell" and other versioning problems. It also allows an OEM to control upgrades on a configuration-by-configuration basis. The CMI provides services to automate and manage the upgrading of configurations.

TODO ResType and ResTYpe script (resources)

Groups

As explained above, dependency groups allow a component to express a dependency relationship to other components indirectly via a group. Mantis also supports two other classes of groups:

· Package Groups These groups are used to collect components together for administrative purposes. A package group allows a set of components to be managed as a single unit. For example, all the components in a package group can be deleted in a single operation. In addition, package groups are used to manage bulk component instance upgrades (e.g. to upgrade all the component instances in a configuration to a new service pack).

· Category Groups These groups are used to collect components together into functionally related categories. This is primarily used to assist in filtering and organizing components for display in the UI. For example, one category might be "Display Drivers" and contain all the components that define display adapter drivers. Categories are purely an organizational convenience.

Note that a single component can be a member of any number of groups of any class. This allows, for example, a component to belong to more than one category.

The group system in Mantis is extensible, allowing additional group classes to be created as necessary.

TODO Repositories can be members of groups (RepositorySet)

Configurations

The data that defines a run-time image is known as a configuration. Configurations are stored as XML files (with a file extension of .SLX) and manipulated via the CMI (they are not part of the component database). A single XML configuration file can build several different types of run-time images, such as a "free" or "checked" version. Since configuration files are XML (i.e. text) files, existing source control tools (such as Visual SourceSafe) can be used for version control.

Configurations contain global information about the run-time image and a list of component instances. Each instance references a component in the component database and also specifies per-instance configuration data. It is possible that a single configuration may contain multiple instances of the same component.

All configurations that are based upon a specific platform instantiate a single special component known as the base component. This component is responsible for defining the minimum functionality required for the platform, which is typically achieved by specifying one or more dependencies.

Platforms

TODO Rule that governs how VIGUID/VSGUID are used with polymorphic PlatformGUID (i.e. if a component uses VIGUID, it cannot use other resources that are VSGUID???).

A platform defines the type of target run-time being constructed. All of the information in the component database belongs to one (and only one) platform. In addition, each configuration is bound to a specific platform when it is created. In effect, each platform represents a virtual, independent component database that exists independently of other platforms within the same physical database.

Platforms are used to define the target operating system, CPU, locale and other variants that are handled at the global database level. For example, one platform might be "Windows Embedded (x86) – US English".

Since OS, CPU and locale are handled at the platform level, this implies that variants to an OS such as CPU or locale are handled as distinct, independent, component databases. This means that it is not possible (for example) to use a component designed for one locale as part of a build for a different locale.

It is expected that the UI tools will present a list of available platforms when creating a new configuration. From that time on only the portions of the database that are associated with that platform will be accessible when editing that configuration.

Platforms also contain script. This script is inherited by each configuration that is based upon that platform. The platform script is invoked in response to various CMI events to drive operations such as dependency checking and overall build processing.

Build Process

The build process uses the information in a configuration to construct a complete run-time image. The build process is driven by the CMI but the actual logic for the build output is stored within individual component definitions as script. Thus a component instance is viewed as an object that knows how to build itself.

Although a component instance is required to build itself, very few components actually need to contain explicit build script. This is because most instances inherit the script from a prototype component. If a component does not specify otherwise, it automatically inherits from the platform "root" component. This component provides script that defines the default build behavior for all components in that platform.

During the build, the CMI is responsible for providing services to the components to assist in building (e.g. services to copy files to the target). All other build processing is handled by either platform or component script. Typically, the platform script controls each phase of the build process and resolves the build dependency graph to control the order in which components are built into the final run-time. The combination of a multi-phase build and the rich semantics within the dependency graph allows the build process to handle any component interdependencies.

Database Overview

The component database contains the component information used when building a Mantis run-time image. This database is read-only for builds, and is only altered under the following circumstances:

· A carrier file is imported.

· A primary object is deleted (e.g. a Platform, Group etc).

· A repository is moved or rebased (see below for rebase details).

It is expected that the tools that manage the database will access a single database only. This database will be opened when the tools are started, and closed when the tools exit. However, the CMI allows access to multiple databases (via multiple CMI objects) to allow for future expansion. The location of a database depends upon the underlying database engine. For Jet, the database will be a simple .MDB file, while for SQL Server it will be an OLEDB or ADO data source.

The database is accessed indirectly via the CMI services. The database itself may reside on the same computer as the tools and CMI services, or it may be remote (for example, on a server running SQL Server). It is not expected that the CMI services themselves will be remoted (for example, via DCOM). Access to the database is transacted to allow multi-user access.

Data Storage and Formats

Persistent state information in Mantis is expressed in one of three formats:

· As text data in an XML file.

· As tables and fields in the component database.

· As object properties.

Of these formats, only the first and last are visible formats. The internal component database representation is not exposed outside of the CMI, either to application code (e.g. UI tools) or to script executing within a configuration or instance. Therefore the exact representation of this data is not a part of this specification, although considerations as to how this data may be efficiently managed have influenced the Mantis design to a considerable extent.

The three data formats expressed above are closely inter-related, as follows:

· All of the information stored in the component database is obtained via an import process from one or more XML carrier files (with a file type of .SLD). This import process is the sole mechanism for adding to or modifying the information in the component database.

· Information in the component database is accessed via the Mantis object model. This exposes the data as properties on COM objects and COM object collections. However, these properties are all read-only—they cannot be used to alter the component database data.

· Configuration information is stored in XML configuration files (with a file type of .SLX), with one configuration per file. When a configuration is opened this data is exposed as properties on COM objects in the Mantis object model. Most of these properties are read-write, allowing the configuration to be manipulated by modifying the object properties, or adding or deleting objects as necessary.

Thus all the information stored in the component database originates in XML carrier files and is exposed as read-only properties on one or more COM objects. Configuration information is stored and processed directly in XML files that are exposed as read-write properties on one or more COM objects.

See the section Object Model below for more information on the Mantis object model.

Data Types

All of the data in Mantis is manipulated as one of a set of defined data types. These data types have different representations in XML, the component database, and as object properties. Therefore, Mantis defines the format for each type when manipulated in each environment. Table 2 describes each data type and it's representation both as XML and object properties (as noted above, the internal database format is not exposed in this specification).

Table 2: Mantis Data Types and Formats

	Type
	XML Format
	Property Format
	Empty Value

	Binary
	An ordered sequence of pairs of hexadecimal digits. Each pair encodes one byte of binary data, with the upper nibble encoded by the first digit, and the lower nibble encoded by the second digit.
	An array of unsigned 8-bit integers (VT_UI1).
	An empty array (no elements).

	String
	The literal Unicode string expressed as XML CDATA.
	A Unicode string. XML entities such as " are converted as necessary by the CMI (VT_BSTR).
	An empty (zero length) string.

	Integer
	A sequence of decimal digits, optionally prefixed with a sign character.
	A 32-bit signed integer (VT_I4).
	Not allowed.

	Boolean
	For False, one of the following literals: "0", "False", "No", "Off". For True, one of the following literals, "1", "True", "Yes", "On".
	A Boolean value, either True or False (VT_BOOL).
	Not allowed.

	Multi
	An ordered sequence of quads of hexadecimal digits. Each quad encodes a single Unicode character, and is comprised of two digit pairs, encoded as for Binary data above. The first digit pair encodes the LSB, the second encodes the MSB. Individual strings are terminated by a NUL character, i.e. by the text "0000". There is no additional NUL character at the end of the sequence.
	An array of strings (VT_BSTR).
	An empty array (no elements).

	Expr
	A script expression as literal text.
	A string containing the expression (VT_BSTR). The expression will be evaluated using the ambient language for the object.
	Not allowed.

	Script
	Zero or more script statements as literal text.
	A string containing the statements, possibly separated by newline characters as required. The statements will be executed using the ambient language for the object.
	Not allowed.

	Object
	A persisted COM object. The format is opaque except to IPersistStream or IPersistStreamInit.
	A COM object.
	Not allowed.

	GUID
	A COM GUID in registry format, i.e. as text.
	A string containing the GUID in registry format.
	Not allowed.

	TimeDate
	A date in the form mm/dd/yyyy and/or a time in the form hh:mm:ss. Times are 24-hour and dates and times are always UTC.
	A time/date value (VT_DATE).
	Not allowed.

	XxxEnum
	An attribute with a series of predefined allowed values (as specified by the DTD).
	A COM enumeration.
	Not allowed.

Most of the data types, such as String and Integer, are self-evident. However, the Binary format is encoded as hexadecimal digit sequences when represented as XML. For example, the following XML element contains the binary data sequence 0x54, 0x6E, 0x34:

<ANELEMENT>546E34</ANELEMENT>

The Multi data type represents a "multi-string", that is, a single data item that is comprised of multiple discrete strings. When represented as XML, characters in the strings are encoded as hexadecimal digits, and since the strings are Unicode, four digits are used for each character. Individual strings are terminated with a NUL character (0x0000 encoding). Characters are encoded in little-endian format. For example, the pair of strings "12" and "345" can be encoded as a single Multi value in XML as follows:

<ANELEMENT>3100320000003300340035000000</ANELEMENT>

Note The Windows registry terminates the entire multi-string item with an additional NUL character to indicate the end of the entire data item. This additional NUL character is not present when encoding a Multi data item as XML.

For XML attribute enumerations, the CMI will convert the text format of the enumeration as expressed by the Mantis DTD into a COM enumeration. For example:

<GROUP GroupClass="Package">

Here is the script to access this information:

Set oGroup = GetObject(…)

If oGroup.Class = cmiPackage Then …

Since all Mantis data is sourced as XML attributes or elements, each data item may be undefined (element or attribute not present), empty (element or attribute defined but contains no text data) or present (element or attribute defined and contains data). The Mantis DTD specifies if elements/attributes are optional or required. For empty data values, the final column of table 2 above shows the result of processing empty data items. For example, the DTD may specify that a Decimal formatted attribute is optional. This means that the attribute is either not present, or if present the attribute must contain a valid decimal integer.

Data Representation

Each data item or property in Mantis is formatted according to the rules in the previous section. Individual items are then classified according to the manner in which they are represented in XML, and the way they are exposed as object properties.

The following sections provide detailed information on the various data representation conventions used by Mantis. In addition, this information is summarized in Table 3.

Table 3: Data Representation Characteristics

	Characteristic
	Element [E]
	Attribute [A]
	Extended [X]

	XML format
	Element
	Attribute
	PROPERTY element

	Data type
	Well known
	Well known
	Explicit or implicit

	Store as primary table field?
	Yes
	Yes
	No

	Store in property table?
	No
	No
	Yes

	Expose as object property?
	Yes
	Yes
	No

	Expose in property collection?
	No
	No
	Yes

	Parent objects
	N/A
	N/A
	Any

Note The CMI is fully Unicode enabled, and supports the storage of Unicode strings, their presentation as Unicode text properties and the import of Unicode formatted XML files.

Element Data

Element data originates as the contents of XML elements, i.e. the text between the XML start and end tags of an element. Element data is tagged [E] in this document.

By definition, element data is always originated as XML text. However, the actual data type of each specific element is well known. That is, the CMI implicitly understands the expected content of the data item and will convert and validate it as appropriate. For example:

<DESCRIPTION>A Popular Game Show</DESCRIPTION>

<CHECKSUM>4</CHECKSUM>

Here, the CMI understands that the DESCRIPTION element is of type String and processes it as such. The CHECKSUM element is of type Integer and will be validated as such.

The Mantis DTD file assists in documenting the expected element data types by representing those types as parameter entities. However, the DTD does not enforce data typing rules.

Element data is typically directly exposed as object properties. For example:

Set oFoo = GetObject(…)

sDescription = oFoo.Description

nChecksum = oFoo.Checksum

Attribute Data

Attribute data originates as the contents of XML attributes. Attribute data is tagged [A] in this document.

Apart from its XML representation, attribute data is identical to element data. In Mantis, attribute data is generally used for fixed-length fields or short text fields. Element data is used for unbound fields or fields that may need to be localized.

Here is an example of attribute data in XML:

<PLATFORM

 PlatformGUID="{63813FD4-2A36-4473-A822-C711570F145B}"

 Revision="11"

>

Here is the same data exposed as object properties:

Set oFoo = GetObject(…)

sPlatformGUID = oFoo.PlatformGUID

nRevision = oFoo.Revision

Extended Data

Extended data originates as the contents of XML PROPERTY elements. Extended data is tagged [X] in this document. Almost all objects in Mantis support extended data, and no pre-defined limits are placed on the type, content, or number of extended data items that are associated with each object.

Each extended data item is represented in XML format as the contents of a PROPERTY element. In addition, each PROPERTY element has a Name attribute that uniquely names the extended data item for a particular object. The namespace for the Name attribute is unique to each individual object, so that different objects can share the same property name without collision.

Here is an example XML extended data item:

<PROPERTY Name="Length" Format="Integer">14000</PROPERTY>

Extended data is accessed via a Properties collection on the parent object. Here is code to access the previous example, assuming it is associated with a GROUP primary object:

Set oGroup = GetObject(…)

Set oExtProp = oGroup.Properties("Length")

Wscript.Echo "Length is" & oExtProp.Value

Extended data differs from element and attribute data in that the format and contents of the data is not well known to the CMI. Instead, the format of the data is stated explicitly as the Format attribute of the PROPERTY element (Integer in the example above).

XML Representation

The Mantis architecture defines a single DTD, Mantis.dtd, to define all the XML file formats used. This DTD defines two root XML elements, DCARRIER and XCARRIER. The DCARRIER element is used to contain carrier data, and is used to import data into the component database, while the XCARRIER element is used to contain configuration data that describes a single run-time configuration. XML files that contain a DCARRIER root element have a file type of .SLD, while those that contain an XCARRIER root element have a file type of .SLX.

The DCARRIER element contains an arbitrary set of elements, each of which corresponds to one of the primary objects defined in this document. Each primary object element, in turn, contains appropriate attributes and secondary elements to define the data associated with the primary object. The nesting of secondary elements in primary elements corresponds to the relationships between primary and secondary objects as described in the section Object Model below.

The following example shows a complete carrier file that defines a Platform object using a PLATFORM element and additional secondary elements.

<?xml version="1.0"?>

<!DOCTYPE DCARRIER SYSTEM "file:mantis.dtd">

<DCARRIER CarrierRevision="1">

<PLATFORM

 PlatformVSGUID="{63A6BF93-C0FC-4035-9EE4-806F21722FBC}"

 PlatformVIGUID="{1C1ADFDF-6867-447d-B1F6-99DD43591F8C}"

 Revision="2"

 DefaultProtoVIGUID="{4B084167-4A41-4366-8195-C04E306F7EB4}"

 BaseComponentVIGUID="{5FF778EE-DA58-456f-B955-0F737DAE86AA}"

 LCID="1033"

>

 <PROPERTY Name="Beta" Format="Integer">3</PROPERTY>

 <DISPLAYNAME>Windows Embedded (x86) - US English</DISPLAYNAME>

 <VERSION>1.0</VERSION>

 <DESCRIPTION>Windows Embedded Platform</DESCRIPTION>

 <COPYRIGHT>Copyright (c) 2000 Microsoft Corp.</COPYRIGHT>

 <VENDOR>Microsoft</VENDOR>

 <DATECREATED>01/06/2000</DATECREATED>

 <DATEREVISED>01/29/2000</DATEREVISED>

</PLATFORM>

</DCARRIER>

The PLATFORM element contains several attribute data items (PlatformVSGUID etc) as well as several element data items (DISPLAYNAME etc). Finally, the PLATFORM element also contains an extended data item named Beta that contains Integer data.

Note The Mantis DTD restricts the order in which elements can appear in many cases. Check the Mantis.dtd file for more information.

Descriptive Properties

All primary objects share a common set of properties known as descriptive properties. These are defined in table 4. All of the descriptive properties are element properties, and are thus defined using individual elements in a carrier file. The property names match the element names within the XML file, except that XML element names are always expressed in upper case.

Table 4: Standard Descriptive Properties

	Property
	Type
	Meaning

	Authors
	String [E]
	Object author Email addresses, separated by semicolons.

	Copyright
	String [E]
	Copyright text for the object (localized).

	DateCreated
	TimeDate [E]
	Date object was created (not localized).

	DateRevised
	TimeDate [E]
	Date object was last revised (not localized).

	Description
	String [E]
	Description of the object (localized). Typically used by UI e.g. as tooltip text.

	DisplayName
	String [E]
	Name of the object (localized). Typically used by UI to show a "friendly" object name rather than a GUID. Do not include version information in this property.

	Owners
	String [E]
	Object owner Email addresses, separated by semicolons.

	Vendor
	String [E]
	Name of object vendor (localized).

	Version
	String [E]
	Object version (arbitrary text). This property is never used to compare versions. The Revision property is used for this purpose.

All the descriptive properties except DateCreated and DateRevised are essentially comment fields, with no pre-defined semantics. In particular, the Version property should not be used by software to attempt any form of version checking/comparison. All of these fields may be localized.

The DateCreated property specifies the date when the property information for the object was first created. The DateRevised property specifies when the property information was last revised (and the Revision property incremented). For immutable objects the DateCreated and DateRevised properties will always have the same value.

Constraints

All data items have an upper limit of 8000 bytes for the value. Also, the combined size of all data items in a single object cannot exceed 8000 bytes, except for platform and component script.

Object Model

All of the data stored and processed by the Mantis architecture is accessed via the Mantis Object Model. This model defines a series of COM objects, all of which are Automation enabled, that provide access to all of the features of the architecture.

The Mantis object model has two types of clients:

· User interface tools that access the Mantis objects to drive the Windows Embedded (and other) user experience.

· Internal script that executes in response to certain events and actions, some of which may be initiated by UI tools.

The UI tools are assumed to be the primary "driver" of the Mantis architecture, and allow the user to import carrier files into the component database, create and manipulate configurations, and initiate run-time image builds.

In addition, as explained in the introduction, many Mantis operations are performed by script that is stored in the component database or configurations. This script also has full access to all Mantis objects.

The Mantis object model is implemented by the CMI.

Mantis Objects

Figure 2 below shows the Mantis object model.

[image: image3.wmf]CMI

Instances

Resources

Resources

Repositories

Components

Groups

Resources

Depend's

Key:

1. Square boxes are objects.

2. Rounded boxes are collections containing objects of the specified type (e.g. Groups

collection contains Group objects).

3. Data in configurations is stored in XML files. Data in the component database is stored in

database tables.

4. Primary objects are shown in italic.

5. Most objects may also contain an arbitrary set of properties.

Platforms

Groups

Config

Depend's

ResTypes

Components

Utilities

Configuration

Component Database

Figure 2: Mantis Object Model

Each of the objects shown in figure 2 is either a primary or a secondary object. Primary objects (shown in italic in figure 2) are essentially stand-alone objects that are made available as a result of importing data into the database from a carrier file. All primary objects have either one or two unique GUIDs that identify them. Secondary objects generally specify data that is logically contained within a primary object. For example, a Component primary object can specify a list of Resource objects. Each resource is represented as a secondary Resource object (which does not have a GUID).

All of the persistent state associated with the Mantis objects is stored in one of two places: in the component database or in a configuration file. In figure 2, the Config object and all of its child objects are stored in a configuration file. Conversely, the Platform object and all of its child objects are stored in the database. There is thus a single database (possibly containing many platforms), but many configuration files, each of which contains a single Config object. The configuration file is thus the Mantis equivalent of a document file.

Root Objects

The mantis architecture defines two root objects. All other objects are accessed, directly or indirectly, from these objects. The root objects are:

· The CMI object (ProgID CMI.CMI). This object provides access to all the top-level CMI objects.

· The Utilities object (ProgID CMI.Utilities). This object provides access to a library of helper functions that are primarily used by component and configuration script.

The following VBScript code will create both objects:

Dim oCMI, oUtil

Set oCMI = CreateObject("CMI.CMI")

Set oUtil = CreateObject("CMI.Utilities")

The CMI object, as the root object for the entire object hierarchy, is used extensively. Therefore, as a convenience, most objects in the hierarchy provide a CMI property that returns a reference to the CMI object.

Collections

In figure 2, rounded boxes represent collections, which are assumed to yield a set of individual objects that then reference the next object in the hierarchy. For example, the Platforms collection yields individual Platform objects, each of which contain a Groups collection.

Most collections are accessed via a GetXxx method on the parent object. For example:

Set oPlatform = oCMI.GetPlatform("…")

Set oGroups = oPlatform.GetGroups

Some collections are available as a property on an object. For example:

Set oConfig = oCMI.OpenConfiguration("…")

Set oInstances = oConfig.Instances

When a collection is accessed via a property, the property always returns the same collection. When a collection is accessed via a method, the method returns a new collection each time it is called. This distinction exists to allow the CMI to correctly manage internal object references.

Extended Properties

All objects in Mantis except the two root objects contain a collection of arbitrary extended properties. This collection is accessed via the Properties method of the object. For example:

Set oExtProps = oConfig.Properties

Each individual property in an extended property collection has a Name, Format and Value as described in Data Storage and Formats above.

The CMI will return Nothing if an attempt is made to access an extended property that is not defined. For example:

Set oExtProp = oConfig.Property("foo")

If Not oExtProp Is Nothing Then

 [use the property]

Else

 [default processing]

End If

Versioning Model

Mantis implements a formal versioning scheme for all primary objects in the database. This scheme distinguishes between a "revision" or "update" (the terms are used interchangeably) to an object and an "upgrade" to an object. Revisions to an object conceptually generate a new version of the object that replaces earlier versions, while upgrades generate a new version that can co-exist side-by-side with the old version in the component database.

The Mantis versioning scheme was designed to allow multiple different versions of an object to co-exist within the database and yet be clearly identified as different versions of the "same" object. For example, when a service pack ships a new version of a component, that version can be imported into the database without displacing the existing version. Existing configurations that rely on the previous version will continue to use the version of the component that they were authored against, while new configurations can use the new version. At a convenient time, a configuration that uses the old version can be manually or automatically upgraded to use the new version of the component.

Each primary object type in Mantis is classified by the type of versioning it supports, as follows:

· Immutable These objects can never change. Alterations to immutable primary objects must result in the generation of a new object that is distinct from the old object on which it is based.

· Revisable These objects can be revised. A revised version of the object replaces all previous versions of that object in the Mantis database.

· Upgradeable These objects can be upgraded. An upgraded version is a new object that is distinct from previous versions, but can co-exist with these earlier versions in the Mantis database.

· Revisable + Upgradeable These objects can be both revised and/or upgraded.

To support this scheme, primary objects support the properties shown in table 5.

Table 5: Versioning Properties

	Property
	Type
	Meaning

	VSGUID
	GUID [A]
	Unique identifier for all objects.

	VIGUID
	GUID [A]
	Shared identifier for upgradeable objects.

	Revision
	Integer [A]
	Object revision ordinal.

	Version
	Text [E]
	Arbitrary descriptive text for version.

The Version property is simply a comment. It is not used programmatically by Mantis but is used by the tools to display a user-friendly version number when necessary.

The Revision property is a simple ordinal value where a higher value represents a "newer" version of an object. Revisions need not be sequential, but any changes that are made to an object must be accompanied by an increase in the value of the Revision property. A Revision value of 0 is reserved. It is recommended that the initial version of an object be marked revision 1, and that subsequent revisions increment this revision value by 1. Revision values of 100,000 and greater have special significance for end-of-life components (see below).

Changing an object without incrementing the revision ordinal for that object represents a gross authoring error. Always increment the revision ordinal when editing any object, no matter how trivial the change.

Primary objects that are not upgradeable (i.e. are either immutable or revisable) are uniquely identified by a single VSGUID (version specific GUID) property. Primary objects that are upgradeable have an additional VIGUID (version independent GUID) property. The VSGUID provides a unique object "name" that is specific to a particular version of the object. The VIGUID provides a shared object "name" that is common to all the different versions of the "same" object. Note that, in Mantis, "sameness" in this context is defined to mean that the objects share the same VIGUID. Figure 3 shows an example of component versioning.

[image: image4.wmf]Each version of a

component is identified

by a unique VSGUID. All

versions share the same

VIGUID. The Revision

number indicates the

sequencing of

component versions.

Foo Component v1.0

VSGUID:

{C59AE17B-0405-4e91-ABD2-8FD941FF7422}

VIGUID:

{5AA436A0-4C9A-42c2-833C-08BC4D8AFCE8}

Revision:

2

Proto:

{C004AD31-89A5-42cf-A67D-72C560082DCE}

Component Script

(Optional)

Resource: File foo.exe

Resource: File foo.dll

Resource: Regkey HKLM\Software

Resource: RegDLL foo.dll

Foo Component v1.1

VSGUID:

{B9F4ABFE-713C-469c-A9AF-9D354581546B}

VIGUID:

{5AA436A0-4C9A-42c2-833C-08BC4D8AFCE8}

Revision:

3

Proto:

{C004AD31-89A5-42cf-A67D-72C560082DCE}

Component Script

(Optional)

Resource: File foo.exe

Resource: File foo.dll

Resource: Regkey HKLM\Software

Resource: RegDLL foo.dll

Foo Component v2.0

VSGUID:

{797C2350-C9C1-467f-8CC8-22A05A8DB0DA}

VIGUID:

{5AA436A0-4C9A-42c2-833C-08BC4D8AFCE8}

Revision:

10

Proto:

{C004AD31-89A5-42cf-A67D-72C560082DCE}

Component Script

(Optional)

Resource: File foo.exe

Resource: File foo.dll

Resource: Regkey HKLM\Software

Resource: RegDLL foo.dll

Different component

versions can co-exist

within the component

database.

Figure 3: Component Versioning

Mantis defines the following "versioning" operations on primary objects:

· Revising an Immutable Object Since immutable objects are not revisable, changes to these objects must result in the generation of a new object. Therefore, when an immutable object is revised, it is assigned a new VSGUID to distinguish it from the old object. The Revision property should inherit and continue the revision value of the old object. Thus, for example, if the old object was revision 40 the new object should be revision 41.

· Revising a Revisable Object When a revisable object is revised, the Revision value is increased but the VSGUID of the object is not altered. This creates a new revision of the same object. Typically, the Version property is updated to reflect the change to the object.

· Revising an Upgradeable Object This follows the same procedure as for a revisable object. Note that the VIGUID property is not altered.

· Upgrading an Upgradeable Object When an object is upgraded, a new object is created for the new revision. Thus upgrading is similar to the process of generating a new immutable object. However, when an upgradeable object is upgraded it retains the current VIGUID property.

Table 6 summarizes the various revision/upgrade scenarios.

Table 6: Revision and Upgrade Scenarios

	Scenario
	Revision
	VSGUID
	VIGUID

	Revise Immutable Object
	Incremented
	New
	N/A

	Revise Revisable Object
	Incremented
	Unchanged
	N/A

	Revise Upgradeable Object
	Incremented
	Unchanged
	Unchanged

	Upgrade Upgradeable Object
	Incremented
	New
	Unchanged

As table 6 shows, any change to an object increments the Revision property, even when a new object is generated. Revisions to revisable and upgradeable objects result in an object with the same VSGUID but a new Revision value. Mantis will then use the Revision value to resolve versioning issues on these objects.

Upgrades to an object result in a new object, as defined by the new VSGUID property. However, the new object inherits the previous objects VIGUID. The sharing of a common VIGUID allows Mantis to track a chain of versions for the same object via the shared VIGUID.

When a new object is created or upgraded, the DateCreated and DateRevised properties should be set to the date of creation. When an object is revised, the DateRevised should be set to the date of the revision.

End of Life Objects

Eventually many objects reach retirement, meaning that no new versions of the object are likely to be released. Sometimes, this simply means that the final version of the object remains valid, but will never be upgraded. In other cases, however, when an object reaches the end of it's life, use of that object must be actively discouraged. This can happen, for example, when a component is superceded by a totally new component that is not directly related to the previous one (and hence cannot be viewed as just a new version using VIGUID/VSGUID connection semantics).

When the chain of object versions must be explicitly ended, a special "end of life" (EOL) object is placed at the end of the version chain to act as a tombstone for the objects in the chain. EOL objects are indicated using a Revision value of 100,000 or greater. Also, EOL objects typically have a Visibility level of 0.

It is permissible (though rare) for an EOL object to be revised or upgraded, in which case, as usual, the Revision property will be incremented (for example, to 100,001). Thus, the "most recent" EOL object can be determined easily.

Component objects provide the most common use of EOL objects. When a component is retired, an EOL object for that component is added to the database to indicate that the component is no longer valid. UI tools are expected to recognize the special EOL version and handle it accordingly.

Components also support a special Branch resource that is only valid in an EOL component object. The Branch resource contains a property, TargetVIGUID, which contains the VIGUID of a replacement component. The Branch resource may thus indicate a new component that replaces the function of the EOL component.

The Branch resource also contains an optional MinRevision property that indicates the minimum revision level of the target component that may be used as a replacement for the current component. If not specified or 0, any revision level may be used.

By using or not using Branch resources in an EOL component, a number of different scenarios are possible:

· If the EOL component does not specify a Branch resource, then the component is dead, and has no replacement component.

· If the EOL component specifies a single Branch resource, then the component is replaced by the new component specified by the TargetVIGUID. The MinRevision property can be used to ensure that only appropriate versions of the new component are used.

· If the EOL component specifies multiple Branch resources, then the component is replaced by all the components specified. This is termed a "fission" EOL since the original component has, in effect, been broken into multiple new components.

· If several different EOL components specify Branch resources that all reference the same target component, these components are said to "fuse" into the single new component.

· Hybrid scenarios are also possible, where an EOL component fissions into several new components, some of which are fusions with other components.

Figure 4 shows an example of a component fission using branches.

[image: image5.wmf]A Revision of 100,000 or

greater acts as a

"tombstone" and flags

the component as end-

of-life.

Foo Component v1.0 (RIP)

VSGUID:

{C59AE17B-0405-4e91-ABD2-8FD941FF7422}

VIGUID:

{5AA436A0-4C9A-42c2-833C-08BC4D8AFCE8}

Revision:

100000

Proto:

{C004AD31-89A5-42cf-A67D-72C560082DCE}

Component Script

(Optional)

Resource: Branch

Resource: Branch

Resource: -

Resource: -

New Foo Component v1.0

VSGUID:

{B9F4ABFE-713C-469c-A9AF-9D354581546B}

VIGUID:

{6040550A-7FFD-4cb7-BBC1-036C660970F4}

Revision:

3

Proto:

{C004AD31-89A5-42cf-A67D-72C560082DCE}

Component Script

(Optional)

Resource: File foo.exe

Resource: File foo.dll

Resource: Regkey HKLM\Software

Resource: RegDLL foo.dll

Bar Component v1.0

VSGUID:

{797C2350-C9C1-467f-8CC8-22A05A8DB0DA}

VIGUID:

{C52B06F9-C08E-439d-89BE-8F89756B553D}

Revision:

1

Proto:

{C004AD31-89A5-42cf-A67D-72C560082DCE}

Component Script

(Optional)

Resource: File foo.exe

Resource: File foo.dll

Resource: Regkey HKLM\Software

Resource: RegDLL foo.dll

Branch resources

can link the EOL

component to new

component(s) that

subsume the old

component.

The new components are

independent of the EOL

component. They do not

share the same VIGUID.

Figure 4: Component Fission Example

The flexible fission/fusion scheme enabled by Branch resources allows components to evolve over time, and to track the vagaries of software development processes.

Component Model

Component as set of properties and resources.

Component as prototype chain.

Component dependencies.

Component as member of groups

How resources work: restypes

Component as scripted resource.

Lots of cross-refs to the other "model" sections.

Group Model

Groups are objects that are used to collect other object types together. Once collected into a group, operations can be applied to the group as a whole. Groups are also used to indicate a shared property amongst a set of related objects.

Groups can collect objects of two types: components and repositories. Other objects types (such as platforms) cannot be collected by groups.

Mantis supports four classes of groups:

· Package Groups These groups are used to collect components together for administrative purposes. A package group allows a set of components to be managed as a single unit. For example, all the components in a package group can be deleted in a single operation. In addition, package groups are used to manage bulk component instance upgrades (e.g. to upgrade all the component instances in a configuration to a new service pack).

· Category Groups These groups are used to collect components together into functionally related categories. This is primarily used to assist in filtering and organizing components for display in the UI. For example, one category might be "Display Drivers" and contain all the components that define display adapter drivers. Categories are purely an organizational convenience.

· Dependency Groups These groups are used to collect components together to indicate inter-component build dependencies. See the section Dependency Model for more information on dependency groups.

· RepositorySet Groups These groups are used to collect repositories together to indicate sets of repositories that are related by build type.

Note that a single component can be a member of any number of groups of any class. This allows, for example, a component to belong to more than one category.

The group system in Mantis is extensible, allowing additional group classes to be created as necessary.

Dependency Model

Component functionality is almost never defined in isolation. Typically, a component requires the services of other components in order to function correctly. This inter-component relationship is known as a dependency. The Mantis architecture exposes a rich dependency model that allows complex inter-component relationships to be described. These relationships ensure that adequate support is available in a run-time image for the selected components, and that the run-time image is constructed in the correct order.

The dependency information is integrated into the Mantis component database. From there, it is used in three ways:

· To validate a configuration, by checking that all the dependency requirements of components included in a configuration have been satisfied.

· To automatically include "dependee" components when a dependent component is included in a configuration.

· To control the order in which components are added to the run-time image at build time.

Simple Dependencies

The simplest dependency specifies that one component depends upon another. For example:

X (Y

Means "component X depends upon component Y". In this example, component X is the dependent component and component Y is the dependee component.

In Mantis, all dependencies are expressed by the dependent component. That is, the previous example rule would be included as part of the definition of component X, not component Y.

Dependencies are transitive. That is, if we have two rules:

X (Y

Y (Z

Then component X implicitly depends upon component Z. The transitive property of dependencies means that including a single component in a Mantis build can cause a cascade effect that includes many other components via direct and indirect dependencies.

Simple dependencies directly connect one component with another. Group dependencies indirectly connect components via dependency groups. Each component can belong to any number of dependency groups. Group dependencies are then specified using a dependee group instead of a dependee component. For example:

X (G

Means "component X depends upon group G". A group cannot replace a dependent component, only a dependee component—the relationship G (Y is not valid.

Group dependencies are resolved by means of group membership. For example, if component Y is a member of group G, then X (G effectively means X (Y. This is expressed as:

X (G(Y)

Which states the component X depends upon group G, and group G has component Y as a member.

The most obvious advantage of group-based dependencies is that they add a level of indirection between components. This allows a component to express its dependencies even before the dependee components have been fully authored. Groups are also very useful with some of the more advanced dependency types described in the next section.

Since a group cannot replace a dependee component, groups cannot contain other groups as members, only components. This means that "double indirect" component dependencies are not allowed. For example, X (G1(G2) is not allowed.

Dependency Types

The example dependencies in the previous section are all of type All. An All type dependency (which is the default dependency type) means that the dependent component depends upon all of the dependee components.

For non-group dependencies, this dependency type is tautological. Since components are atomic, X (Y obviously means component X depends on all of component Y. No other interpretation is possible.

For group dependencies, an All dependency means that all the components in the group are required. The symbol for an All dependency is *(, so:

X *(G(A,B,C)

Means that component X depends upon all of group G. Since G has components A, B and C as members, this means that component X is dependent upon components A, B and C. Thus this rule is equivalent to the following three rules.

X (A

X (B

X (C

The All dependency is one type of dependency. Other dependency types are shown in table 1.

Table 1: Dependency Type Values

	Name
	Value
	Symbol
	Meaning

	DependencyTypeFromGroup
	0
	G(
	Take type from group.

	DependencyTypeExactlyOne
	1
	1(
	Exactly one of the dependent components must be present.

	DependencyTypeAtLeastOne
	2
	+(
	At least one of the dependent components must be present.

	DependencyTypeZeroOrOne
	3
	?(
	Either none or exactly one of the dependent components must be present.

	DependencyTypeAll
	4
	*(
	All the dependent components must be present. This is the default dependency type.

	DependencyTypeNone
	5
	0(
	None of the dependent components may be present (exclusion).

The FromGroup dependency is not actually a true dependency type. Dependency types can be specified in both components are groups. If a component specifies a FromGroup dependency type then the type of the dependency comes from the group, rather than from the component. The FromGroup dependency type is only valid in components, not groups, and the dependency target must be a group. If the component specifies any other dependency type, the dependency type in the component over-rides the dependency type in the group. Thus dependency types in groups are, in effect, default types that are used only when a component specifies the FromGroup dependency type.

Table 2 summarizes the individual dependency types and their meaning when used with simple and group dependencies. This table actually applies specifically to include class dependencies. Dependency classes are discussed below.

Table 2: Include Dependency Type Semantics

	Type
	Symbol
	X (Y
	X (G
	Notes

	ExactlyOne
	1(
	Y is included.
	Exactly one member of G is included.
	

	AtLeastOne
	+(
	Y is included.
	At least one member of G is included.
	

	ZeroOrOne
	?(
	Ignored.
	At most, one member of G may be included.
	For simple dependencies, this type has no meaning since it allows component Y to be included or not included.

	All
	*(
	Y is included.
	All members of G must be included.
	This is the default dependency type.

	None
	0(
	Y is excluded.
	All members of G are excluded.
	The None dependency represents a conflict between components.

As shown in table 2, most of the dependency types have the same meaning when applied to simple component dependencies. The exceptions are the ZeroOrOne and the None dependency.

The ZeroOrOne dependency has no meaning when used with a simple dependency. For example:

X ?(Y

Means that component X requires that component Y is either included or not included. This is null dependency, since it has absolutely no effect.

The None dependency is, in effect, a logical "not" operation. For example:

X 0(Y

Means that component X is dependent on not component Y, or that component X conflicts with component Y.

When applied to groups, a None dependency is interpreted to mean that the conflict includes all the components in the group. For example:

X 0(G(A,B)

Means that component X conflicts with group G. Since G has components A and B as members, this means that X conflicts with both components A and B. So the previous example is equivalent to:

X 0(A

X 0(B

Certain self-referential rules are valid. For example:

X 1(G(X,Y,Z)

This dependency means that component X is dependent upon exactly one of group G. In this case group G includes component X as a member. This type of dependency can be used to author sets of components that are mutually exclusive.

Dependency Contradictions

It is possible to construct sets of dependencies that are internally contradictory. Most such sets involve the use of at least one None dependency in cyclic deadlock. For example:

X 0(X

This simple dependency says that component X conflicts with itself. This makes the inclusion of component X impossible. Such a dependency rule is obviously invalid and easy to detect, but more complex contradictions are possible. For example:

X *(G1(A,B,C)

X 0(G2(C,D)

Here, the first rule states that component X requires all of group G1, and the second rule that component X conflicts with all of group G2. However, groups G1 and G2 share component C as a member. Therefore these two rules contradict one another, and again make inclusion of component X impossible.

The previous examples show self-contradictory component rules. These rule sets are invalid and should not even exist within the component database. However, other contradictory rule sets exist that are only contradictory for certain combinations of component instances. For example:

X 1(G(A,B)

A (B

Here, component X depends on exactly one of group G, which includes components A and B as members. This dependency set is not contradictory for the component instance set {X, B} but is contradictory for the set {X, A}. This is because if A is chosen with X, then the second rule will force the inclusion of component B, but this will contradict the ExactlyOneOf rule by including both components A and B. Thus this rule set is valid as a component database rule set.

Another case involves shared but different group requirements:

X ?(G(A,B)

Y *(G

X (Y

Here, component X depends upon zero or one members of group G, while component Y depends upon all members of group G. This is not contradictory until the third rule, which makes component X dependent upon Y. These rules can only be satisfied if group G contains only one component. Since G contains components A and B, a contradiction arises over whether both A and B or only one of A and B are to be included.

Revision Constraints

Component dependencies can be further qualified by a revision constraint. A revision constraint states that "component X depends upon revision >=N of component Y". For example:

X (N Y

Revision constraints can be applied to all dependency types. The constraint is resolved against the revision of each component that is included as a result of the constraint. For example:

X *(N G(A,B)

This means that component X is dependent upon revision N (or greater) for both components A and B.

Multiple revision constraints are also possible. For example:

X *(N1 G(A,B)

X (N2 B

Assuming N2 > N1, then component X is dependent upon revision N1 or greater of component A and revision N2 or greater of component B.

Revision constraints apply only to include dependencies (see Dependency Classes for more information).

Dependency Classes

Aside from its type, each dependency also has a class, which specifies how the dependency is used by the Mantis system. The examples in the previous sections have assumed the most common dependency class, the include dependency class. Other dependency classes are shown in table 3.

Table 3: Dependency Class Values

	Name
	Value
	Symbol
	Meaning

	DependencyClassNone
	0
	-
	No class (not valid).

	DependencyClassInclude
	1
	&
	Include dependency. This is the default dependency class.

	DependencyClassBefore
	2
	>
	Build before dependency.

	DependencyClassAfter
	3
	<
	Build after dependency.

	DependencyClassRegistry
	4
	$
	Implied registry dependency.

Include dependencies, as their name implies, control the inclusion or exclusion of components in a Mantis configuration. For example:

X (& Y

Means that component X is dependent upon the inclusion of component Y.

Before and After dependencies are collectively known as build dependencies. Build dependencies do not cause the inclusion (or exclusion) of components, but instead are used to restrict the order in which components are built during the build process. For example:

X (> Y

Means that component X is dependent upon Y being built before X. In addition:

X (< Y

Means that component X is dependent upon Y being build after X.

Note that the before/after relationship is related to the dependent component. That is, X (> Y means that Y is built before X, not the other way around. In effect, the component X (which is where the dependency resides) is stating "I require Y to be built before me."

Build dependencies do not imply include dependencies. That is, the dependency:

X (> Y

Means "build Y before X if Y is included in the build". It is not considered an error to include X without Y in a build.

Registry dependencies are a special variation of "build before" dependency. They are never explicitly expressed in a component, and are instead synthesized by an analysis of registry key processing specified by individual components. However, their action is identical to a normal build before dependency.

Dependency classes can be used with groups and dependency types. For example:

X *(& G(A,B)

This is an explicit include all dependency. Since include dependencies are the default class, this is equivalent to:

X (G(A,B)

Before and After dependencies can also be used with groups and types. For example:

X *(> G

Means that all of group G must be built before component X.

The semantics of the various dependency types are slightly different for build dependencies. Table 4 shows the various build before dependency types, and table 5 shows the build after dependency types.

Table 4: Build Before Dependency Type Semantics

	Type
	Symbol
	X (Y
	X (G
	Notes

	ExactlyOne
	1(>
	Not valid.
	Not valid.
	

	AtLeastOne
	+(>
	Y is built before X.
	Not valid.
	

	ZeroOrOne
	?(>
	Not valid.
	Not valid.
	

	All
	*(>
	Y is built before X.
	All members of G are built before X.
	This is the default dependency type.

	None
	0(>
	Not valid.
	Not valid.
	Use the semantically equivalent "build all after".

Note that terms such as "all" and "at least one of" are modified when used in the context of build dependencies where the dependency target is a group. The terms are assumed to apply only to the subset of the group that is actually instantiated into the build. For example:

X *(> G(A,B,C)

This rule is interpreted to mean that instances of components A, B and C are built before component X if they are included in the build. Thus, if the build includes components X, A and B the build order will be A, B and then X. The absence of component C is not considered an error.

Note that the "ExactlyOne" and "ZeroOrOne" types are not valid for build order rules. The semantics of such rules are unclear given that the component author has already constrained which components may be included using include rules. The exclusion of these rules also allows build order resolution algorithms to resolve in linear time instead of factorial time.

Table 5: Build After Dependency Type Semantics

	Type
	Symbol
	X (Y
	X (G
	Notes

	ExactlyOne
	1(<
	Not valid.
	Not valid.
	

	AtLeastOne
	+(<
	Y is built after X.
	Not valid.
	

	ZeroOrOne
	?(<
	Not valid.
	Not valid.
	

	All
	*(<
	Y is build after X.
	All members of G are built after X.
	This is the default dependency type.

	None
	0(<
	Not valid.
	Not valid.
	Use the semantically equivalent "build all before".

Include dependencies are typically combined with build dependencies. For example:

X +(& G(A,B)

X (> A

The first include rule specifies that component X requires at least one of components A or B to be included. The second rule specifies that component A must always be built before component X. This means that if the set {X,A} is chosen the build order will be A then X, while if the set {X,B} is chosen the build order is undefined (and may be B then X or X then B).

Dependency Examples

Simple dependencies are used to express functional requirements between components. For example, if component X uses the services of component Y, then this will typically be expressed as an include dependency:

X (Y

Typical examples of these dependencies occur when a component makes use of a common DLL or shared library.

Group dependencies can be used when one of many different components can satisfy the service requirements of a component. For example, the video display driver might depend upon any mini-port driver. This can be expressed as:

VideoDriver 1(MiniPortGroup

Individual mini-port drivers can then declare that they are members of the mini-port group.

Group dependencies can also be used to ensure mutual-exclusion. For example, if one (and only one) of a set of components is allowed in a system, they can each refer to a mutual-exclusion group:

X 1(ExGroup

Y 1(ExGroup

Then, each component (X and Y in this case) declares itself a member of the ExGroup.

Build dependencies are used to ensure that state information required by one component during build time is constructed before the component.

Network driver binding is an example of a complex dependency requirement. Binding the various network protocols together is a complex process. This process is typically handled by a special "binding" component. All components that require binding then specify an include dependency on this component. For example:

ProtocolA (NetBinder

ProtocolB (NetBinder

NICDriverA (NetBinder

NICDriverB (NetBinder

Obviously, the NetBinder component must build after all the other components that include it. This can be done in one of two ways:

First, each individual component can use a build after dependency to force the NetBinder component to build after the individual component. For example:

ProtocolA (< NetBinder

ProtocolB (< NetBinder

NICDriverA (< NetBinder

NICDriverB (< NetBinder

Alternatively, each individual component can declare itself a member of a group, and the NetBinder component can then define a build before dependency on that group. For example:

NetBinderGroup = (ProtocolA, ProtocolB etc)

NetBinder *(> NetBinderGroup

The second method is more efficient; since all that is required is that a component declares that it is a member of the NetBinderGroup group.
Script Model

The requirement to create a generic toolset and CMI that is not tightly coupled to the target OS architecture means that the logic involved in many fundamental Mantis operations is not present within the body of the CMI. Instead, this logic is encoded as script that is stored within certain objects and then used by the CMI to implement key functionality.

Mantis uses script as follows:

· Platform objects supply script text that is used in the context of a Config object.

· Component objects supply script text that is used in the context of an Instance object.

· ResType objects supply script text that is used in the context of a ResType object.

· Component objects supply DHTML text that is used to edit the properties of an instance object.

· Notice that all the script text is actually sourced from the component database. Thus, the ultimate origin of all Mantis script is via the import of .SLD carrier files. In contrast, the script is active only in the context of a configuration (except for ResType script).

Rather than invent another script language, Mantis uses existing script standards. Configuration and instance objects actually act as ActiveX Scripting hosts, thus allowing any standard ActiveX Script language (such as VBScript or JScript) to be used to author the script. In addition, interactive property editing for an instance object is performed using DHTML, which may of course itself contain standard script elements.

Although Mantis supports any ActiveX scripting language, the appropriate ActiveX script language must of course be installed before it can be used. Thus, if a component is authored using (say) Perl, this component can only be used on systems where ActivePerl is already installed. Thus it is recommended that VBScript be used for all normal scripting tasks.

To illustrate how Mantis uses script, consider how a run-time image build actually occurs. The build operation is initiated by the UI tools calling the Build method on a Config object. Surprisingly, however, the CMI does not itself contain any run-time image build logic. Instead, all it does in response to the Build method is invoke a procedure called cmiDoBuild within the configuration script. It is this procedure that is totally responsible for processing the build request to completion.

Although the CMI expects the script to handle all of the build (and other) logic associated with a particular platform, it does provide helper functions in the Utilities object that assist in common build operations. In addition, script has full access to the CMI object model.

As noted above, the configuration script is obtained from the Platform object. Thus, it is ultimately the platform that defines the semantics of a build operation. This is logically correct, as the requirements of a build vary from platform to platform.

Platform Script Management

Platform objects can contain script. As noted above, all script originates in the component database, and hence as elements within an .SLD carrier file. The actual script text for a platform is held in a SCRIPTTEXT element. The SCRIPTTEXT element specifies the script language using a language attribute.

When a Platform object is imported into the component database, the script text stored within the object definition in the carrier file is imported with the platform and stored in the component database. Then, when a new configuration is created based on that platform, the script text is copied into the Config object, and is subsequently saved as part of the configuration in the .SLX file.

Thus, all Config objects have associated with them a block of script text (stored in a SCRIPTTEXT element). When a configuration is opened the CMI automatically creates an ActiveX site for this script and places the IDispatch handler for the script into the Config.Script property. The script is placed in the run state immediately after the Config object is created. In addition, the CMI creates a special global object named cmiThis. This object contains a reference to the Config object, thus allowing the script direct access to the current configuration, and (through cmiThis.CMI) the CMI object itself.

Note All items placed in the script global namespace by the CMI are prefixed with "cmi" to distinguish them from global items created and used by the script. Script authors should avoid the use of this prefix in their own names to ensure that future namespace conflicts do not occur.

Once the script block is activated, the CMI indicates certain actions by invoking procedures in the script in response to certain events. The script can then handle these events as appropriate. For example, adding a new Instance object to a script invokes the cmiOnAddInstance procedure.

Since the CMI simply passes through Config.Build invocations to the cmiDoBuild procedure in the configuration script, invoking Config.Build is essentially equivalent to invoking Config.Script.cmiDoBuild. However, to ensure compatibility with future versions of the CMI do not bypass the CMI methods and call-down directly into configuration script.

Component Script Management

Component objects can also contain script. As noted above, this script is executed within the context of an Instance object. However, unlike Platform script, which is copied to a Config object when it is created, component script is referenced directly in the component database. Thus, when an Instance object is created by the CMI the appropriate script text block is located in the component database and activated.

Like script in a configuration, an IDispatch reference for instance script is available in the Instance.Script property. In addition, the CMI creates a special global named cmiThis, which contains a reference to the current instance object. This object can be used, in turn, to locate references to the CMI and Config objects.

Instance script is not invoked directly by the CMI. Instead, it is the responsibility of the configuration script to invoke procedures in the instance script as appropriate. For example, here is a simple cmiDoBuild implementation in configuration script:

Sub cmiDoBuild

 Dim oInstance

 For Each oInstance In cmiThis.Instances

 oInstance.Script.cmixDoBuild

 Next

End Sub

This simple example (actual build code is far more complex) processes the build request by invoking the cmixDoBuild procedure in each individual instance object.

Note By convention, procedures in component script that are invoked by configuration script are prefixed with "cmix".

Using Instance script is actually more complex than shown above. This is a result of the presence of component prototypes. As explained elsewhere, each component in the Mantis component database has a prototype component, and this prototype may in turn also have a prototype. This list of prototypes thus forms a prototype "chain", which always terminates with a platform default prototype.

When a component instance is created, the instance state data is initialized by collapsing the prototype chain to form an accumulation of the state data from each individual prototype. However, the component script is an exception to this rule. The individual script blocks from the component and its prototypes remain distinct (this is why, unlike configuration script, they are not copied from the component to the instance).

Thus, the total script text for an Instance object is in fact comprised of multiple distinct script text blocks, one from each component in the prototype chain. When an Instance object is created, each of these distinct script blocks is activated within it's own script site. Thus, there are multiple script sites associated with a single Instance object. This is shown in figure 5.

However, the CMI does not expose these individual script blocks. Instead, it links them together to form a single coherent script block with a single master IDispatch interface. It is this composite IDispatch interface that is exposed as the Instance.Script property. (This process is similar to that used in WSH when a single WSF file contains multiple individual script elements.) The linking forms a hidden list of individual script sites that are linked in the same order as the component prototype chain: the "main" component is at the head of the list, its prototype component is next, its prototype is next, and so on down the prototype chain. At the end of the chain, the script block from the platform-defined default prototype is always present. This linking is shown using dotted arrows in figure 5.

[image: image6.wmf]Foo Component Instance (in Configuration)

(Instance properties)

ComponentVSGUID:

{EC1E968C-A25D-4e44-AEAA-D88CFA6AD7BB}

ComponentVSGUID:

{90577B2A-DE83-494e-999D-2BF7C7808567}

Sub Bar

 Foo

End Sub

Dim x, y, z

Sub Foo

 If ...

End Sub

Sub Foo

 For Each ...

End Sub

Default prototype

component, defined

by platform, also

supplies script

"Main" Component Script

Prototype Comp Script

Default Proto Script

Figure 5: Component Instance Script

When an instance script procedure is accessed (or any other instance script global), the CMI attempts to locate this procedure in the script block at the head of the script list (i.e. in the "main" component script). If the procedure is located, it is executed. If not, the CMI searches in the next script block in the list. This search continues until the procedure is located.

For example, if the procedure Foo is invoked against the chain shown in figure 5, the Foo procedure in the second script block executes. If the Bar procedure is invoked, the procedure in the first block executes.

Thus, the script blocks from individual components in the prototype chain are linked into a simple single-inheritance object model, where "upstream" components can over-ride procedures supplied by "downstream" prototypes.

This same search process also applies to procedure invocations that occur within the script itself. If a procedure is invoked that is not found in the current script block, the CMI will search the script chain starting with the next script block down the chain. In figure 5, the Bar procedure invokes the Foo procedure. Since this is not present in the current script block, the CMI will locate and execute the Foo procedure in the second script block.

This search process applies to all global objects in the script. This means, for example, that the Bar procedure in figure 5 can access the variables x, y and z in the downstream script block.

As shown in the Foo procedure in figure 5, upstream script can over-ride procedures in downstream script. However, when this occurs it might be necessary for the upstream procedure to explicitly invoke the original downstream version of the same procedure. In this case the Foo procedure cannot simply call Foo again, as this will be interpreted as a recursive call to the local procedure. Instead, the CMI provides an additional IDispatch reference in the special global cmiSuper. This IDispatch interface will always start searching beginning at the next script block downstream from the current block. Thus, the Foo procedure in the second script block can use cmiSuper.Foo to invoke the Foo procedure in the third script block.

As noted above, the CMI provides a cmiThis variable that provides a reference to the instance object. Since Instance.Script exposes the composite IDispatch interface, cmiThis.Script also exposes this interface. Therefore a procedure can be invoked via this interface, for example cmiThis.Script.Foo. Since this invocation occurs directly on the CMI composite IDispatch, this is equivalent to an upstream search of the chain. That is, the search starts at the very top of the chain. In OO terms this is the equivalent of a virtual function invokation, since it allows a procedure in a downstream component to invoke procedures in upstream components.

Thus there are three distinct ways to call a procedure in instance script. These are summarized in table 999.

Table 999: Procedure Invocation

	Invocation Method
	Search Start Point
	Usage

	Foo
	Current script, than all downstream (prototype) scripts.
	Use for local procedure invocation or downstream procedure invocation (i.e. calling a procedure in a prototype).

	cmiSuper.Foo
	Downstream scripts only.
	Use to explicitly invoke a downstream implementation of the current procedure only.

	cmiThis.Script.Foo
	Start of script chain (main component).
	Use to invoke a "virtual" procedure that may be over-ridden in an upstream component.

Resource Script Management

The third source of script used by Mantis is the ResType object. Like Config objects, each ResType object may have a SCRIPTTEXT element that defines a block of script. This script is then exposed as an IDispatch interface on the ResType.Script property.

Like instance script, the CMI does not directly invoke the script on ResType objects. Instead, this script is typically invoked indirectly from configuration or instance script.

The script associated with a ResType object is only valid within the context of a configuration. This means that the ResType.Script property is only valid when the ResType object is accessed via a Resource object that is part of a configuration or instance. It is not valid when the ResType object is accessed via a Platform or Component object.

Scripted Properties

Mantis also supports the concept of a scripted property. A scripted property is one that has a format of Expr or Script (see table 2).

For Expr format properties, the value of the property is assumed to be an expression, while for Script properties, the value of the property is assumed to be a series of script statements. Regardless, of the type, the script language is assumed to be the same as the "ambient" language for the property. The ambient language is inherited from the language where the property is evaluated.

Note Care must be taken when using scripted properties. An instance can have multiple script blocks. If each has a different ambient language it may be difficult to ensure that the property is only evaluated in the correct language. To avoid this issue it is advised that all component script blocks use the same language. At present, the default prototype component for Windows Embedded is VBScript, and so this language is recommended for most component script.

Script Error Handing

Scripts should report errors by raising exceptions. The exception should indicate the error cause via an error code. Table 999 lists error code ranges available for script use.

Table 999: Script Exception Error Codes

	Range
	Usage

	0 to 999
	Basic error codes. Should not be used by script.

	1000 to 4999
	CMI error codes. Reserved for use by the CMI.

	5000 to 9999
	MS script error codes. Reserved for use by Microsoft created script.

	10000+
	OEM script error codes. Available for use by OEMS.

Raising exceptions differs from language to language. Here is a VBScript example:

Err.Number = 5012

Err.Raise

CMI Events

The CMI object provides two methods to allow configuration and instance script to communicate back to the UI tools. In both cases these methods fire an event in the UI tools.

The first method is CMI.WriteMsg. This method is provided to allow script to send progress or other informative messages back to the tools. Text messages can be classified as information, warnings, or errors. For example:

CMI.WriteMsg cmiInfoMsg, "Build complete."

The second method is CMI.ReportStatus. This method is provided to allow script to communicate the status of long operations to the tools. Status reports are classified in the same manner as messages, and may also contain a context value (an arbitrary integer) and an additional data value (a variant value). The content and meaning of these parameters are defined by contract between the script and the tools. The CMI.ReportStatus method also allows the tools to return an integer status to the script, again with a meaning defined by the tools and script. For example:

nRet = CMI.ReportStatus(Cint(cmiInfoMsg), 100, Null)

A typical use of this method is to monitor the progress of the build. At intervals the script invokes the method, passing data on the progress. The tools can then return a "continue" or "abort" request in the return value.

Instance Editing and Configuration

TODO

DHTML scripting: Editable, HTMLText, HTMLFinal, HTMLTitle, $$R$$ etc etc.

Events

Handling events

CMI Object

	Object Type
	N/A

	Versioning
	N/A

	Parent Objects
	None

	Child Objects
	Config, Platform

	Contained Objects
	None

The CMI object is the root object of the Mantis object hierarchy.

Properties

	Property
	Type
	Default
	Meaning

	(ExtProps)
	-
	-
	Extended properties. See text.

	DBServerName
	String
	-
	Name of server containing currently open component database, or an empty string if no database is currently open.

	Generation
	Integer
	-
	Current database generation. Incremented after any change to current database.

Description

The CMI object is at the root of the Mantis object hierarchy. All other objects are derived, directly or indirectly, from this object.

To obtain the initial CMI object use the ProgID "CMI.CMI". For example:

Set oCMI = CreateObject("CMI.CMI")

After obtaining the CMI object, a typical application will open a component database using the OpenDB method. After a database has been successfully opened all other methods and properties in the object model may be used as required.

The DBServerName property contains the name of the current database server, or an empty string if no database is currently open.

The Generation property is incremented after any change to the Mantis database. This allows external tools to cache portions of the database and later verify that the cached data is still valid before using it.

The CMI object supports an extended property set for the currently opened database. This property set is only available when a database is open against the CMI object. These properties are global to the database, and are typically used by tools to record additional information that should be shared amongst all clients that use a particular database.

The CMI also provides a distinct utilities object that provides helper methods. This object is primarily used by configuration and instance script. The ProgID of the utilities object is "CMI.Utilities". For example:

Set oUtils = CreateObject("CMI.Utilities")

Component Object

	Object Type
	Primary

	Versioning
	Revisable+Upgradable

	Parent Objects
	Platform, Group, Instance

	Child Objects
	Group

	Contained Objects
	Resource, Dependency

A Component object represents a component—the atomic unit of functionality that may be included as part of a run-time configuration.

Properties

	Property
	Type
	Default
	Meaning

	(ExtProps)
	-
	-
	Extended properties.

	(StdProps)
	-
	-
	Standard properties.

	ComponentVIGUID
	GUID [A]
	-
	Uniquely identifies the component (version independent).

	ComponentVSGUID
	GUID [A]
	-
	Uniquely identifies the component (version specific).

	DateImported
	TimeDate
	N/A
	Time/date when this object was imported into the database.

	Editable
	Boolean [A]
	True
	If False, component is not configurable by the user.

	HelpContext
	String [E]
	Empty
	Context sensitive help data for this component.

	HTMLFinal
	Boolean [A]
	False
	Final HTML configuration block in prototype chain.

	HTMLText
	String [E]
	Empty
	HTML to be used when configuring this component.

	HTMLTitle
	String [A]
	(DisplayName)
	Title for HTML edit block.

	IsMacro
	Boolean [A]
	False
	Marks this component as a macro component.

	MultiInstance
	Boolean [A]
	False
	Component can be instantiated multiple times in the same configuration.

	PlatformGUID
	GUID [A]
	-
	GUID of the owning platform (either a VSGUID or a VIGUID).

	PrototypeVIGUID
	GUID [A]
	Empty
	Optional prototype component VIGUID. If empty, the default prototype specified by the platform is used.

	Released
	Boolean [A]
	True
	If False, the component is not fully authored, and is still pre-release.

	RepositoryVSGUID
	GUID [A]
	-
	Repository to use as source of all files.

	Revision
	Integer [A]
	-
	Platform revision ordinal.

	ScriptEncoded
	Boolean [A]
	False
	Flags that the script is encoded in the database.

	ScriptLanguage
	String [A]
	Empty
	Identifies the ActiveX scripting engine to be used when processing the script.

	ScriptText
	String [E]
	Empty
	Component configuration script.

	Visibility
	Integer [A]
	1000
	Component visibility level.

Description

A Component object defines the core object of the Mantis architecture—the component. Components consist of the following information:

· A set of core properties that describe general component state.

· A set of extended properties that describe the configuration of the component.

· A set of resources that list the "contents" of the component (e.g. files).

· An optional block of DHTML text and parameters that provide a GUI interface to edit the configuration of the component.

· An optional block of script that is used to define the behavior of the component when it is instantiated.

· An optional block of DHTML text provides help information on the component.

· A list of groups to which the component belongs.

· A list of dependencies that define the static and dynamic relationships between this component and other components.

Components are used when they are instantiated into a configuration. This creates an Instance object that is derived from the component via a process known as "collapsing". Later, when a configuration is built, the instance contributes its resources to the build as necessary.

Components are revisable and upgradeable, and hence have both a VSGUID and a VIGUID. This allows different versions of a component to be released and available within a single component database. The Released property indicates that a component is in a released state. It is used in two ways:

· As an indication that the component is potentially pre-release and may not be defect-free.

· To assist authoring tools in managing component definition editing. Typically, editing an unreleased component will cause the authoring tool to revise the component, while editing a released component will cause the authoring tool to upgrade the component (i.e. generate a new VSGUID).

A component definition may include design-time help information. The HelpContext property contains optional help text for the component. This property may be formatted in one of two ways:

· As a block of DHTML text. Upon request, this text is displayed in a browser window.

· As a reference to an external help resource. Upon request, this resource is displayed to the user, using the appropriate viewer.

In either case, before the text is processed or displayed, a special macro substitution process is invoked. This process scans the raw text for the special character sequence $$R$$. Whenever this sequence is found, it is replaced by the full path to the repository for this component without a trailing back-slash character. This substitution allows the DHTML to reference additional files within the repository (for example, to display graphical images).

To specify an external help resource, the content of the HelpContext property must be formatted as follows:

$$H$$=path-name
Replace path-name with the full path of the resource. Typically, this will be an external CHM file containing the help information for the component. The path-name will typically use the $$R$$ macro sequence to allow it to refer to a file in the component repository.

When a component is instantiated, the properties that comprise the state of the component may be edited. The Editable, HTMLText, HTMLFinal and HTMLTitle properties are used to control this process. See Script Model for more details on HTML instance editing and configuration. Note that the HTMLText data is processed using the same special macro rules as described for the HelpContext property.

The IsMacro property marks the component as a macro component. Macro components differ from non-macro components in that they are not allowed to have resources. Instead, a macro component typically specifies its functionality via dependencies upon other components. Macro components are designed to allow fine-grain components to be collected together into one coarse grain component when the fine-grained approach may not be suitable for all authoring scenarios.

Constraints

Config Object

	Object Type
	N/A

	Versioning
	N/A

	Parent Objects
	CMI

	Child Objects
	Instance, Resource

A Config represents a run-time configuration and is associated with an SLX file.

Properties

	Property
	Type
	Default
	Meaning

	BaseComponentVIGUID
	GUID [A]
	-
	The base component that is always included in configurations that are based on this platform.

	BuildType
	Integer [A]
	-
	Actual build type selected for this configuration.

	DefaultProtoVIGUID
	GUID [A]
	-
	The default component to use for the prototype for components that do not explicitly define a prototype component.

	Generation
	Integer [A]
	-
	Generation ordinal from platform at time of last update.

	PlatformVSGUID
	GUID [A]
	-
	GUID of the owning platform. This is always a VSGUID.

	Revision
	Integer [A]
	-
	Configuration revision ordinal.

	ScriptLanguage
	String [A]
	Empty
	Identifies the ActiveX scripting engine to be used when processing the configuration script.

	ScriptText
	String [E]
	Empty
	Configuration script. Copied from Platform object when configuration is created and invoked as part of the CMI logic.

Description

Constraints

Dependency Object

	Object Type
	Secondary

	Versioning
	N/A

	Parent Objects
	Component, Instance

	Child Objects
	Component, Group

A Dependency object represents a single inter-component dependency.

Properties

	Property
	Type
	Default
	Meaning

	Class
	DependencyClassEnum [A]
	cmiInclude
	Dependency class. See text for details.

	Description
	String [E]
	-
	Optional description of the dependency (localized).

	DisplayName
	String [E]
	-
	Optional name of the dependency (localized).

	MinRevision
	Integer [A]
	0
	Minimum required revision of target component or components (applicable to include dependencies only).

	Type
	DependencyTypeEnum [A]
	cmiAll
	Dependency type. See text for details.

Description

Constraints

Group Object

	Object Type
	Primary

	Versioning
	Revisable

	Parent Objects
	Platform, Component

	Child Objects
	Component, Repository

	Contained Objects
	None

A Group object represents a collection of related components or repositories.

Properties

	Property
	Type
	Default
	Meaning

	(ExtProps)
	-
	-
	Extended properties.

	(StdProps)
	-
	-
	Standard properties.

	Class
	GroupClassEnum [A]
	-
	Group class. See text for details.

	DateImported
	TimeDate
	N/A
	Time/date when this object was imported into the database.

	DefaultDependencyType
	DependencyTypeEnum [A]
	cmiAll
	Default dependency type for dependency groups only.

	GroupVSGUID
	GUID [A]
	-
	Uniquely identifies the group (version specific).

	PlatformGUID
	GUID [A]
	-
	GUID of the owning platform (either a VSGUID or a VIGUID).

	Revision
	Integer [A]
	-
	Group revision ordinal.

Description

Groups are used to collect other objects into sets of related objects. Currently, only components and repositories can be members of groups.

The Group object itself does not manage group membership, and in fact a Group object is only used to hold descriptive information about the group. Instead group membership is declared within individual member objects, through GROUPMEMBER elements. This allows group membership to be incrementally extended as new objects are imported into the database, and also allows an object to be a member of any number of groups.

Each group has a Class property, which describes the class of the group. Currently, four group classes are defined:

· Package These groups are used to collect components together for administrative purposes. A package group allows a set of components and/or repositories to be managed as a single unit.

· Category These groups are used to collect components together into functionally related categories. This is primarily used to assist in filtering and organizing components for display in the UI.

· Dependency These groups can be used as the target of dependencies (of all types). This allows a dependency to indirectly specify multiple components as a target.

· RepositorySet These groups are used to indirectly link a component to one or more repositories, and allow a component to choose a repository based upon the ambient build environment, typically by using the BuildType property.

The DefaultDependencyType property of a group is used with dependency groups only. When a component dependency specifies a target that is a dependency group, the dependency can either explicitly specify the type of the dependency, or the dependency can specify that the dependency type information comes from the group. In this case, the dependency type information is specified by the DefaultDependencyType property.

The DisplayName property of a group is used as usual as a descriptive comment. However, for category groups, the DisplayName property is structured to allow a pseudo-tree view of categories. The name is divided (by colons) into fields that represent the individual levels in the category tree. For example:

Drivers : Display : Matrox

The processing of this information is handled entirely by UI tools, and the use of colons as separators is only a usage convention that is not enforced by the CMI. Notice that for readability spaces are placed either side of the colon characters. UI tools that wish to display the category namespace as a tree should strip these spaces when processing the category names.

One of the main uses of package groups is to assist in configuration upgrades. Although it is possible to upgrade individual instances in a configuration, it is frequently more efficient and desirable to bulk-upgrade sets of components based upon package group membership. For example, when SP6 is imported into the database, all components that are part of SP6 can be marked as such via an SP6 package group. It is then a simple task to correlate this component set to the instances in a configuration and automatically upgrade the entire configuration to SP6.

RepositorySet groups are used to collect repositories into sets. Each component specifies its source repository via its RepositoryVSGUID property, but this property is polymorphic: it can specify either a Repository object or a RepositorySet group. If a group is specified then build script can choose the repository based upon other selection criteria, such as the BuildType.

Constraints

1. The VSGUID of the group must be unique and not used to name any other object of any other type within the database.

2. Groups are revisable. Importing a group with the same VSGUID as another group causes the incoming group to overwrite the existing group if the new group has a revision that is greater than that of the existing group. If the incoming group has a lower revision number then the import of the group is skipped and a warning is generated. If the incoming group has an equal revision number then the import of the group is skipped, but no warning is generated.

3. The PlatformGUID property must reference an existing Platform object in the database at the time of import.

4. It is permissible for an object to be imported that references a group via a GROUPMEMBER element before that group has been imported into the database.

5. The Class property is not restricted to the known enumeration values.

6. The DefaultDependencyType property can have any value from the DependencyTypeEnum except FromGroup.

7. Component objects may reference (via GROUPMEMBER elements) groups of class Package, Category or Dependency, but not groups of class RepositorySet.

8. Repository objects may reference (via GROUPMEMBER elements) groups of class Package and RepositorySet, but not groups of class Category or Dependency.

Instance Object

	Object Type
	N/A

	Versioning
	N/A

	Parent Objects
	Config

	Child Objects
	Resource, Component

An Instance object represents a specific instance of a component within a configuration.

Properties

Description

Constraints

Platform Object

	Object Type
	Primary

	Versioning
	Revisable+Upgradable

	Parent Objects
	CMI

	Child Objects
	Group, Repository, ResType, Component

	Contained Objects
	None

A Platform object represents the type of target run-time system, such as Windows Embedded, or Windows NT Embedded.

Properties

	Property
	Type
	Default
	Meaning

	(ExtProps)
	-
	-
	Extended properties.

	(StdProps)
	-
	-
	Standard properties.

	BaseComponentVIGUID
	GUID [A]
	-
	The base component that is always included in configurations that are based on this platform.

	DateImported
	TimeDate
	N/A
	Time/date when this object was imported into the database.

	DefaultProtoVIGUID
	GUID [A]
	-
	The default component to use for the prototype for components that do not explicitly define a prototype component.

	LCID
	Integer [A]
	0x0409
	Platform locale. This is the locale ID of the platform, and by extension all of the components and files within the platform.

	MinVisibility
	Integer
	1000
	Minimum visibility for filtered component set. See text.

	PlatformVIGUID
	GUID [A]
	-
	Uniquely identifies the platform (version independent).

	PlatformVSGUID
	GUID [A]
	-
	Uniquely identifies the platform (version specific).

	Revision
	Integer [A]
	-
	Platform revision ordinal.

	ScriptEncoded
	Boolean [A]
	False
	Flags that the script is encoded in the database.

	ScriptLanguage
	String [A]
	Empty
	Identifies the ActiveX scripting engine to be used when processing the script.

	ScriptText
	String [E]
	Empty
	Script used by configurations based upon this platform.

Description

A platform defines a particular type of target run-time system described by the component database. Each individual platform defines a target operating system, CPU and locale. For example, "Windows Embedded (x86) – US English" might be one platform. All other objects in the database are owned, either directly or indirectly, by a specific platform, and thus each platform defines a discrete, logical database within the complete component database. In addition, each configuration is always owned by a specified platform, which is chosen when the configuration is first created.

Platforms are revisable and upgradeable, and hence have both a VSGUID and a VIGUID. Platforms that do not share a VIGUID are totally independent and represent entirely unrelated operating system platforms (e.g. Windows NT and MS-DOS). Platforms that share a VIGUID can be viewed as different versions or releases of a related operating system, e.g. Windows 2000 and Whistler. The choice of "bridging" or not bridging two operating systems via a shared VIGUID must be made based upon upward compatibility and component migration considerations.

Objects that are owned by a platform specify this via a PlatformGUID property. This property is polymorphic and may specify either a platform VSGUID or VIGUID. This allows each object to tie itself to a particular version (release) of an operating system or instead to tie to any release that shares the same VIGUID. Typical 3rd party applications will specify a platform VIGUID so that the component is available in all versions of the platform.

If an object specifies its owning platform via a VIGUID, then it will be visible in multiple platforms (each platform that uses the same VIGUID). This can cause problems if the object references any other object, and that other object specifies a platform by VSGUID. In this case the referenced object might not be visible in some platforms in which the referee object is visible. For this reason, any object that specifies its owning platform by VIGUID is only allowed to refer to other objects that also specify the owning platform by VIGUID. However, if the object specified its owning platform by VSGUID, then it can refer to other objects that specify their owning platform either by the same VSGUID or the VIGUID of the same platform.

The BaseComponentVIGUID property of a platform specifies a component that is designated as the "base" component for this platform. When a new configuration is created for a platform then the base component is automatically instantiated into the configuration. This ensures that a platform-specified minimum set of functionality is always present in all configurations based on that platform. The base instance in the configuration can be identified by the IsBaseComponent property. Note that instantiation of the base component is the responsibility of platform script.

The DefaultProtoVIGUID property specifies a component that is designated as the default prototype component for this platform. Any component that does not explicitly specify a prototype component via its PrototypeVIGUID property will implicitly inherit the default prototype component. Since prototype components form a chain, this means that ultimately all components inherit (either directly or indirectly) from the default prototype component. The processing of the prototype component and the component chain is done by the CMI.

The LCID property specifies the locale of the platform, and by implication the locale of all components that are part of the platform. In the Mantis architecture different locales are represented by different platforms.

The MinVisibility property is used when obtaining a set of Component objects that are owned by the platform. Only those components with a Visibility property greater than or equal to MinVisibility are returned. The MinVisibility property is not persisted. Instead it is initialized to 1000 when a Platform object is created.

Platforms always contain script, which is exposed via the ScriptText, ScriptLanguage and ScriptEncoded properties. The script is activated by the CMI in the context of each configuration that is owned by the platform. See Script Model for more information on platform scripts.

Constraints

1. The VSGUID of the platform must be unique and not used to name any other object of any other type within the database.

2. The VIGUID of the platform can be reused only in the VIGUID property of other platform objects; it may not be used to name any other object type within the database (even the VSGUID of another platform).

3. Platforms are revisable. Importing a platform with the same VSGUID as another platform causes the incoming platform to overwrite the existing platform if the new platform has a revision that is greater than that of the existing platform. If the incoming platform has a lower revision number then the import of the platform is skipped and a warning is generated. If the incoming platform has an equal revision number then the import of the platform is skipped, but no warning is generated.

4. Platforms are upgradable. Importing a platform does not displace or alter other platforms that have the same VIGUID but a different VSGUID.

5. Importing any other object type into the database when the corresponding owning platform (specified by the PlatformGUID property) is not present is an error.

6. It is permissible for a platform object to be imported into the database before the components referenced by DefaultProtoVIGUID or BaseComponentVIGUID are imported into the database.

7. Platform objects cannot be deleted if any other object references that platform via its PlatformGUID property.

8. If another primary object has a PlatformGUID property that specifies its owner platform by VSGUID, then all other objects that reference that primary object, directly or indirectly, must also specify the same VSGUID as their owning platform.

9. If another primary object has a PlatformGUID property that specifies its owner platform by VIGUID, then all other objects that reference that primary object, directly or indirectly, must specify an owning platform that also has the same VIGUID.

PropType Object

	Object Type
	Secondary

	Versioning
	N/A

	Parent Objects
	ResType

	Child Objects
	None

A PropType object represents an individual property type with a resource type.

Properties

	Property
	Type
	Default
	Meaning

	DateImported
	TimeDate
	N/A
	Time/date when this object was imported into the database.

	Name
	String [A]
	-
	Short name describing the type of resource.

	PlatformGUID
	GUID [A]
	-
	GUID of the owning platform (either a VSGUID or a VIGUID).

	ResTypeVSGUID
	GUID [A]
	-
	Uniquely identifies the resource type.

	Revision
	Integer [A]
	-
	Resource type revision ordinal.

	ScriptLanguage
	String [A]
	Empty
	Identifies the ActiveX scripting engine to be used when processing the script.

	ScriptText
	String [U]
	Empty
	Script text. This script is activated when the resource type is used by a resource.

Description

Constraints

Repository Object

	Object Type
	Primary

	Versioning
	Revisable

	Parent Objects
	Platform, Group

	Child Objects
	Group

	Contained Objects
	None

A Repository object represents the location of an external repository resource that is used as the source of files for the build process.

Properties

	Property
	Type
	Default
	Meaning

	(ExtProps)
	-
	-
	Extended properties.

	(StdProps)
	-
	-
	Standard properties.

	BuildType
	Integer [A]
	-
	Bit vector indicating supported build type(s).

	DateImported
	TimeDate
	N/A
	Time/date when this object was imported into the database.

	PlatformGUID
	GUID [A]
	-
	GUID of the owning platform (either a VSGUID or a VIGUID).

	RepositoryVSGUID
	GUID [A]
	-
	Uniquely identifies the repository.

	Revision
	Integer [A]
	-
	Repository revision ordinal.

	SrcPath
	String [E]
	See text
	Path to repository files (see text).

Description

Repositories are sets of files that are available for copying to the run-time during the build process. Repository objects are used to specify the source path to these files.

The SrcPath property holds the source path for the repository files. This may specify either a folder or a CAB file. If a folder is specified, then files to copy are taken from that folder. If a CAB file is specified then files are taken from the CAB file. In both cases files must be taken directly from the folder or CAB file, and not from any sub-folder. That is, each repository is a flat list of files, not a full tree of files.

When the SrcPath property is stored in an SLD file, the path may be either a relative path or an absolute path, though absolute paths are discouraged as they have very limited portability. During import of the SLD file into the component database the CMI will convert a relative path to an absolute path. Therefore, whenever a SrcPath property is referenced within the database it will always contain a fully qualified path. It is also possible to over-ride the SLD SrcPath value and completely replace it with a path specified at import time.

Components that wish to copy files do so by referencing a Repository object via the component object's RepositoryVSGUID property. This property refers to a repository either directly (by specifying the VSGUID of a Repository object) or indirectly (by specifying the VSGUID of a RepositorySet group). If the repository is referenced indirectly then the build script must use one or more ambient properties to choose between the different repositories in the group. Typically, this involves matching the BuildType property against that specified for the configuration.

Repositories can be members of groups of class RepositorySet and Package. Repository group membership is declared using GROUPMEMBER elements within the REPOSITORY element in the SLD file.

Constraints

1. The VSGUID of the repository must be unique and not used to name any other object of any other type within the database.

2. Repositories are revisable. Importing a repository with the same VSGUID as another repository causes the incoming repository to overwrite the existing repository if the new repository has a revision that is greater than that of the existing repository. If the incoming repository has a lower revision number then the import of the repository is skipped and a warning is generated. If the incoming repository has an equal revision number then the import of the repository is skipped, but no warning is generated.

3. The PlatformGUID property must reference an existing Platform object in the database at the time of import.

4. It is permissible for an object to be imported that references a repository via a RepositoryVSGUID property or GROUPMEMBER element before that repository has been imported into the database.

5. It is permissible for a repository to be imported into the database that references groups via one or more GROUPMEMBER elements before that group object has itself been imported into the database.

Resource Object

	Object Type
	Secondary

	Versioning
	N/A

	Parent Objects
	Component, Instance

	Child Objects
	None

A Resource object represents a single resource item associated with a component or instance.

Properties

	Property
	Type
	Default
	Meaning

	BuildTypeMask
	Integer [A]
	-
	Build type associated with this resource.

	Description
	String [E]
	-
	Description of the resource (localized).

	DisplayName
	String [E]
	-
	Name of the resource (localized).

	Localize
	Boolean [A]
	False
	Resource requires localization.

	Name
	String [A]
	-
	Names this individual resource.

	ResTypeVSGUID
	GUID [A]
	-
	GUID of the corresponding ResType object.

Description

Constraints

ResType Object

	Object Type
	Primary

	Versioning
	Revisable

	Parent Objects
	Platform

	Child Objects
	PropType

 A ResType object represents a template that describes the contents of one type of resource.

Properties

	Property
	Type
	Default
	Meaning

	DateImported
	TimeDate
	N/A
	Time/date when this object was imported into the database.

	Name
	String [A]
	-
	Short name describing the type of resource.

	PlatformGUID
	GUID [A]
	-
	GUID of the owning platform (either a VSGUID or a VIGUID).

	ResTypeVSGUID
	GUID [A]
	-
	Uniquely identifies the resource type.

	Revision
	Integer [A]
	-
	Resource type revision ordinal.

	ScriptLanguage
	String [A]
	Empty
	Identifies the ActiveX scripting engine to be used when processing the script.

	ScriptText
	String [U]
	Empty
	Script text. This script is activated when the resource type is used by a resource.

Description

Constraints

>>>>> OLD <<<<<<<<<<<<<<<<<<<

Carriers

All of the information in a Mantis component database is authored outside of the database. The database is then populated via an import process that imports the pre-authored information into the database, after making various consistency checks on the data. This pre-authored information is prepared in the form of one or more carrier files.

Carrier files have a file type of .SLD (pronounced "slide"). Any carrier file can contain any mix of component database data. For example, one carrier file may contain source file information, another may contain component definitions, and another may contain a mix of all database information types. The only Mantis data that are not authored in carrier files are configurations, which are stored as separate XML files (with a file type of .SLX) that are not imported into the database.

Mantis does not track carrier files within the component database. Once a carrier file has been imported the "identity" of the carrier file is discarded. This means that it is not possible to delete the result of a previous carrier file import except by manually deleting the individual objects that were imported from the carrier file. The CMI provides a "check carrier" service that validates an entire carrier file, thus allowing the validity of a carrier file to be verified before it is actually imported.

TODO We should also always perform a validity check+import as an atomic operation on the database, as otherwise someone could sneak in and alter the DB between the check and the import. We must ensure that either all the carrier file gets in, or none at all.

Internally, carrier files are XML files. Each carrier file has a root DCARRIER element containing an arbitrary mix of additional elements that define all of the primary objects in the database. Secondary objects are defined by XML elements within each primary element. For example:

<?xml version="1.0"?>

<!DOCTYPE DCARRIER SYSTEM "file:mantis.dtd">

<!-- Example Carrier File -->

<DCARRIER CarrierRevision="1">

<PLATFORM PlatformVSGUID="…">

[define platform here]

</PLATFORM>

<GROUP GroupVSGUID="…">

[define group here]

</GROUP>

<GROUP GroupVSGUID="…">

[define additional group here]

</GROUP>

<COMPONENT ComponentVSGUID="…">

[define component here]

</COMPONENT>

<REPOSITORY RepositoryGUID="…">

[define repository here]

</REPOSITORY>

</DCARRIER>

XML files are case sensitive. By convention, Mantis uses all upper case for element names and mixed case for attribute names.

The DCARRIER element has a single attribute, CarrierRevision, which is used to identify the revision of the carrier file. The value of this element tracks the schema revision of this document (defined in the header on page 1).

Inherited Properties

All primary objects share a set of common descriptive properties. In a carrier file with many primary objects this leads to a large, redundant, set of property definitions. To assist in creating efficient carrier files, it is recommended that XML entities be used to define properties that are common to all objects. For example, the entity ©right; can be defined in the internal DTD and then used within each primary object to create a copyright property.

Note that the use of XML entities in this way is outside the scope of this document. It is, in fact, simply a side effect of the use of XML as the carrier file format.

Constraints

Since carrier files are not represented within the database, there are no specific constraints placed upon carriers, except that they are well-formed and valid XML and that the CarrierRevision attribute is 1 (for this revision of the Mantis specification).

Resources

Almost all Mantis objects support a property bag. This property bag can contain an arbitrary set of properties that are associated with the object. The property set is extensible, and so additional information can be attached to an object without the need to change the underlying Mantis schema.

All of the properties in property bags, except as explained here, are unordered properties. That is, they are represented as PROPERTY elements that may have a value (the contents of the element) and a format (the value of the Format attribute). For example:

<PROPERTY Name="Info" Format="Integer">100</PROPERTY>

All unordered properties are exposed through a property bag, so the above property is accessed as follows:

nValue = oSomeObject.Properties.Read("Info")

The Mantis architecture also defines a special type of property collection known as a resource. Resources are secondary objects that may be owned by Config, Instance and Component objects. Each Resource object has a corresponding resource type, which defines which properties are present in that resource. In effect, a resource type provides a template for a set of resources.

Resource types are themselves primary objects. Thus the Mantis database itself contains the definitions of resource types. Furthermore, this list of types can be augmented with additional types simply by importing additional resource types into the database.

Table 6 lists the properties for ResType objects. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 6: ResType Object Properties (Immutable)

	Property
	Type
	Default
	Meaning

	ResTypeVSGUID
	GUID
	-
	Uniquely identifies the resource type (version specific). [A]

	Revision
	Integer
	-
	Resource type revision ordinal. [A]

	PlatformGUID
	GUID
	-
	GUID of the owning platform (either a VSGUID or a VIGUID). [A]

	Name
	Text
	-
	Resource type name. [A]

In addition to the properties listed in table 6, each ResType object contains a list of property types, each defined by a PropType object. Each of these objects defines a single property that may be included in resources of the type specified by the ResType object.

Table 7 lists the properties for PropType objects. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 7: PropType Object Properties

	Property
	Type
	Default
	Meaning

	Name
	Text
	-
	Property name. [A]

	Format
	Text
	String
	Property format. [A]

	Order
	Integer
	0
	Property order. [A]

The combination of the ResType and PropType objects fully define the set of properties that must be present within a resource of the corresponding type.

Table 8 lists the properties for Resource objects. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 8: Resource Object Properties

	Property
	Type
	Default
	Meaning

	Name
	Text
	-
	Names this individual resource. [A]

	ResTypeVSGUID
	GUID
	-
	GUID of the corresponding ResType object. [A]

	BuildType
	Integer
	Free
	Build type associated with this resource. [A]

	Localize
	Boolean
	False
	Resource requires localization. [A]

	DisplayName
	Text
	-
	Name of the resource (localized). [E]

	Description
	Text
	-
	Description of the resource (localized). [E]

The various resource related objects tie together as follows:

· Resource objects can be owned by Config, Instance and Component objects. They are therefore secondary objects.

· Each Resource object has a name, which is specified by the Name property of the object. This name must be unique for each resource owned by a particular object. The name also has a role in component chain collapsing (see below).

· Each Resource object has a type, which is specified by the ResTypeVSGUID property. This type ties the resource back to the ResType primary object, and allows the type information for the resource to be recovered.

· The "contents" of the Resource object are zero or more ordered or unordered properties.

· The ResType object specifies which properties are required by the resource, and also specifies the format of each via a PropType object.

· The Order attribute of the PropType object specifies if each property is an ordered or unordered property. If this attribute is non-zero, the property is an ordered property, if the attribute is absent or zero, the property is an unordered property.

· Properties of a Resource object that are listed in the ResType object always have the format specified by the Format attribute of the PropType object. It is not possible to over-ride this format for a particular Resource object.

· Resource objects may contain additional properties not listed in the corresponding ResType object. All such properties are unordered properties, but may specify an arbitrary format using the Format attribute.

· If a PropType has non-empty content (value), this value is used as the default value for the property if one is not explicitly specified in the resource. The default value is applied when the Resource object is imported into the database, rather than when the resource is used.

· If a PropType has an empty content, the property must be present in the corresponding resource.

XML Format

As with all component database data, ResType and Resource objects are imported within carrier files. Resources are defined using RESOURCE elements, while resource types are defined using RESTYPE elements. For example:

<?xml version="1.0"?>

<!DOCTYPE DCARRIER SYSTEM "file:mantis.dtd">

<!-- Example generic resource -->

<DCARRIER CarrierRevision ="1">

<RESTYPE

 ResTypeVSGUID="{E66B49F6-4A35-4246-87E8-5C1A468315B5}"

 Revision="2"

 PlatformGUID="{63A6BF93-C0FC-4035-9EE4-806F21722FBC}"

 Name="FileHistory"

>

 <PROPTYPE

 Name="FileName"

 Format="String"

 Order="1"

 />

 <PROPTYPE

 Name="FileOwner"

 Format="String"

 Order="2"

 />

 <PROPTYPE

 Name="Vendor"

 Format="String"

 Order="3"

 >Microsoft</PROPTYPE>

</RESTYPE>

<COMPONENT …>

 <RESOURCE

 Name="FileHistory:1"

 ResTypeVSGUID="{E66B49F6-4A35-4246-87E8-5C1A468315B5}"

 >

 <PROPERTY Name="FileName">foo.exe</PROPERTY>

 <PROPERTY Name="FileOwner">jdoe</PROPERTY>

 <PROPERTY Name="OtherInfo">blahblah</PROPERTY>

 </RESOURCE>

</COMPONENT>

</DCARRIER>

This example shows a Component object that contains a single Resource object. The Resource object is a FileHistory type object, as defined by the single ResType object. This object defines three ordered properties for the type: FileName, FileOwner and Vendor. The Vendor property has a default value. The actual Resource object provides values for the two properties that have no default value (FileName and FileOwner), but omits the Vendor property. In addition, it defines an additional unordered property named OtherInfo.

Constraints

Platforms

The Mantis architecture allows multiple independent logical databases to co-exist within the same physical database. For example, one database might define and generate Windows NT Embedded 4.0 run-time images, while another generates Windows Embedded run-time images.

Each logical database is distinguished within the physical database as a distinct platform. Platforms are represented by Platform objects, which are revisable and upgradeable objects. All other object types within the database are explicitly (for primary objects) or implicitly (for secondary objects) tagged with their "owner" platform GUID. These objects are only meaningful within the context of the platform for which they were authored. Using an object in a platform other than the one for which it is authored is forbidden and may have undefined results.

Furthermore, each configuration XML file (.SLX file) is also tagged with a platform GUID when it is created. This platform is never changed throughout the lifetime of the configuration—it is not possible to "retarget" a configuration by changing its platform. It is also not valid for any of the information in a configuration to refer, directly or indirectly, to database objects that belong to another platform.

TODO Target Designer or CMI should validate a configuration at open time to ensure that the instances all refer to components from the correct platform. This will catch any attempts by users to hack the XML directly and reference a "foreign" component.

The CMI enforces the strict platform boundaries by filtering all database searches automatically against the platform specified by the currently open Config object.

Distinct platforms are typically used to distinguish the following run-time variations:

· Operating System Each distinct operating system is distinguished by a different platform.

· CPU Each CPU family (such as X86 or Alpha) is distinguished using a platform.
· Locale Each language version is distinguished using a platform. This also applies to any "multi-language" versions of an operating system.
It is recommended that the DisplayName property of a Platform object describe the platform in the format:

Operating System (CPU) - Locale
For example, "Windows Embedded (x86) – US English".

Because platform locale is distinguished by distinct platforms, creating multiple versions of a run-time for distinct locales will require authoring distinct configurations for each locale. Future versions of Mantis may define tools to assist in the translation of a configuration from one locale to another. However, this process cannot be completely automated since, as a result of the localization process, components in different locales are not automatically interchangeable.

Table 5 lists the properties for Platform objects. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 5: Platform Object Properties

	Property
	Type
	Default
	Meaning

	PlatformVSGUID
	GUID
	-
	Uniquely identifies the platform (version specific). [A]

	PlatformVIGUID
	GUID
	-
	Uniquely identifies the platform (version independent). [A]

	Revision
	Integer
	-
	Platform revision ordinal. [A]

	DefaultProtoVIGUID
	GUID
	-
	The default component to use for the prototype for components that do not explicitly define a prototype component. [A]

	BaseComponentVIGUID
	GUID
	-
	The base component that is always included in configurations that are based on this platform. [A]

	LCID
	Integer
	0409
	Platform locale. This is the locale ID of the platform, and by extension all of the components and files within the platform. [A]

	Generation
	Integer
	N/A
	Platform database generation.

	ScriptText
	Text
	Empty
	Default configuration script. This script is copied to new configurations when they are created and invoked as part of the CMI logic. [E]

	ScriptLanguage
	Text
	Empty
	Identifies the ActiveX scripting engine to be used when processing the configuration script. [A]

	DateImported
	Time/date
	N/A
	Time/date when this object was imported into the database.

The DefaultProtoVIGUID property provides the GUID of the default prototype component as a VIGUID. Any component that does not provide an explicit prototype component in its PrototypeVIGUID property will automatically use the component indicated by the DefaultProtoVIGUID property. For more information on prototype components, see Components below. Note that this must be a VIGUID, not a VSGUID.

The BaseComponentVIGUID is the VIGUID of the "starter" component for a configuration. All configurations derived from this platform will automatically have an instance of the specified component added to the configuration when the configuration is first created. This instance cannot be deleted by the user (though it may be configured). For more information see Configurations below.

The ScriptText and ScriptLanguage properties define the default (initial) script block that is inherited by new configurations created for this platform. The actual script text is stored in the ScriptText property, and the language of the script is stored in the ScriptLanguage property. Note that the ScriptLanguage property is derived indirectly from the language property of the SCRIPTTEXT XML element in the carrier file.

The Generation property contains an ordinal that is incremented each time any change is made to the database that impacts the platform. This includes all import and delete operations that add or remove any objects that are owned by this platform. This allows tools that cache database data to quickly check to see if the data is stale.

When an object is imported or deleted that references the platform by its VSGUID, only that platform object is updated with a new Generation value. However, when an object is imported or deleted that references the platform by VIGUID, then all platform objects that share that VIGUID have the Generation property incremented.

Platform Versioning

Platforms are upgradeable objects. Therefore, as described in Object Versioning above, they are identified by both a PlatformVIGUID and a PlatformVSGUID property. As described above, all other objects in the Mantis database are tagged with the GUID of their owner platform. This GUID may be either the VSGUID or the VIGUID of the platform. That is, the PlatformGUID property of other primary objects is used polymorphically.

If an object is tagged with a VSGUID as the owner platform, then the object is tied to a specific version of a platform and is only available (and visible) to configurations based upon that platform. If an object is tagged with a VIGUID as the owner platform, then the object is available to configurations that are based upon any version of the platform. Thus objects can be tied loosely to any version of a platform or tightly to a specific version.

This specification does not define the policy for platform versioning. However, it is assumed that major changes to platforms (such as might occur when moving from 32-bit Windows to 64-bit Windows) will be accomplished with distinct platforms, while minor changes (moving from Windows 2000 to Windows 2001) will be accomplished by platform upgrades. Thus, components that are tied to a specific OS version (for example, base OS components or low-level tools such as virus scanners) should be tagged with the VSGUID of the platform, while components that are not version specific (for example, 3rd party apps and drivers) should be tagged with the VIGUID of the platform.

XML Format

As with all component database data, Platform objects are imported within carrier files. Platforms are defined using PLATFORM elements within the carrier files root DCARRIER element. For example:

<?xml version="1.0"?>

<!DOCTYPE DCARRIER SYSTEM "file:mantis.dtd">

<!-- Example Platform -->

<DCARRIER CarrierRevision ="1">

<PLATFORM

PlatformVIGUID="{63813FD4-2A36-4473-A822-C711570F145B}"

PlatformVSGUID="{63813FD4-2B36-4473-A822-C711570F145B}"

Revision="2"

DefaultProtoVIGUID="{63813FD4-2A36-4473-A823-C711570F145B}"

BaseComponentVIGUID="{63813FD4-2A37-4473-A823-C711570F145B}"

LCID="1027"

>

<SCRIPTTEXT language="vbscript">

<![CDATA[

[put script code here]

]]>

</SCRIPTTEXT>

<DISPLAYNAME>

Windows Embedded (x86) – US English

</DISPLAYNAME>

</PLATFORM>

</DCARRIER>

Constraints

1. Except where noted below, importing a Platform object with a VSGUID that matches any other primary object GUID in the database is a severe error.

2. When importing a Platform object, either the VIGUID of the platform must not exist in the database, or it must be the VIGUID of one or more other Platform objects.

3. Importing a new platform (new VSGUID) sets the Generation property to 1 for the new platform. All other platforms in the database that share the same VIGUID as the new platform have their Generation properties incremented.

4. Importing a platform that is identical to an existing platform (same VSGUID, same revision, same properties) is a null operation and can be silently skipped.

5. Importing a platform that has the same VSGUID and revision as an existing platform but has different properties results in a severe error.

6. Importing a platform that is an older revision of a platform already in the database (same VSGUID, lower revision) results in a warning, and the platform is not imported.

7. Importing a platform that is a newer revision then a platform already in the database (same VSGUID, higher revision) overwrites the old platform with the newer revision. The Generation property for the new revision is set to one greater than the generation number for the platform being over-written. All other platforms in the database that share the same VIGUID as the new platform also have their Generation properties incremented.

Repositories

One of the main tasks of the run-time image build process is copying the files that comprise the bulk of the run-time image. All of these files come from one or more repositories. Although the files that comprise a repository are stored outside of the database, each repository is represented by a Repository object. Repository objects are immutable objects.

Repositories can be stored in two forms: as a folder or as a CAB file. A folder repository is comprised of the files that are present in the specified folder, but not the files present in any sub-folders (that is, repositories are "flat" folders, not trees). A CAB repository is comprised of the files that are present in a CAB file. Like folder repositories, only the files in the root folder within the CAB file are considered part of the repository.

Restricting repository files to flat folders or CAB files means that files that are sourced in a folder tree must have a Repository object for each folder in the tree. The rationale for this restriction is to avoid the need to place relative path information within File objects. If repositories were folder trees, each File object would need to specify a relative path to the source file. This, in turn, complicates the repository and component authoring process when the final arrangement of files in the repository is not yet known.

Table 6 lists the properties for Repository objects. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 6: Repository Object Properties

	Property
	Type
	Default
	Meaning

	RepositoryVSGUID
	GUID
	-
	Uniquely identifies the repository. [A]

	Revision
	Integer
	-
	Repository revision ordinal. [A]

	PlatformGUID
	GUID
	-
	GUID of the owning platform (either a VSGUID or a VIGUID). [A]

	SrcPath
	Text
	See text
	Path to repository files (see below). [E]

	Checked
	Boolean
	False
	True for checked (debug) repository, False for free (non-debug) repository. [A]

	FilesCopied
	Boolean
	N/A
	True if files were copied when carrier was imported. False if files are referenced "in place" (see below).

	DateImported
	Time/date
	N/A
	Time/date when this object was imported into the database.

The SrcPath property specifies the source location to use when copying files from this repository. This property should specify either a folder (for a folder repository) or the path to a CAB file (for a CAB repository).

When present in a carrier file (as XML), the SrcPath property must specify a relative path. This path is always assumed to be relative to the folder that contains the carrier file. The default value for this relative path is ".", so the default source location for the repository files is the same folder as the carrier file.

Notwithstanding the above, to facilitate testing, the CMI must support the use of absolute path names for the SrcPath property in the XML carrier file.

When present in the database, the SrcPath property specifies an absolute path (which may be a UNC path), either to a folder or a CAB file. Thus, during import, the CMI will resolve the relative path and store the resulting absolute path instead.

The use of CAB files or folders, and the SrcPath property, allow for several different repository distribution schemes:

· A carrier file contains a Repository object defined without a SrcPath property. In this case the default path of "." is assumed and the repository files are therefore in the same folder as the carrier file itself.

· A carrier file contains a Repository object defined with a SrcPath property that specifies a relative folder path. In this case the repository files will be present in a sub-folder below the folder containing the carrier file.

· A carrier file contains a Repository object defined with a SrcPath property that specifies a CAB file without a path. In this case the repository files will be present in the CAB file, which will itself be present in the same folder as the carrier file.

· A carrier file contains a Repository object defined with a SrcPath property that specifies a CAB file with a relative path. In this case the repository files will be present in the CAB file, which will itself be present in a sub-folder below the folder containing the carrier file.

· A carrier file is itself contained within a CAB file, and the Repository object is defined without a SrcPath property. In this case the repository files will be present in the CAB file with the carrier file.

Additional variations are possible. Note that the ImportCarrier service of the CMI object must support the last variant described above by providing an additional parameter that specifies the source CAB file.

When a Repository object is imported into the database, the source files referenced by the object (i.e. either a folder or a CAB file) may either be referenced in-place or copied to a new location and then used at that new location. In-place reference is appropriate when the repository source is permanently available, such as a local hard disk or a network share. Copying is appropriate when the source is on temporarily accessible storage. For CDROM based repositories, it may be appropriate to copy the repository files in some circumstances, and not in others (for example, the main operating system repository may be left on the CDROM, while other subsidiary repositories are copied to a local hard disk).

The ImportCarrier service of the CMI object can automatically copy the repository files if requested to do so. If this feature is requested, the FilesCopied property is automatically set to True for the Repository object. Otherwise, the FilesCopied property is set to False. Note that this facility is handled at the carrier file level, and will thus apply to all the repositories defined within that file. Also, since the complete list of files that comprise the repository is not available, the service always copies all the files in the specified repository folder (if the source is a folder and not a CAB file).

A repository is considered unique based upon the combination of the repository GUID and the Checked property. Thus, two repositories may share the same GUID if they have different values for the Checked property. This feature is used to manage the selection of free/checked files during the build process. When a checked repository is created, it should always have the same GUID as the free version of the same repository, but should have the Checked property set to True. The CMI will then use this information to choose the correct repository when copying files.

If repository files are copied during carrier file import, they are always copied to a folder with a name that is the same as the GUID of the Repository object, modified according to the Checked property. If the Checked property is False, the folder name is modified with the ".fre" suffix. If the Checked property is True, the folder name is modified with the ".chk" suffix. Thus, if the ImportCarrier service is provided with a destination folder of C:\Foo, and the carrier file contains two repositories having GUIDs of X and Y, and X is a free repository while Y is a checked repository, the files for repository X will be placed in the C:\Foo\X.fre folder and those for Repository Y will be placed in the C:\Foo\Y.chk folder. Once the copy is complete the SrcPath property in the database will point to this folder.

It is expected that the UI tools will manage a default location for repository imports, so that all copied repositories are stored in folders as described above under a single, shared, folder.

When a Repository object is deleted from the database, the folder and contents specified by the SrcPath property are also deleted if the FilesCopied property is True. Note that this will delete any sub-folders in this folder, but these should not exist anyway, since the ImportCarrier service will never create sub-folders below a repository folder.

Occasionally, the files that comprise a repository may change location. This can happen, for example, if a drive letter is changed, or if a UNC path to a network share is altered. There may also sometimes be a need to move repository files to a new location (for example, to reorganize disk space usage). The MoveSource service of the Repository object provides the means to handle this situation.

The MoveSource service processes two types of move requests:

· A move request, where the repository files have not yet been moved. In this case the service physically moves the files to the new location. This variant is only valid if the FilesCopied property for the repository is True.

· A rebase request, where the repository files have already been relocated. In this case the service simply updates the SrcPath property. This variant is valid regardless of the FilesCopied property.

Note that the MoveSource service does not alter the value of the FilesCopied property.

Removable Media

Repositories may reside on removable media. If the repository is small it will typically be copied to other (non-removable) media when it is imported. If the repository is large it may be desirable to access the repository directly from the media. In this case, the system must check that the correct media is inserted before attempting to access the files in the repository.

To do this, the system can simply check for the presence of the repository folder or CAB file in the appropriate location (SrcPath). If the file is not present and the media is not removable, a fatal error is indicated. If the media is removable, the user should be prompted to insert the correct media. The prompt can be "smart" and use the friendly name of the repository and/or file desired.

One implication of this scheme is that file copy operations during build will be optimal if the copy order is sorted so that media insertions are minimized. However, this reordering is complicated by the constraints of component dependencies. The build section describes an optimal file copying process.

XML Format

As with all component database data, Repository objects are imported within carrier files. Repositories are defined using REPOSITORY elements within the carrier files root DCARRIER element. For example:

<?xml version="1.0"?>

<!DOCTYPE DCARRIER SYSTEM "file:mantis.dtd">

<!-- Example Repository -->

<DCARRIER CarrierRevision ="1">

<REPOSITORY

RepositoryVSGUID="{63813FD4-2A36-4473-A824-C711570F145B}"

PlatformGUID="{63813FD4-2A36-4473-A823-C711570F145B}"

Revision="7"

SrcPath=".\Foo"

/>

</DCARRIER>

Constraints

1. Except where noted below, importing a Repository object with a VSGUID that matches any other primary object GUID in the database is a severe error.

2. Importing a repository that is identical to an existing repository (same VSGUID, same revision, same properties) is a null operation and can be silently skipped.

3. Two repositories with the same VSGUID may co-exist in the database only if they have different values for the Checked property.

4. Importing a repository that has the same VSGUID and revision as an existing repository but has different properties results in a severe error.

5. Importing a repository that has the same VSGUID but a different revision to an existing repository results in a severe error.

Groups

Groups are used to collect components into sets. Each Group object defines a group, and contains the usual properties for a primary object (GUID, revision, name etc). Each component then identifies the groups to which it belongs by listing group GUIDs. There is no limit to the number of groups, or the number of groups to which each component can belong. Group object are revisable objects.

Table 7 lists the properties for Group objects. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 7: Group Object Properties

	Property
	Type
	Default
	Meaning

	GroupVSGUID
	GUID
	-
	Uniquely identifies the group (version specific). [A]

	Revision
	Integer
	-
	Group revision ordinal. [A]

	PlatformGUID
	GUID
	-
	GUID of the owning platform (either a VSGUID or a VIGUID). [A]

	GroupClass
	Integer
	-
	Group class. See table 8. [A]

	DefaultDependencyType
	Integer
	4
	Default dependency type for class 3 groups only. [A]

	DateImported
	Time/date
	N/A
	Time/date when this object was imported into the database.

The GroupClass property defines the class of the group. Group class values and their meanings are shown in table 8.

Table 8: Group Class Values

	Name
	Value
	Meaning

	GroupClassNone
	0
	Not valid.

	GroupClassPackage
	1
	Package group.

	GroupClassCategory
	2
	Category group.

	GroupClassDependency
	3
	Dependency group.

Package Groups

Package groups are used to organize components into groups so that certain operations can be performed en masse. For example, the DeleteComponent service permits a package group GUID to be specified instead of a component GUID. In this case, the service will delete all components that are members of that group.

An example of a package group might be a Windows NT Service Pack. All of the components that comprise the service pack can be marked as members of a Service Pack group.

Package groups are also used to manage automatic configuration upgrades. When a component is added to a configuration (by a process known as instantiation), the component identity is stored in the configuration using a VSGUID, thus "locking" the configuration to a specific version of the component. As new versions of a component are added to the database it may become desirable to upgrade the configuration to use these components. This can be done on a component-by-component basis, but is more easily managed on a group basis. Thus it is possible to request a "bulk upgrade" of a configuration to (say) Service Pack 6. To do this, the CMI first correlates the VIGUID of each instance against the VIGUIDs of the SP6 components. For each match, the instance is upgraded to the SP6 version of the component.

For more information on instance upgrading, refer to Components and Instances below.

Category Groups

Category groups are used to break the full set of components present in a platform into smaller sets for the purposes of UI display. There are actually no semantics within the CMI associated with category groups—they are available entirely for the use of the UI tools.

It is expected that the UI tools will display a list of components broken down by category, and thus a category group is analogous to a file folder on disk. However, unlike file folders, a component can belong to any number of category groups, and this allows the component to appear in more than one category (which is useful if a component straddles two category definitions).

The categorization of components is beyond the scope of this specification. However, it is recommended that the DisplayName property of the category group be viewed as a simple "category path" that provides a main category and a series of sub-categories, each separated by colon characters. For example:

Drivers : Networking : Network Adapters

If this convention is adopted, the UI tools may choose to display the category list as a flat list or a simple category tree. Notice that for readability spaces are placed either side of the colon characters. UI tools that wish to display the category namespace as a tree should strip these spaces when processing the category names.

Dependency Groups

Dependency groups are used to indirectly specify inter-component dependencies. A "direct" dependency is used when one component specifies directly that it is dependent upon another (by GUID). An "indirect" dependency is used when one component specifies that it is dependent upon a dependency group. In this case the dependency is interpreted as meaning that the component is dependent upon all of the components that are members of that group.

Components that specify group dependencies may specify a dependency "type" or they may instead take that type information from the group itself. If they choose the latter alternative, the type information comes from the DefaultDependencyType property of the group.

For more information on dependencies and groups, see Dependencies below.

XML Format

As with all component database data, Group objects are imported within carrier files. Groups are defined using GROUP elements within the carrier files root DCARRIER element. For example:

<?xml version="1.0"?>

<!DOCTYPE DCARRIER SYSTEM "file:mantis.dtd">

<!-- Example Group -->

<DCARRIER CarrierRevision ="1">

<GROUP

GroupVSGUID="{63813FD4-2A36-4473-A824-C711570F145B}"

PlatformGUID="{63813FD4-2A36-4473-A823-C711570F145B}"

Revision="7"

GroupClass="2"

>

<DISPLAYNAME>

Drivers : Display : Matrox

</DISPLAYNAME>

</GROUP>

</DCARRIER>

Constraints

1. Except where noted below, importing a Group object with a VSGUID that matches any other primary object GUID in the database is a severe error.

2. Importing a group that is identical to an existing group (same VSGUID, same revision, same properties) is a null operation and can be silently skipped.

3. Importing a group that has the same VSGUID and revision as an existing group but has different properties results in a severe error.

4. Importing a group that is an older revision of a group already in the database (same VSGUID, lower revision) results in a warning, and the group is not imported.

5. Importing a group that is a newer revision than a group already in the database (same VSGUID, higher revision) overwrites the old group with the newer revision.

Components

The core of Mantis is the component. Many components describe operating system functionality, such as services and device drivers, but components are also used to describe 3rd party software. The features of a run-time image generated by Mantis are controlled entirely by which components (or, more correctly, component instances) are included in the run-time configuration. Component objects are revisable and upgradable primary objects.

A component is comprised of the following items of information:

· A normal set of component properties.

· A list of groups to which the component belongs.

· A list of files that will be copied to the run-time image when the component is built.

· A list of registry keys and values that will be created in the run-time image registry when the component is built.

· A block of script that is used by the component instance.

· A block of HTML that is used when configuring the component instance data.

· A list of dependencies that specify inter-component relationships.

A component is built into a run-time image by being included as part of a configuration. Adding a component to a configuration creates a component instance, (or just instance). An instance is an editable copy of the component state, and also contains a reference back to the component for additional non-editable information. For more information on instances, see Instances below.

Component Properties

Table 9 lists the properties for Component objects. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 9: Component Object Properties

	Property
	Type
	Default
	Meaning

	ComponentVSGUID
	GUID
	-
	Uniquely identifies the component (version specific). [A]

	ComponentVIGUID
	GUID
	-
	Uniquely identifies the component (version independent). [A]

	Revision
	Integer
	-
	Platform revision ordinal. [A]

	PlatformGUID
	GUID
	-
	GUID of the owning platform (either a VSGUID or a VIGUID). [A]

	PrototypeVIGUID
	GUID
	Empty
	Optional prototype component VIGUID. If empty, the default prototype specified by the platform is used. [A]

	RepositoryVSGUID
	GUID
	-
	Repository to use as source of all files. [A]

	Visibility
	Integer
	1000
	Component visibility level. [A]

	MultiInstance
	Boolean
	False
	Component can be instantiated multiple times in the same configuration. [A]

	Released
	Boolean
	True
	If False, the component is not fully authored, and is still pre-release. [A]

	Editable
	Boolean
	True
	If False, component is not configurable by the user. [A]

	ScriptText
	Text
	Empty
	Component configuration script. [E]

	ScriptLanguage
	Text
	Empty
	Identifies the ActiveX scripting engine to be used when processing the script. [A]

	HTMLText
	Text
	Empty
	HTML to be used when configuring this component. [E]

	HelpContext
	Text
	Empty
	Context sensitive help data for this component. [E]

	DateImported
	Time/date
	N/A
	Time/date when this object was imported into the database.

The PrototypeVIGUID property specifies the GUID of a component that is to be used as the prototype for this component. For more information on prototypes, see Instances below. If this property is empty, the default prototype GUID specified by the platform is used.

The RepositoryVSGUID property specifies the GUID of the repository object that will be used as the source of all files for this component. Individual files are specified by secondary File objects that are part of the Component object (see below). All these file objects obtain files from the repository specified by this property.

The Visibility property controls the visibility of the component to the UI tools. This property defines a visibility "level", which defaults to 1000. Components may be filtered based upon their visibility level, with only those components that have a visibility greater than a specified threshold displayed. Components that should never be displayed to the user should have a visibility of 0. Components that should always be visible should have a visibility of 32767.

TODO Define visibility policies and scenarios for component authors and UI tool authors.

The MultiInstance property controls component instancing within a configuration. If this property is False, only one instance of this component is allowed in a configuration. If this property is True, more than one instance of this component is allowed.

The Released property is used internally by Microsoft to track internal component authoring processes. This property must be set to True on all components prior to a general release of the component database.

The Editable property controls the editing of all instances of the component. If this property is False, the component is not configurable by the user. Otherwise, the component may be configured.

The ScriptText and ScriptLanguage properties specify a block of script code that is executed in response to various instance events. Typically the values for these properties are inherited using the prototype inheritance mechanism described below. For more information, see Instances below.

The HTMLText property contains a block of HTML code that is used when editing an instance of this component. For more information, see Instances below. Note that this property does not need to be present for a component to be edited. If the Editable property is True an the HTMLText property is empty the CMI will synthesize a default HTML script to edit the component.

The HelpContext property contains help context information for use by the UI tools.

TODO We need to resolve how help for components gets installed. Where does the help file come from? Where is it stored? Some of this can be resolved at the UI level, but we do need to manage some issues as this will occur during component import.

Component Versioning

Component objects are revisable and upgradable objects. This means that it is permissible for multiple versions of the "same" component to co-exist within the database (see Object Versioning above for more information). It is important to understand how the UI tools will use this information when working with components.

From a UI perspective, the following operations are expected:

· When a user instantiates a component, he/she will be able to choose either a specific version, or the "most recent" version (the default). When a component is instantiated the VSGUID of the component is recorded in the configuration.

· Individual component instances can be updated to specific versions or the most recent version by simply presenting the user with a list of possible versions (and "most recent").

· Bulk updates of component instances in a configuration are also possible. In this case, the user can select a package group, and all the component instances in that package group are then updated to the specific versions of the components in that package.

In order to avoid difficulties when components are distributed in multiple vehicles, the following rules should be obeyed when altering a component:

· A component may be revised only when the changes do not involve any changes that affect the run-time image built by that component.

· A component is upgraded whenever changes are made that affect the run-time image built by that component.

For example, if a component is duplicated into a new repository, and the exact same binary source files are used, then the only change to the component is a new RepositoryVSGUID property. This is a component revision only. However, if newer binary source files are used, then this is a component upgrade.

This policy can cause unexpected side effects if components are deleted from the database. For example, assume the database contains a component Foo. An upgraded version of Foo is shipped as part of SP4. Later, SP5 is shipped, but the Foo component is unaltered. This means that the SP5 version of Foo will be a revision of the SP4 version, not an upgrade. If SP4 is added to the database, the database will contain two versions of Foo: the original and the SP4 version. If SP5 is then added, the SP5 version will be seen as a new revision and will replace the SP4 version. Thus there will still only be two versions of Foo: the original and the SP5 version. If SP5 is removed, it might be expected by the user that the SP4 version will re-appear. However, all that is left is the original (pre-SP4) version of Foo. Thus adding and removing SP5 will have the side effect of removing the SP4 version.

Effects such as these are one reason why deletions from the component database are strongly discouraged.
Group Membership

Components can be members of any number of groups of any class, in any combination. To indicate group membership, a component lists the GUIDs for each group of which it is a member. This list is expressed as zero or more GROUPMEMBER XML elements in a carrier.

Note that the Mantis object model does not expose group memberships directly (i.e. there is no GroupMember object). Instead, each Component object exposes an implied Groups collection.

Files

Each component contains a list of files that will be copied during the build process. Each file is represented as a secondary File object that specifies the source and destination of the file. Table 10 lists the properties for File objects. File objects are expressed as XML FILE elements in carrier files. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 10: File Object Properties

	Property
	Type
	Default
	Meaning

	SrcPath
	Text
	Empty
	Source path for file. May be folder or CAB file. [E]

	SrcName
	Text
	-
	Source file name. [E]

	SrcFileSize
	Integer
	0
	If non-zero, size of source file. If the source file is compressed, this is the size of the file as stored in compressed form. [A]

	SrcFileCRC
	Integer
	0
	If non-zero, CRC of source file. If the source file is compressed, this is the CRC of the file as stored in compressed form. [A]

	DstPath
	Text
	-
	Destination path for file. May be folder or CAB file. [E]

	DstName
	Text
	See text
	Destination name for file (not path). If empty, same as the SrcName property. [E]

	NoExpand
	Boolean
	False
	If True and the source file is compressed, it is not expanded when copied. Otherwise if the file is compressed it is expanded. [A]

	DisplayName
	Text
	Empty
	Optional name of file for UI display. [E]

	Description
	Text
	Empty
	Optional description of file for UI tooltip. [E]

The File object defines a SrcPath property. However, this property is not used by File objects that are owned by Component objects, and this property should always be empty.

The source information for each file is specified by a combination of the SrcName property of the File object and the RepositoryVSGUID of the parent Component object. The repository supplies the actual path to the source file (which may reside in a folder or a CAB file).

To assist in file verification and detection of viruses etc. the SrcFileSize property specifies the size of the source file, and the SrcFileCRC specifies a 16-bit CRC for the source file. Both these properties operate on the raw source file—if the file is compressed they are computer relative to the compressed form of the file. If these properties are zero, then this implies that the size and/or CRC are not specified.

TODO Choose and specify generator polymonial for the CRC.

The DstPath property specifies the destination for the file. This may be either a folder or a .CAB file. Allowing .CAB files here allows components to construct .CAB archives in the run-time image. Note that the source of the file as specified by the repository may also be a .CAB file, however there is no correlation between using a .CAB file source and specifying a .CAB file destination.

The DstName property specifies the destination file name. If absent, the SrcName property is used.

The NoExpand property controls file expansion. If the file is not compressed this field is ignored. If the field is False and the file is compressed, the file is expanded during the copy operation. If the field is True the file is copied without expansion (i.e. straight binary copy). This property controls the expansion of files that were compressed using the older Microsoft COMPRESS program, and which typically have a file extension that ends in an underscore character.

Registry Keys

In addition to a list of files, each component also specifies a list of registry keys and values that are installed during the build of the component. Each registry key entry is represented as a secondary RegKey object that specifies the registry key or value to set. Table 11 lists the properties for RegKey objects. RegKey objects are expressed as XML REGKEY elements in carrier files. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 11: RegKey Object Properties

	Property
	Type
	Default
	Meaning

	KeyPath
	Text
	-
	Full path to registry key. [E]

	ValueName
	Text
	Empty
	Name of value, or empty for default key value. [E]

	Type
	Integer
	-
	Registry key type (from WIN32 API). [A]

	Size
	Integer
	-
	Size of registry data, in bytes. [A]

	RegValue
	Binary
	-
	Actual registry data value. [E]

	DisplayName
	Text
	Empty
	Optional name of registry key for UI display. [E]

	Description
	Text
	Empty
	Optional description of key for UI tooltip. [E]

TODO: Need to describe individual types and representation of binary data. Also need to add fields to define: interactive editing, non-destructive writes.

TODO Details of edit (interactive config) fields and non-destructive registry editing.

Dependencies

Components define system functionality. They do not, however, exist in isolation. Most components require the services of other components to perform their tasks. This relationship is expressed as a dependency relationship between components.

The Mantis architecture exposes a rich dependency model that allows complex inter-component relationships to be described. These relationships ensure that adequate support is available in a run-time image for the selected components, and that the run-time image is constructed in the correct order.

The Mantis dependency model is described in the document Mantis Component Dependency Model. This document also describes a simple grammar to express the various dependency flavors.

Registry dependencies are not explicitly specified by components. Instead, these dependencies are derived by the CMI on the fly when a build process or dependency check is initiated. A registry dependency is deduced by the CMI when a component X performs a non-destructive edit of a registry key and a component Y performs a destructive write to the same registry key. In this case the CMI assumes the dependency X *->> Y.

Each dependency is represented as a secondary Dependency object that specifies the dependency information. Table 12 lists the properties for Dependency objects. Dependency objects are expressed as XML DEPENDENCY elements in carrier files. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 12: Dependency Object Properties

	Property
	Type
	Default
	Meaning

	Class
	Integer
	1
	Dependency class (default is Include). [A]

	Type
	Integer
	4
	Dependency type (default is All). [A]

	DependOnGUID
	GUID
	-
	Dependency target GUID. Either a component VIGUID or a dependency group VSGUID. [A]

	MinRevision
	Integer
	0
	If non-zero, specifies the minimum required revision number of the target component or components. [A]

	DisplayName
	Text
	Empty
	Optional name of file for UI display. [E]

	Description
	Text
	Empty
	Optional description of file for UI tooltip. [E]

The meanings and values of the Class, Type and MinRevision properties are described in the Mantis Component Dependency Model document.

The DependOnGUID property specifies the target of the dependency. This can either be a component, in which case this is the VIGUID of the component (not the VSGUID) or it can be a dependency group (but not a package or category group), in which case this is the VSGUID of the group.

Raw Dependencies

During the configuration authoring process, the UI tools and Mantis use dependency information to ensure that all required components are included in the runtime image.

However, during the component authoring process, it is possible that some dependencies may need to be expressed before the required target components have been created. This is particularly true when authoring a complex set of inter-related components, where the exact boundaries of individual components may not be clear. To assist in this situation, dependencies can be expressed in "raw" form in the database.

Raw dependencies are a temporary assist for component authoring. During the final stages of component authoring all raw dependencies should be converted to normal dependencies. The UI tools and Mantis system does not actually use the raw dependency data (though other tools may do so). It is merely present as an authoring aid and cross-reference checker. Therefore in a fully authored and coherent component database raw dependencies are not required.

A raw dependency declares that a component is dependent upon a resource that is external to that component. Table 13 lists the various resource types that can be expressed in a raw dependency.

Table 13: Raw Dependency Types

	Name
	Value
	Meaning

	None
	0
	Undefined type (not valid).

	RawCLSID
	1
	Dependency is the CLSID of a COM server.

	RawFile
	2
	Dependency is the name (not path) of a file.

	RawRegKey
	3
	Dependency is the full path of a registry key.

Regardless of the raw dependency type, the dependency expressed is always an include dependency—build dependencies cannot be specified in raw form. In effect, a raw dependency specifies that the component is dependent upon whatever other component "owns" the resource that is expressed in the dependency.

Raw dependencies are specified as RAWDEP elements in SLD files, with a single Type attribute that specifies the type of the dependency. The element content specifies the value of the dependency (e.g. the file name). For example:

<RAWDEP Type="RawFile">foo.exe</RAWDEP>

Editing and Configuration

TODO HTML based editing and linkage to/from properties and regkeys for instances.

This is distinct from regkey non-dest editing during build!!!

XML Format

As with all component database data, Component objects are imported within carrier files. Components are defined using COMPONENT elements within the carrier files root DCARRIER element. Each COMPONENT element contains additional FILE, REGKEY, DEPENDENCY and GROUPMEMBER elements to define the secondary objects in the component. For example:

<?xml version="1.0"?>

<!DOCTYPE DCARRIER SYSTEM "file:mantis.dtd">

<!-- Example Group -->

<DCARRIER CarrierRevision ="1">

<COMPONENT

ComponentVSGUID="{63813FD4-2A36-4473-A824-C711570F145B}"

ComponentVIGUID="{63813FD4-2A36-4474-A824-C711570F145B}"

PlatformGUID="{63813FD4-2A36-4473-A823-C711570F145B}"

Revision="23"

Visibility="1200"

MultiInstance="0"

Released="1"

>

<SCRIPTTEXT language="vbscript">

<![CDATA[

[put script code here]

]]>

</SCRIPTTEXT>

<DISPLAYNAME>

Example Component

</DISPLAYNAME>

<FILE

SrcFileSize="14500"

NoExpand="1"

>

<SRCNAME>Foo.exe</SRCNAME>

<DSTPATH>[[windir]]\system</DSTPATH>

</FILE>

<GROUPMEMBER

GroupVSGUID="{63813FD4-2A36-4473-A823-C711570F145B}"

/>

<REGKEY

Type="REG_DWORD"

Size="4"

>

<KEYPATH>HKLM\Software\Microsoft\Foo</KEYPATH>

<VALUENAME>Width</VALUENAME>

<REGVALUE>900</REGVALUE>

</REGKEY>

<DEPENDENCY

Class="Include"

Type="AtLeastOne"

DependOnGUID="{63413FD4-2A36-4473-A823-C711570F145B}"

/>

<RAWDEP Type="RawFile">foo.exe</RAWDEP>

</COMPONENT>

</DCARRIER>

Constraints

TODO

Configurations

A configuration is the set of data that fully describes a specific run-time image for a platform. Configurations are stored outside of the component database as XML files with a file extension of .SLX. Authoring and editing a run-time image is actually achieved by authoring and editing a configuration. Once the configuration is complete, a build process (described below) uses the information in the configuration to generate the actual run-time image.

Configurations are closely tied to platforms. Each configuration is authored against a specific platform, which is chosen when the configuration is created. The choice of platforms then defines the type of run-time image that the configuration can generate, and also (by implication) which components can be included in the run-time image.

A configuration is comprised of the following items of information:

· A set of configuration properties.

· A list of configuration level files that will be copied to the run-time image when the configuration is built.

· A list of configuration level registry keys that will be created in the run-time image registry when the configuration is built.

· A block of script that is obtained from the platform definition.

· A list of component instances that define individual components that have been included in the configuration.

Table 14 lists the properties for Config objects. Properties marked [A] are attribute properties, while properties marked [E] are element properties. Unmarked properties are not expressed in the XML carrier file (.SLD file) and are only present within the Mantis database.

Table 14: Config Object Properties

	Property
	Type
	Default
	Meaning

	Revision
	Integer
	-
	Configuration revision ordinal. [A]

	PlatformVSGUID
	GUID
	-
	GUID of the owning platform. This is always a VSGUID. [A]

	Generation
	Integer
	-
	Generation ordinal from platform at time of last update. [A]

	Checked
	Boolean
	False
	True for checked (debug) build, False for free (non-debug) build. [A]

	ScriptText
	Text
	Empty
	Configuration script. Copied from Platform object when configuration is created and invoked as part of the CMI logic. [E]

	ScriptLanguage
	Text
	Empty
	Identifies the ActiveX scripting engine to be used when processing the configuration script. [A]

	BuildPath
	Text
	C:\OSIMAGE
	Target path for run-time image build. [E]

	WinPath
	Text
	C:\WINNT
	Virtual path for Windows directory on target platform. [E]

	BootDrive
	Text
	C:
	Virtual boot drive.

The Revision property is incremented each time the configuration is edited or updated in any way. When a platform is created this property is initially set to 1.

The PlatformVSGUID property specifies the platform for this configuration. The CMI will not open configurations that specify a non-existent platform. Note that, unlike most other object, this is a VSGUID, and thus the configuration is tied to a specific version of a platform.

The Generation property is updated each time the configuration is saved, and is set to the corresponding value from the appropriate platform object (as specified by the PlatformVSGUID property). When a configuration is opened, if the Generation property of the platform and the configuration are different (either less than or greater than), then it must be assumed that any cached data in the configuration is stale, and this data must be refreshed from the database as necessary. Note that it is possible for the generation of the platform to be less than the configuration if the platform object was deleted and restored after the previous configuration update.

The Checked property selects between a free (non-debug) or checked (debug) build. A free build (when Checked is False) generates a regular retail version of the run-time, while a checked build (when Checked is True) generates a checked/debug version.

The ScriptText and ScriptLanguage properties are set from the corresponding properties of the platform object when the configuration is created. This script is used during certain configuration processes, such as the build process.

The BuildPath property specifies the target build path to be used when building the run-time image. This is the temporary location into which the run-time files are copied, and is not related to the final execution location where the run-time resides and from which it will eventually boot.

The WinPath and BootDrive properties specify the location on the final target hardware of the system boot drive and the system root directory. These are virtual properties in that they refer to locations that will eventually exist on the target hardware.

Creating New Configurations

New configurations are created by the NewConfig service of the CMI. This service creates a Config object, which may later be persisted into an .SLX file.

When a new configuration is created, the properties of the configuration are initialized as follows:

· The Revision property is set to 1.

· The PlatformVSGUID property is set to the VSGUID of the platform that is selected by the user (and passed as a parameter to the NewConfig service).

· The Generation property is set to the value of the Generation property in the platform object.

· The Checked property is set to False. All configurations default to free builds when they are created. This property can later be changed by the UI tools as required.

· The ScriptText and ScriptLanguage properties are copied from the corresponding properties in the platform object, as described above.

· The BuildPath, WinPath and BootDrive properties are set to the values passed as parameters to the NewConfig service.

· If it exists, the OnNewConfig procedure in the configuration script is triggered.

· The component specified by the BaseComponentVIGUID in the platform object is instantiated as the first component in the configuration. This will trigger an OnNewInstance procedure invocation in the configuration script.

The final step "seeds" the configuration with a starter component. This component, which is specified by the platform for all configurations that are based on that platform, acts as a base component for the configuration. This component normally only contains a set of dependencies, and thus ensures that all configurations based upon a particular platform will have a minimum set of components before passing a dependency check.

The root component can never be multi-instance, and is always hidden, though it may on occasions be editable. The root component instance is always assigned the special instance ID of –1 (see Instances below).

Configuration File List

TODO: make like component file with extended properties

Configuration RegKey List

TODO: ditto

XML Format

Configurations are stored in XML files with a file extension of .SLX. A configuration consists of a single CONFIGURATION element that is stored within an XCARRIER element. This element may then contain any number of PROPERTY, FILE, REGKEY and INSTANCE elements. For example:

<?xml version="1.0"?>

<!DOCTYPE DCARRIER SYSTEM "file:mantis.dtd">

<!-- Example Configuration -->

<XCARRIER CarrierRevision="1">

<CONFIG

Revision="14"

PlatformVSGUID="{63813FD4-2A33-4473-A823-C711570F145B}"

Generation="11"

>

<SCRIPTTEXT language="vbscript">

<![CDATA[

[put script code here]

]]>

</SCRIPTTEXT>

<BUILDPATH>c:\temp\ntimages</BUILDPATH>

<DISPLAYNAME>

Example Configuration

</DISPLAYNAME>

<FILE

SrcFileSize="14500"

NoExpand="1"

>

<SRCPATH>e:\binfiles</SRCPATH>

<SRCNAME>foo.exe</SRCNAME>

<DSTPATH>[[windir]]\system</DSTPATH>

</FILE>

<INSTANCE>

[put instance data here]

</INSTANCE>

</CONFIG>

</XCARRIER>

Constraints

TODO

Configuration Scripting

Config objects are active objects. That is, the object contains script that is activated by the CMI in response to specific actions. Many of the operations associated with a Config object are in fact handled by the script in the object, rather than by code wired directly into the CMI.

The script code is expressed in the ScriptText property of the Config object. This property is initially populated from the corresponding property of the Platform object when the configuration is first created. Thus the source for all configuration script is the platform for that configuration.

The CMI supports configuration scripting via the standard ActiveX scripting interfaces. Therefore, the script text can be in any language supported by ActiveX scripting, though VBScript is recommended. The language is specified by the ScriptLanguage property, which is used to locate and load the appropriate ActiveX script engine.

The script is loaded and a script site created when the Config object is created. Therefore, any global statements in the script will execute once when the Config object is created. The script site is destroyed when the Config object is destroyed.

The CMI makes a single global object available in the script namespace. This object, named Self, is identical to the Config object from which the script was derived. This provides the script with access to all the properties and methods of the Config object, and also via this object to other objects in the Mantis object mode. For example, the CMI object can be accessed via the Self.CMI property.

Apart from global script statements, which execute when the Config object is created, the CMI invokes procedures within the script when certain operations occur. Table 15 lists these procedures. Note that all script procedures are optional. If a script procedures is not present, the CMI will take a default action.

Table 15: Configuration Script Procedures

	Procedure
	Usage

	OnInitConfig
	Invoked when Config object created. Always invoked before any other procedures.

	OnNewConfig
	Invoked when configuration created using Platform.NewConfig service.

	OnOpenConfig
	Invoked when existing configuration is reopened via Platform.OpenConfig service.

	OnSaveConfig
	Invoked when configuration is saved via Config.Save or Config.SaveAs services.

	OnCloseConfig
	Invoked when Config object is being closed.

	OnAddFile
	Invoked when a new File object is added to a configuration.

	OnAddInstance
	Invoked when a new Instance object is added to a configuration.

	OnAddRegKey
	Invoked when a new RegKey object is added to a configuration.

	OnDeleteFile
	Invoked when a File object is deleted from a configuration.

	OnDeleteInstance
	Invoked when an Instance object is deleted from a configuration.

	OnDeleteRegKey
	Invoked when a RegKey object is deleted from a configuration.

	OnCheckDepends
	Invoked when the Config.CheckDepends service is used.

	OnBuildRuntime
	Invoked multiple times during the build process initiated by the Config.BuildRuntime service.

Instances

Instance ref counting and "soft" vs "hard" inclusions so we know when to delete soft includes.

Multi-instancing.

Explain instancing and prototypes.

Special: "ScriptXXX" properties are not inherited in the normal way, so we can access all the script blocks.. THIS IS A SPECIAL CASE.

"Instance chain" of components concept.

XML Format

Constraints

Instance Scripting

Build Processing

Optimal file copy process for minimal repository swapping.

The build process in Mantis is responsible for the generation of a run-time image. The input to this process is a configuration and the component database. Builds in Mantis are batch driven and non-interactive so that they may be easily automated.

The CMI provides the backbone model for the build process, but all the OS specific logic for the build is embodied within script in components. This effectively decouples the Mantis architecture from the OS platform and allows the same architecture to build many different platforms, even from the same database.

The actual build process is multi-phase. The phases of the build are as follows:

1. Dependency graph checking.

2. Prebuild: Run tool-level and configuration-level prebuild script.

3. Resolve dependency tree.

4. Destructive registry key phase (component level).

5. Resolve dependency tree.

6. Non-destructive registry key phase (component level).

7. Destructive registry key phase (configuration level).

8. Non-destructive registry key phase (configuration level).

9. Resolve dependency tree.

10. Copy files (component level).

11. Copy files (configuration level).

12. Postbuild: Run configuration level and tool-level postbuild script.

>>> Where is script involved.

>>>File conflict resolution rules (versioning etc.)

>>>Reg conflict resolution rules.

>>>Build order: soft and hard dependencies.

>>two phase registry editing.

File Copy Phase

Ideal process:

1. Traverse component tree to build list of files to be copied in dependency order.

2. Add configuration level list of files.

3. Scan list for duplicate files (same name, same destination). Eliminate earlier files in that list, so over-writes will not occur.

4. Reorder list so files from each repository are copied as a single group.

5. Copy the files.

[End]

Microsoft Confidential
54

_1017847715.vsd

_1022246189.vsd

_1018687055.vsd

_1015583323.vsd

_1015586183.vsd

