
[image: image1.wmf]Windows Operating Systems

SoftPCI Script Engine
Specification

V1.0
BrandonA
Feature Overview
This specification details the scripting support provided by SoftPCI. The scripting support allows you to install a large number of “Virtual” PCI hardware without having to go through the SoftPCI UI. It is assumed that the user has a fundamental understanding of PCI hardware and particularly PCI Configuration Space. Details on configspace can be found in the PCI 2.2 Specification (chapter 6) or chapter 19 of the PCI System Architecture 4th Edition book.
1 Feature Architecture

The script engine support in SoftPCI provides the ability to control literally all aspects of a PCI devices configuration space region. It also allows for dynamic creation of small or large PCI hierarchies. This section describes the Script file syntax.

1.1 Script File

The script file can be a file with any name and any extension desired. Example script files may have *.INI extensions but this is not required. The only requirement currently in place is that the file cannot be UNICODE and must be a standard ANSI text file.

1.2 Script File Sections and Parameters
This spec refers to “sections” as those items which will appear in brackets “[]” and “parameters” are items that follow the given section.
1.2.1 SOFTPCI Section

This section indicates to SoftPCI this is a valid script file. It must be the first section in the file and has only one parameter which is used to denote script file version. Should a new script file format be defined, backward compatibility with older script files will be maintained.
Syntax:

[SOFTPCI]

Version=1
1.2.2 INSTALL Section
This section is used to specify the additional “virtual device” sections that need to be parsed. The parameters are user defined and can by any value desired. Note: The sections that each parameter defines will be parsed in the order they are listed in this section. This is important because you may want to create a virtual bridge with virtual devices behind it and for this to work the bridge must be listed first.
Syntax:

[INSTALL]

device1

device2

bridge1

bridge2

device3

device4

somecoolprivatescriptdevice
1.2.3 User defined Virtual Device Sections
These sections are derived from the “parameters” given to the INSTALL section. They are user defined and can be any value.
Syntax:

[device1]

...
1.2.3.1 Virtual Device Parameters
The parameters for each user defined virtual device section can vary. Only the TYPE parameter is required to install a generic “default” SoftPCI device. The following describes each parameter in-depth.

1.2.3.1.1 TYPE Parameter

This REQUIRED parameter defines what type of device will be installed. Valid values are Device, PPBridge, HPBridge, CBDevice, CBBridge, and Private. These are defined as follows:
Device

– This type defines a default Microsoft SoftPCI device.

PPBridge
– This type defines a default Microsoft SoftPCI-PCI Bridge.
HPBridge
– This type defines a default Microsoft SoftPCI-HOTPLUG Bridge. This is used to simulate the SHPC (Standard HotPlug Controller) hardware that has recently been spec’d out by the PCI SIG.

CBDevice
– Microsoft SoftPCI CardBus Device. (Not Implemented Yet)
CBBridge
– Microsoft SoftPCI-CardBus Bridge. (Not Implemented Yet)
Private
– User defined configspace for all registers. This type requires that the user supplies all required register settings and mask bits needed for the device. Everything is zero by default!
Example:

[device1]

type=device

[bridge1]

type=ppbridge

[foodevice]

type=private
1.2.3.1.2 SLOT Parameter
This parameter is used to describe the “location” for the device being created. It is essentially the Device and Function number for the new device. The PCI Spec defines that the max device number per PCI bus is 32 (0 - 0x1f) and the max functions per device is 8 (0 – 7) (see PCI Spec or Mindshare PCI Architecture for details on PCI Device and Function numbers).
This parameter is OPTIONAL only if you are installing a device that will not have “children”. Therefore if TYPE = Device and SLOT is not specified, SoftPCI will default to BUS 0 (first root bus) and install the device at the next available device number, function 0. If you install a bridge without specifying this parameter then you will not be able to install any devices behind the bridge.
For format for this parameter is XXYY where XX is the device number and YY is the function number. Example:

[device1]

type=device

slot=0500
(Here we are installing this device as DEVICE 5 FUNCTION 0
[device2]

type=device

slot=0501
(Here we are installing this device as DEVICE 5 FUNCTION 1

NOTE: The PCI spec requires that FUNCTION 0 exist before you can install a sub-function. Therefore if you fail to install a FUNCTION 0 device before a FUNCTION 1 - 7 device the install will fail.

1.2.3.1.3 PARENTPATH Parameter
This OPTIONAL parameter defines the “Parent SLOT” or “destination bus” for this new device. If this parameter is omitted then BUS 0 or first root bus is assumed.

The format for this parameter is as follows:
Parentpath = FFXX\DEVFUNC\DEVFUNC\....
The first value (FFXX) differs slightly from the SLOT format and is used to describe ROOT BUS to start from. To describe a root bus, the DEVICE number field must be set to FF and the FUNCTION number field is used to describe the root bus number.

Example:

ParentPath=FF00\0200\0500

In this example we are placing a device specified by "SLOT" behind bridge located at 0500 (which is behind bridge 0200 on root 0). If “SLOT” parameter doesn’t exist then we will default to next available device number, function 0.
1.2.3.1.4 CONFIGSPACE Parameter
This parameter is used to define the current configuration register settings for the device being created. This parameter is optional if TYPE is anything other than “Private”. If this parameter is not specified then the default config registers are used for the device (see section 2.2.3.1.6 for details on default register values). For TYPE=Private devices the user is required to specify the entire configuration register set needed for the type of device being created. Examples of this are the Vendor and Device IDs, HeaderType and Class codes etc. Checkout PCI 2.2 spec for full config space register layout.
Each configuration space buffer for PCI devices is 256 byes in size. Therefore configspace OFFSETS range from 0 – 0xff. The syntax used by the Script Engine is:

OFFSET: VALUE, VALUE, VALUE, ...

Here is an example a SoftPCI device config space buffer:

00: DCBBABCD,04000087,06048000,00810008

10: 00000000,00000000,00818100,0000E0E0

20: FFE0FBF0,0000FFF0,00000000,00000000

30: 00000000,00000000,00000000,00000000

40: 00000000,00000000,00000000,00000000

50: 00000000,00000000,00000000,00000000

60: 00000000,00000000,00000000,00000000

70: 00000000,00000000,00000000,00000000

80: 00000000,00000000,00000000,00000000

90: 00000000,00000000,00000000,00000000

A0: 00000000,00000000,00000000,00000000

B0: 00000000,00000000,00000000,00000000

C0: 00000000,00000000,00000000,00000000

D0: 00000000,00000000,00000000,00000000

E0: 00000000,00000000,00000000,00000000

F0: 00000000,00000000,00000000,00000000
Each OFFSET must be a HEX value from 0 to 0xff separated by a “:” and then the first HEX value at the specified offset. Currently no alignment restrictions exist and you can specify any offset and any value as long as the value is no larger than 4 bytes (ULONG) and does not run past the end of configspace.
Examples:

19: 23

31: 12345678

Note that in the example above we will be modifying offset 0x19 with a one byte value of 0x23. In the next example we are modifying offset 0x31 but we are writing a full 4 byte value starting at this address. This means that 0x31 – 0x34 will be updated! It is strongly recommended that offsets be aligned with value sizes being written to avoid unexpected problems!

Another Example:

04: 07, ffff1234,,8765
Each comma “,” that separates a register value causes the specified OFFSET to be incremented to the next 4 byte (ULONG) boundary before writing the value following the comma. In the example above we start at offset 0x4 and we write the one byte value of 0x7. We then increment the offset to 0x8 and write the 4 byte value 0xffff1234. The next two commas increment out offset to 0x10 (we skipped 0xc) and we write the 2 byte value 0x8765. NOTE: If the beginning offset is not aligned on a 4 byte boundary the offset is still incremented to the next 4 byte aligned offset. Therefore if you start at offset 0x19 then a comma will cause the offset to increment to 0x1c.
Currently there is no limit to the number of values you can place on a single line as long as you stay with in the 256 byte configspace limit.

1.2.3.1.5 CONFIGSPACEMASK Parameter
This parameter is used to define the current configuration register MASK settings for the device being created. This parameter is optional if TYPE is anything other than “Private”. The syntax and format of this parameter is identical to the CONFIGSPACE parameter (see section 2.2.3.1.4 above).
The ConfigSpaceMask is used to define which bits in the devices configuration space can be changed (writable). A register value of zero in the config mask means that the register is “Read Only” and therefore the value currently set at the same offset in the ConfigSpace buffer cannot be changed.
Examples:

ConfigSpace=

00: DCBBABCD, 07
ConfigSpaceMask=

00: 00000000, 03

In the example above we define offset 0x00 to a value of 0xDCBBABCD and offset 0x4 to a value of 0x7. The ConfigSpaceMask for this device has offset 0x00 set to a value of 0 and offset 0x4 set to a value of 0x3. This means that only the first 2 bits (bit 0 and bit 1) at offset 0x4 can get changed and offset 0x00 is “Read Only”.

1.2.3.1.6 Default ConfigSpace and ConfigSpaceMask
Below is a break down of what each device TYPE will use as default config space values. You can override these values using the ConfigSpace and ConfigSpaceMask parameters.
Device – (VEN_ABCD&DEV_DCBA)

Default Config:

00: DCBAABCD,,04800000,00809911

2C: DCBAABCD

Config Space Mask:

04: 02000143,04800000,0000FFFF

PPBridge – (VEN_ABCD&DEV_DCBB)

Default Config:

00: DCBBABCD,04000080,06048000,00810008
Config Space Mask:

04: FF

18: 00FFFFFF,0000F0F0

20: FFF0FFF0,0000FFF0
HPBridge – (VEN_ABCD&DEV_DCBC)

Default Config:

Not defined yet

Config Space Mask:

Not defined yet
CBDevice – (VEN_ABCD&DEV_DCBD)

SUPPORT FOR THIS DEVICE TYPE NOT IMPLEMENTED YET

CBBridge - (VEN_ABCD&DEV_DCBE)

SUPPORT FOR THIS DEVICE TYPE NOT IMPLEMENTED YET

Private - User defined configspace for all registers. Everything is zero by default!
NOTE: Configspace registers and Mask values not defined above are defaulted to 0.
1.3 Example Script File

[SOFTPCI]

Version=1

[INSTALL]

device1
bridge1

device2
SomeCoolPrivateDevice

[device1]

Type=Device

ConfigSpaceMask=

14: FFFFF000

[bridge1]

Type=PPBridge

Slot=0b00

ParentPath=FF00

[device2]

Type =Device

Slot=1600

ParentPath=ff00\0b00
ConfigSpace=

04: 00000007

50: 00f20000,00000000,00000000,00000000

70: 00000000,ABCDEFFF,00000000,00000000

f0: 00000000,,,00000001

ConfigSpaceMask=

04: 00000007

10: ffff0000,00000000,ff01,00000000

9c: 08

fc: 00000001

[SomeCoolPrivateDevice]

Type=private

Slot=0300

ParentPath=FF00\0b00
ConfigSpace=

00: 25308086,20900006,06000002,00000000

10: D0000008,00000000,00000000,00000000

20: 00000000,00000000,00000000,000E1025

30: 00000000,000000A0,00000000,00000000

40: 80808092,80808080,80808080,80808080

50: 00020805,00000000,31111000,00000000

60: 00080008,00080008,00080008,00080008

70: 00080008,00080008,00080008,00080008

80: 00000000,00000000,0000008F,00000000

90: 00030003,08010061,00001955,00380A80

A0: 00200002,1F000217,00000104,00000000

B0: 00000080,00000030,00000000,00891020

C0: 11504044,00000800,0000C200,00000000

D0: 0E002802,33000003,B53109AF,7F060001

E0: 00000000,00000000,252D232E,00000007

F0: 00010000,8030FC74,00000F38,00000000

configspacemask=

70: 000ff000,,,abcd

F0: 12345678,9abcdeff
2 Software Requirements

SoftPCI v1.2 or later.
2.1 Installation Procedures

Script support is provided when SoftPCI is installed.
2.2 Logging Mechanism

Error logging has yet to be implemented but the plan is to have a log file generated that reports any problems that are encountered in the script file parsed.
2.3 Test Components (Modules)

%sdxroot%\base\testsrc\pnp\pcisim\softpci\SoftPCI Specification.doc
The individuals responsible for reviewing and/or approving this proposal should indicate they have done so by putting their name on the line below.

Developer:

__

Development Lead:
__

Test Developer:

__

Test Lead/Manager:
__

Program Manager:
__

_931945241.wmf

