

Microsoft® Windows NT™ POSIX Subsystem

POSIX Conformance Document

�Information in this document is subject to change and does not represent a commitment on the part of Microsoft Corporation. The software and/or databases described in this document are furnished under a license agreement or nondisclosure agreement. The software and/or databases may be used or copied only in accordance with the terms of the agreement. It is against the law to copy the software in any medium except as specifically allowed in the license or nondisclosure agreement. The licensee may make one copy of the software for backup purposes. No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any purpose other than the licensee’s personal use, without the express written permission of Microsoft Corporation.

© 1994, 1995 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, and Windows are registered trademarks and Windows NT and the Windows logo are trademarks of Microsoft Corporation.

Aug 1995�Table of Contents

� TOC \o "1-3" �Table of Contents	� GOTOBUTTON _Toc328211262 � PAGEREF _Toc328211262 �i��

Preface	� GOTOBUTTON _Toc328211263 � PAGEREF _Toc328211263 �iii��

Purpose and Audience	� GOTOBUTTON _Toc328211264 � PAGEREF _Toc328211264 �iii��

Manual Organization	� GOTOBUTTON _Toc328211265 � PAGEREF _Toc328211265 �iii��

Notations and Conventions	� GOTOBUTTON _Toc328211266 � PAGEREF _Toc328211266 �iii��

Section 1: General	� GOTOBUTTON _Toc328211267 � PAGEREF _Toc328211267 �1��

1.1 Scope	� GOTOBUTTON _Toc328211268 � PAGEREF _Toc328211268 �1��

1.3 Conformance	� GOTOBUTTON _Toc328211269 � PAGEREF _Toc328211269 �1��

Section 2: Terminology and General Requirements	� GOTOBUTTON _Toc328211270 � PAGEREF _Toc328211270 �3��

2.2 Definitions	� GOTOBUTTON _Toc328211271 � PAGEREF _Toc328211271 �3��

2.3 General Concepts	� GOTOBUTTON _Toc328211272 � PAGEREF _Toc328211272 �3��

2.4 Error Numbers	� GOTOBUTTON _Toc328211273 � PAGEREF _Toc328211273 �3��

2.5 Primitive-System Data Types	� GOTOBUTTON _Toc328211274 � PAGEREF _Toc328211274 �4��

2.6 Environment Description	� GOTOBUTTON _Toc328211275 � PAGEREF _Toc328211275 �4��

2.7 C Language Definitions	� GOTOBUTTON _Toc328211276 � PAGEREF _Toc328211276 �4��

2.8 Numerical Limits	� GOTOBUTTON _Toc328211277 � PAGEREF _Toc328211277 �4��

2.9 Symbolic Constants	� GOTOBUTTON _Toc328211278 � PAGEREF _Toc328211278 �5��

Section 3: Process Primitives	� GOTOBUTTON _Toc328211279 � PAGEREF _Toc328211279 �6��

3.1 Process Creation and Execution	� GOTOBUTTON _Toc328211280 � PAGEREF _Toc328211280 �6��

3.2 Process Termination	� GOTOBUTTON _Toc328211281 � PAGEREF _Toc328211281 �6��

3.3 Signals	� GOTOBUTTON _Toc328211282 � PAGEREF _Toc328211282 �6��

Section 4: Process Environment	� GOTOBUTTON _Toc328211283 � PAGEREF _Toc328211283 �8��

4.2 User Identification	� GOTOBUTTON _Toc328211284 � PAGEREF _Toc328211284 �8��

4.4 System Identification	� GOTOBUTTON _Toc328211285 � PAGEREF _Toc328211285 �9��

4.5 Time	� GOTOBUTTON _Toc328211286 � PAGEREF _Toc328211286 �9��

4.6 Environment Variables	� GOTOBUTTON _Toc328211287 � PAGEREF _Toc328211287 �10��

4.7 Terminal Identification	� GOTOBUTTON _Toc328211288 � PAGEREF _Toc328211288 �10��

4.8 Configurable System Variables	� GOTOBUTTON _Toc328211289 � PAGEREF _Toc328211289 �10��

Section 5: Directories and Files	� GOTOBUTTON _Toc328211290 � PAGEREF _Toc328211290 �11��

5.1 Directories	� GOTOBUTTON _Toc328211291 � PAGEREF _Toc328211291 �11��

5.2 Working Directory	� GOTOBUTTON _Toc328211292 � PAGEREF _Toc328211292 �11��

5.3 General File Creation	� GOTOBUTTON _Toc328211293 � PAGEREF _Toc328211293 �11��

5.4 Special File Creation	� GOTOBUTTON _Toc328211294 � PAGEREF _Toc328211294 �12��

5.5 File Removal	� GOTOBUTTON _Toc328211295 � PAGEREF _Toc328211295 �13��

5.6 File Characteristics	� GOTOBUTTON _Toc328211296 � PAGEREF _Toc328211296 �13��

5.7 Configurable Pathname Variables	� GOTOBUTTON _Toc328211297 � PAGEREF _Toc328211297 �14��

Section 6: Input and Output Primitives	� GOTOBUTTON _Toc328211298 � PAGEREF _Toc328211298 �15��

6.4 Input and Output	� GOTOBUTTON _Toc328211299 � PAGEREF _Toc328211299 �15��

6.5 Control Operations on Files	� GOTOBUTTON _Toc328211300 � PAGEREF _Toc328211300 �15��

Section 7: Device- and Class-Specific Functions	� GOTOBUTTON _Toc328211301 � PAGEREF _Toc328211301 �17��

7.1 General Terminal Interface	� GOTOBUTTON _Toc328211302 � PAGEREF _Toc328211302 �17��

7.2 General Terminal Interface Control Functions	� GOTOBUTTON _Toc328211303 � PAGEREF _Toc328211303 �18��

Section 8: Language-Specific Services for C	� GOTOBUTTON _Toc328211304 � PAGEREF _Toc328211304 �19��

8.1 Referenced C Language Routines	� GOTOBUTTON _Toc328211305 � PAGEREF _Toc328211305 �19��

8.2 C Language Input/Output Functions	� GOTOBUTTON _Toc328211306 � PAGEREF _Toc328211306 �19��

8.3 Other C Language Functions	� GOTOBUTTON _Toc328211307 � PAGEREF _Toc328211307 �20��

Section 9: System Databases	� GOTOBUTTON _Toc328211308 � PAGEREF _Toc328211308 �21��

9.1 System Databases	� GOTOBUTTON _Toc328211309 � PAGEREF _Toc328211309 �21��

9.2 Database Access	� GOTOBUTTON _Toc328211310 � PAGEREF _Toc328211310 �21��

Section 10: Data Interchange Format	� GOTOBUTTON _Toc328211311 � PAGEREF _Toc328211311 �22��

10.1 Archive/Interchange File Format	� GOTOBUTTON _Toc328211312 � PAGEREF _Toc328211312 �22��

Index	� GOTOBUTTON _Toc328211313 � PAGEREF _Toc328211313 �23��

��Preface

Purpose and Audience

The purpose of this document is to meet the requirements outlined in §1.3.1.2 of POSIX.1 Standard.

This manual is intended for C programmers who are writing POSIX-conformational programs and need to know the behavior of the implementation-defined features discussed in the POSIX.1 Standard.

A conformance document with the following information shall be available for an implementation claiming conformance to this part of ISO/IEC 9945. The conformance document shall have the same structure as this part of ISO/IEC 9945, with the information presented in the appropriately numbered sections, clauses, and subclauses. The conformance document shall not contain information about extended facilities or capabilities outside the scope of this part of ISO/IEC 9945.

The conformance document shall contain a statement that indicates the full name, number, and date of the standard that applies. The conformance document may also list international software standards that are available for use by a Conforming POSIX.1 Application. Applicable characteristics where documentation is required by one of these standards, or by standards of government bodies, may also be included.

The conformance document shall describe the limit values found in <limits.h> and <unistd.h> headers, stating values, the conditions under which those values may change, and the limits of such variations, if any.

The conformance document shall describe the behavior of the implementation for all implementation-defined features defined in this part of ISO/IEC 9945. This requirement shall be met by listing these features and providing either a specific reference to the system documentation or providing full syntax and semantics of these features. The conformance document may specify the behavior of the implementation for those features where this part of ISO/IEC 9945 states that implementations may vary or where features are identified as undefined or unspecified.

Manual Organization

This manual follows the POSIX.1 Standard in format and structure. Section 1 contains the POSIX conformance statement, the C Standard conformance statement, and the contents of the <limits.h> and <unistd.h> header files. Sections 2 through 10 correspond to the same sections in the POSIX.1 Standard.

Notations and Conventions

Throughout this manual, the following typographic notations are used:

Fixed-width font (Courier) is used to reference C language header files, utility names, and to provide examples of system input/output.

Italic typeface is used to reference symbolic function parameters, C language function names, C language data types, and global external variables. Examples: printf(), argc, uid_t, and errno.

Bold typeface is used to reference environment variables and with the term NULL pointer.

Braces are used to enclose symbolic constants and limits defined by various header files. Examples: {ARG_MAX} and {CLK_TCK}.

Brackets are use to enclose symbolic error codes, which are set by many of the functions. Examples: [ENOENT] and [ENOMEM].

�Section 1: General

1.1	Scope

This document defines how the Microsoft® Windows NT™ POSIX subsystem version 3.5 implements the implementation-defined and selected unspecified features in the ISO/IEC 9945-1:1990 POSIX Standard; henceforth, known as the POSIX.1 Standard.

1.3	Conformance

1.3.1	Implementation Conformance

1.3.1.1	Requirements

For an application to run with the behavior specified by the standard, Windows NT systems must be configured to deny the “Bypass Traverse Check” privilege to those users running POSIX.1 applications. Denying the Bypass Traverse Check privilege means that when access to a file is requested, the user must have execute permission on all of the directory components of the path. If the Bypass Traverse Check privilege is granted, access is checked only on the last component of the path.

To deny the Bypass Traverse Check privilege, complete the following steps.

1.	Log in as Administrator.

2.	Start the User Manager.

3.	From the Policies menu, select User Rights.

4.	Choose the Show Advanced User Rights button.

5.	In the Bypass Traverse Checking area, replace “Everyone” with a list of the users who don’t require POSIX.1 conformance.

The system must be configured so that all files and directories, which are to be used by POSIX applications, have ACLs that will allow the stat()� XE "stat()" � and fstat()� XE "fstat()" � functions to return correct permission bits. The simplest way to do this is to use the chmod� XE "chmod" � program from the Microsoft Windows NT version 3.1 Resource Kit (part number 1�55615�602�2). For example, you would type:

chmod -r mode pathname

It is also possible to use the File Manager’s Security Editor to ensure that the ACLs on the files in a hierarchy will generate correct POSIX permission bits. For details, see Chapter 4, “File Manager,” in the Microsoft Windows NT System Guide.

1.3.1.2	Documentation

The Microsoft Windows NT POSIX subsystem version 3.5 conforms to ISO/IEC 9945-1:1990 (IEEE Std 1003.1-1990), Information Technology – Portable Operating System Interface (POSIX) Part 1: System Application Program Interface (API) [C Language].

1.3.3	Language-Dependent Services for the C Programming Language

1.3.3.2	C Standard Language-Dependent System Support

The Microsoft Windows NT POSIX subsystem version 3.5 meets the requirements of POSIX.1, Section 8 by reference to ISO/IEC 9989: 1990, Information Technology – Programming Languages – C/ANSI X3.189-1989, Programming Language – C.

�Section 2: Terminology and �General Requirements

2.2	Definitions

2.2.2	General Terms

2.2.2.4	Appropriate Privileges

A process cannot acquire appropriate privileges.

2.2.2.9	Character Special Files

The Windows NT POSIX subsystem does not provide any character special files.

2.2.2.55	Parent Process ID

When the lifetime of the parent process of a child process ends, the parent process ID of the child process is assigned to a special system process ID of 1.

2.2.2.57	Pathname

Pathnames, which begin with two consecutive slashes, are interpreted as identifying a drive specifier. The format is //x, where x is a disk drive available under Windows NT. For example, //A/tmp would identify the file /tmp on drive A.

2.2.2.68	Process Lifetime

When a process terminates, its thread of control and address space are returned to the system.

2.2.2.69	Read-Only File System

The Windows NT POSIX subsystem does not provide a mechanism to mark an NTFS file system as read-only. NTFS is the only file system type supported by Windows NT that provides all the required semantics of POSIX.1.

2.2.2.83	Supplementary Group ID

A process’s effective group ID is included in its list of supplementary group IDs.

2.3	General Concepts

2.3.1	Extended Security Controls

The Windows NT POSIX subsystem does not implement any extended security controls.

2.3.2	File Access Permissions

No alternate or additional file access control mechanisms are provided.

2.4	Error Numbers

Only those error codes discussed in the POSIX.1 Standard are supported.

The error [EFAULT�XE "EFAULT"�] is reliably detected.

The maximum size of a file is 232 bytes in length (4,294,967,296 bytes).

2.5	Primitive-System Data Types

These type symbols are defined in the indicated headers. The symbols are not specified by POSIX.1.

Type Symbol�Defined In��time_t� XE "time_t" ��<sys/types.h>��wchar_t� XE "wchar_t" ��<ctype.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, <time.h>��wctype_t� XE "wctype_t" ��<ctype.h>, <stdio.h>��2.6	Environment Description

Environment variable names may consist of characters from the portable filename character set, as well as other 8-bit characters, excluding equals ('=') and the NUL character ('\0').

2.7	C Language Definitions

2.7.2	POSIX.1 Symbols

Only the {_POSIX_SOURCE�XE "_POSIX_SOURCE"�} feature test macro is supported.

2.8	Numerical Limits

2.8.3	Run-Time Increasable Values

Symbolic Constant�Value��NGROUPS_MAX�XE "NGROUPS_MAX"��16��2.8.4	Run-Time Invariant Values

Symbolic Constant�Value��ARG_MAX�XE "ARG_MAX"�

CHILD_MAX�XE "CHILD_MAX"�

OPEN_MAX�XE "OPEN_MAX"�

STREAM_MAX�XE "STREAM_MAX"�

TZNAME_MAX�XE "TZNAME_MAX"��14500

not defined

32

20

10��2.8.5	Pathname Variable Values

Symbolic Constant�Value��LINK_MAX�XE "LINK_MAX"�

MAX_CANON�XE "MAX_CANON"�

MAX_INPUT�XE "MAX_INPUT"�

NAME_MAX�XE "NAME_MAX"�

PATH_MAX�XE "PATH_MAX"�

PIPE_BUF�XE "PIPE_BUF"��not defined

255

255

255

512

512��2.9	Symbolic Constants

2.9.3	Compile-Time Symbolic Constants for Portability Specifications

The information shown in the following table is from the <unistd.h> header file.

Symbolic Variable�Value�Comments��_POSIX_JOB_CONTROL�XE "_POSIX_JOB_CONTROL"�

�XE "_POSIX_VERSION"�_POSIX_SAVED_IDS�XE "_POSIX_SAVED_IDS"���is defined

is defined��2.9.4	Execution-Time Symbolic Constants for Portability Specifications

The information shown in the following table is from the <unistd.h> header file.

Symbolic Variable�Value�Comments��_POSIX_CHOWN_RESTRICTED�XE "_POSIX_CHOWN_RESTRICTED"�

_POSIX_NO_TRUNC�XE "_POSIX_NO_TRUNC"�

_POSIX_VDISABLE�XE "_POSIX_VDISABLE"��1

1

0�

��The constant {_POSIX_CHOWN_RESTRICTED�XE "_POSIX_CHOWN_RESTRICTED"�} is defined in the <unistd.h> header file with a value of 1 and the option is provided on all files.

The constant {_POSIX_NO_TRUNC�XE "_POSIX_NO_TRUNC"�} is defined in the <unistd.h> header file with a value of 1 and the option is provided on all files.

Since no terminal devices are provided, the {_POSIX_VDISABLE�XE "_POSIX_VDISABLE"�} option is not applicable to any file.

�Section 3: Process Primitives

3.1	Process Creation and Execution

3.1.1	Process Creation

3.1.1.2	Description

The calling process (parent) and the new process (child), after a call to the fork() function, �XE "fork()"�cannot share open directory streams.

3.1.1.4	Errors

The fork() �XE "fork()"�function does not support the detection of the [ENOMEM�XE "ENOMEM"�] error code.

3.1.2	Execute a File

3.1.2.2	Description

When the environment variable PATH �XE "PATH"�is not defined, the search for the executable file when calling the execlp() �XE "execlp() "�and execvp() functions �XE "execvp() "�is limited to the current directory.

When an exec� XE "exec" � function fails to execute, but is able to locate a process image file, the st_atime �XE "st_atime "�field for the process image file is not updated.

3.1.2.4	Errors

The execution of files other than regular files is not supported.

The exec� XE "exec" � functions support the detection of the [ENOMEM�XE "ENOMEM"�] error code.

3.2	Process Termination

3.2.2	Terminate a Process

3.2.2.2	Description

The child processes of a terminated process are assigned a new parent process ID of 1.

3.3	Signals

3.3.1	Signal Concepts

3.3.1.2	Signal Generation and Delivery

A signal is discarded upon generation when the signal is being blocked and the action associated with the signal is SIG_IGN�XE "SIG_IGN"�.

When a pending signal is generated again, the signal is only delivered once.

There are no conditions, other than those specified by this part of ISO/IEC 9945, under which the implementation generates signals.

3.3.1.3	Signal Actions

When a process sets the actions for the SIGCHLD �XE "SIGCHLD "�signal to SIG_IGN�XE "SIG_IGN"�, the signal will be ignored.

A SIGCHLD �XE "SIGCHLD "�signal will not be generated when a process establishes a signal-catching function for the SIGCHLD �XE "SIGCHLD "�signal while it has a terminated child process for which it has not waited.

3.3.3	Manipulate Signal Sets

3.3.3.4	Errors

If the value of the signo �XE "signo"�argument is an unsupported signal number, then the [EINVAL� XE "EINVAL" �] error condition is detected by the sigaddset(), �XE "sigaddset()"�sigdelset(), �XE "sigdelset()"�and sigismember() �XE "sigismember()"�functions.

3.3.6	Examine Pending Signals

3.3.6.4	Errors

The sigpending() �XE "sigpending() "�function detects the [EFAULT�XE "EFAULT"�] error code when the value of the set�XE "set"� argument is an invalid pointer.

�Section 4: Process Environment

4.2	User Identification

4.2.2	Set User and Group IDs

4.2.2.2	Description

There are no methods for obtaining appropriate privileges to change the real user ID, effective user ID, saved set-user-ID, real group ID, effective group ID, or saved set-group-ID.

4.2.3	Get Supplementary Group IDs

4.2.3.2	Description

The values of the array entries in grouplist[] � XE "grouplist" �(with indices larger than or equal to the returned value from the getgroups() function) �XE "getgroups() "�are unchanged by a call to the getgroups() function.

4.2.4	Get User Name

4.2.4.3	Returns

The login name indicated by the pointer returned from a call to the getlogin() function is overwritten on each call to the getlogin() function.�XE "getlogin()"�

4.2.4.4	Errors

The getlogin() �XE "getlogin()"�function does not support the detection of errors.

4.4	System Identification

4.4.1	Get System Name

4.4.1.2	Description

The values shown in the following table are supported for each member of the utsname structure:

Member Name�Values�Comments��sysname�XE "sysname"��Windows NT�Operating system name��nodename�XE "nodename"���Name of node within network��release�XE "release"��3�Current release of product��version�XE "version"��5�Current version level of release��machine�XE "machine"��i386

i486

Pentium

Intel Unknown

R4000

Alpha 21064

Alpha 21164

Alpha Unknown

PowerPC 601

PowerPC 603

PowerPC 604

PowerPC 603+

PowerPC 604+

PowerPC 620

PowerPC Unknown�Hardware platform��

4.4.1.4	Errors

The uname() �XE "uname()"�function returns the [EFAULT�XE "EFAULT"�] error code when the name� XE "name" � argument is an invalid address.

4.5	Time

4.5.1	Get System Time

4.5.1.4	Errors

The time() �XE "time()"�function sets errno �XE "errno"�to the [EFAULT�XE "EFAULT"�] error code when the tloc �XE "tloc"�argument is an invalid address. In addition, the time() function returns -1 when the date is not within the range 1970 to 2105.

4.5.2	Get Process Times

4.5.2.3	Returns

The return value from a call to the times() �XE "times()"�function can overflow the range of type clock_t�XE "clock_t"�.

4.5.2.4	Errors

The times() �XE "times()"�function returns -1 and sets errno �XE "errno"�to the [EFAULT�XE "EFAULT"�] error code when the buffer �XE "buffer"�argument is an invalid address.

4.6	Environment Variables

4.6.1	Environment Access

4.6.1.3	Returns

The pointer returned from the getenv() �XE "getenv()"�function does not address static data; therefore, it is not overwritten on each call to the getenv() function.

4.6.1.4	Errors

The getenv() �XE "getenv()"�function does not support the detection of errors.

4.7	Terminal Identification

4.7.1	General Terminal Pathname

4.7.1.3	Returns

The pathname addressed by the pointer returned from a call to the ctermid() function �XE "ctermid()"�is overwritten on each call to the ctermid() function.

4.7.1.4	Errors

The ctermid() �XE "ctermid()"�function does not support the detection of errors.

4.7.2	Determine Terminal Device Name

4.7.2.2	Description

The pathname addressed by the pointer returned from a call to the ttyname() function �XE "ttyname()"�is overwritten on each call to the ttyname() function.

4.7.2.4	Errors

The ttyname() �XE "ttyname()"�and isatty() �XE "isatty()"�functions do not support the detection of errors.

4.8	Configurable System Variables

4.8.1	Get Configurable System Variables

4.8.1.2	Description

Only those name� XE "name" � values specified in Table 4-2 of ISO/IEC 9945-1:1990 are supported by the sysconf() �XE "sysconf() "�function.

�Section 5: Directories and Files

5.1	Directories

5.1.2	Directory Operations

5.1.2.2	Description

The readdir() �XE "readdir() "�function does not return entries for dot or dot-dot.

When a file is added to or removed from a directory after a call to the opendir() �XE "opendir() "�or rewinddir() functions, �XE "rewinddir()"�the change is reflected in the set of files returned via the readdir() �XE "readdir() "�function call.

The data returned by calls to the readdir() �XE "readdir() "�function is overwritten between subsequent calls to the function.

The link count of a directory is not incremented when a subdirectory is created.

A directory pointer dirp �XE "dirp "�is unusable after a call to the closedir() function.�XE "closedir()"�

5.1.2.4	Errors

The opendir()�XE "opendir()" � function supports the detection of the [EMFILE�XE "EMFILE"�] and [ENFILE�XE "ENFILE"�] error codes under the conditions described in the POSIX.1 Standard.

The readdir(), �XE "readdir()"�closedir(), �XE "closedir()"�and rewinddir() functions support the detection of the [EBADF�XE "EBADF"�] error code �XE "rewinddir()"�when dirp �XE "dirp "�does not refer to an open directory stream.

5.2	Working Directory

5.2.2	Get Working Directory Pathname

5.2.2.2	Description

When a call to the getcwd()�XE "getcwd()" � function is made and the first argument (buf) � XE "buf"�is NULL, �XE "NULL "�the system returns NULL and sets errno �XE "errno"�to the [EFAULT�XE "EFAULT"�] error code.

5.2.2.3	Returns

The contents of the buffer passed to the getcwd() �XE "getcwd()"�function after an error has occurred are unchanged.

5.2.2.4	Errors

The getcwd()�XE "getcwd()"� function does not support the detection of the [EACCES�XE "EACCES"�] error code.

5.3	General File Creation

5.3.1	Open a File

5.3.1.2	Description

When a call to the open() �XE "open()"�function is made with O_CREAT �XE "O_CREAT"�set, a new file’s group is set to the group ID of its parent directory.

When a call to the open()�XE "open()"�function is made with O_CREAT �XE "O_CREAT"�set, the bits in the third argument (other than the mode bits) are ignored.

When a call to the open()�XE "open()"�function is made with O_EXCL �XE "O_EXCL"�set and O_CREAT �XE "O_CREAT "�not set, the O_EXCL�XE "O_EXCL"� flag is ignored.

When a call to the open()�XE "open()"�function is made for file types other than FIFO, block special and character special, the status of the O_NONBLOCK �XE "O_NONBLOCK "�flag is ignored.

When a call to the open()�XE "open()"�function is made for file types other than FIFO special files, regular files, and terminal device files, the value of the O_TRUNC �XE "O_TRUNC "�flag is ignored.

When a call to the open()�XE "open()"�function is made with O_TRUNC �XE "O_TRUNC "�and O_RDONLY �XE "O_RDONLY "�set, the value of the O_TRUNC�XE "O_TRUNC"� flag is ignored.

5.3.3	Set File Creation Mask

5.3.3.2	Description

Only the permission bits are supported; therefore, the meaning of the bits (other than the permission bits) in the argument to the umask() �XE "umask()"�function are ignored.

5.3.4	Link to a File

5.3.4.2	Description

Linking across file systems is not supported.

See next subclause.

Linking to a directory is not supported; therefore, obtaining appropriate privileges to link to a directory is not supported.

When calling the link()�XE "link()"� function, the calling process needs permission to access the existing file.

5.4	Special File Creation

5.4.1	Make a Directory

5.4.1.2	Description

When calling the mkdir() �XE "mkdir()"�function, the bits (other than the permission bits in mode) have no effect.

When calling the mkdir() �XE "mkdir()"�function, a new directory’s group is set to the group ID of its parent directory.

5.4.2	Make a FIFO Special File

5.4.2.2	Description

When calling the mkfifo() �XE "mkfifo()"�function, the bits (other than the permission bits in mode) have no effect.

When calling the mkfifo() �XE "mkfifo()"�function, a new FIFO group is set to the group ID of its parent directory.

5.5	File Removal

5.5.1	Remove Directory Entries

5.5.1.2	Description

The use of the unlink() �XE "unlink()"�function on directories is not supported; therefore, obtaining the appropriate privileges to use the unlink() function on a directory is not supported.

See previous subclause.

5.5.1.4	Errors

Calling the unlink() �XE "unlink() "�function with a directory is not supported; therefore, the unlink() function does not set errno �XE "errno "�to the [EBUSY�XE "EBUSY"�] error code and return -1 when the directory named by the path�XE "path"� argument cannot be unlinked because it is being used by the system or another process.

5.5.2	Remove a Directory

5.5.2.2	Description

A call to the rmdir() �XE "rmdir() "�function will fail if the named directory is the root directory.

Calling the rmdir() �XE "rmdir() "�function, when the named directory is the root directory or the current working directory of any process, does not succeed and sets errno �XE "errno "�to the [EBUSY�XE "EACCES"�] error code.

5.5.2.4	Errors

A call to the rmdir() �XE "rmdir() "�function does not fail if the named directory is being used by another process.

5.5.3	Rename a File

5.5.3.2	Description

Write access is not required for the old directory or new directory (if it exists) in order for the call to the rename(old,new)�XE "rename()"� function to be successful.

5.5.3.4	Errors

A call to rename(old,new) �XE "rename()"�does not fail when the named directory is being used by another process.

5.6	File Characteristics

5.6.1	File Characteristics: Header and Data Structure

The st_size �XE "st_size "�field in the stat�XE "stat"� structure for FIFO �XE "FIFO "�files contains its PIPE_BUF �XE "PIPE_BUF"�value.

5.6.2	Get File Status

5.6.2.2	Description

No additional or alternate access control mechanisms are defined which would cause stat() or fstat() to fail.

5.6.3	Check File Accessibility

5.6.3.4	Errors

The access() �XE "access()"�function supports the detection of the [EINVAL�XE "EINVAL"�] error code under the conditions described in the POSIX.1 Standard.

5.6.4	Change File Modes

5.6.4.2	Description

Calling the chmod() �XE "chmod() "�function on a file with open file descriptors has no effect on the open file descriptors.

The Windows NT POSIX subsystem restricts the chmod() �XE "chmod() "�function such that no user has permission to set the {S_ISUID} �XE "S_ISUID"�or {S_ISGID} �XE "S_ISGID"�bits on any file; these bits are always ignored.

5.6.5	Change Owner and Group of a File

5.6.5.4	Errors

The chown() �XE "chown() "�function supports the detection of the [EINVAL�XE "EINVAL"�] error code under the conditions described in the POSIX.1 Standard.

5.6.6	Set File Access and Modification Times

5.6.6.2	Description

The Windows NT POSIX subsystem does not extend the utimbuf �XE "utimebuf "�structure.

5.7	Configurable Pathname Variables

5.7.1	Get Configurable Pathname Variables

5.7.1.2	Description

Only the name variables listed in Table 5-2 of ISO/IEC 9945-1:1990 are supported.

When calling the pathconf()�XE "pathconf()"� or fpathconf()�XE "fpathconf()"� functions, the association of the variable name {_PC_PIPE_BUF}�XE "PIPE_BUF"� is supported for all file types.

5.7.1.4	Errors

The pathconf()�XE "pathconf()"� function supports the detection of the [EACCES�XE "EACCES"�], [ENAMETOOLONG�XE "ENAMETOOLONG"�], [ENOENT�XE "ENOENT"�], [ENOTDIR�XE "ENOTDIR"�], and [EINVAL�XE "EINVAL"�] error codes under the conditions described in the POSIX.1 Standard.

The fpathconf()�XE "fpathconf()"� function supports the detection of the [EINVAL�XE "EINVAL"�] and [EBADF�XE "EBADF"�] error codes under the conditions described in the POSIX.1 Standard.

�Section 6: Input and Output Primitives

6.4	Input and Output

6.4.1	Read from a File

6.4.1.2	Description

When the read() function �XE "read()"�is interrupted by a signal after it has successfully read some data, it returns the number of bytes read.

Device special files are not supported; therefore, the read()�XE "read()"�function is not supported when the starting position is at or after the end-of-file for device special files.

When the nbyte�XE "nbyte"� parameter exceeds SSIZE_MAX�XE "SSIZE_MAX"�, the return value from the read() �XE "read() "�function is truncated to type ssize_t�XE "ssize_t"�.

6.4.1.4	Errors

When the device reports a hardware error, the read()�XE "read()"� function returns -1 and sets errno�XE "errno"� to the [EIO�XE "EIO"�] error code.

6.4.2	Write to a File

6.4.2.2	Description

When calling the write() �XE "write() "�function on a file that is not a regular file with nbyte�XE "nbyte"� set to zero, the function returns 0.

When the write()�XE "write()"� function is interrupted by a signal after it successfully writes some data, it returns the number of bytes written.

When the nbyte�XE "nbyte"� parameter exceeds SSIZE_MAX�XE "SSIZE_MAX"�, the return value from the write() �XE "write() "�function is truncated to type ssize_t�XE "ssize_t"�.

6.4.2.2	Errors

When the device reports a hardware error, the write()�XE "write()"� function returns -1 and sets errno�XE "errno"� to the [EIO�XE "EIO"�] error code.

6.5	Control Operations on Files

6.5.2	File Control

6.5.2.2	Description

Advisory record locking is supported only for regular files.

If l_len �XE "l_len "�is negative, then the lock is placed on the file starting with offset l_start �XE "l_start "�- l_len through l_start - 1. If the starting point is before the beginning of the file, then fcntl() �XE "fcntl() "�returns -1 and sets errno to the [EINVAL�XE "EINVAL"�] error code.

6.5.2.2	Errors

The fcntl()�XE "fcntl()"� function does not support the detection of the [EDEADLK�XE "EDEADLK"�] error code.

6.5.3	Reposition Read/Write File Offset

6.5.3.2	Description

Pipes and FIFOs�XE "PIPE files"� are incapable of seeking; therefore, a call to the lseek() �XE "lseek() "�function returns -1 and sets errno�XE "errno"� to the [ESPIPE�XE "ESPIPE"�] error code when the fildes argument is associated with a file of these types.

�Section 7: Device- and �Class-Specific Functions

7.1	General Terminal Interface

The Windows NT POSIX subsystem does not provide asynchronous communication ports. The interface does not support synchronous ports or network connections.

7.1.1	Interface Characteristics

7.1.1.3	The Controlling Terminal

The Windows NT POSIX subsystem does not provide terminal devices or a means by which to associate a controlling terminal with a process.

7.1.1.8	Writing Data and Output Processing

The Windows NT POSIX subsystem does not provide terminal devices; therefore, it does not buffer write()�XE "write()"� output to a terminal device.

7.1.1.9	Special Characters

Changing the START �XE "START character"�and STOP �XE "STOP character"�characters is not supported.

7.1.2	Parameters that Can Be Set

7.1.2.2	Input Modes

The break condition is not defined for contexts other than asynchronous serial data transmission.

The Windows NT POSIX subsystem does not provide terminal devices; therefore, it never sends START or STOP characters to a terminal device.

There are no terminal devices to the open()�XE "open()"� function; therefore, the initial output control value after open() is not defined.

Since the only terminal device file that is supported is /dev/tty which is the keyboard input device, the START and STOP characters are not transmitted because when the keyboard input queue is full, characters cease being accepted and a beep is generated to alert the user. ?

7.1.2.3	Output Modes

Setting OPOST�XE "OPOST"� has no effect.

There are no terminal devices to the open()�XE "open()"� function; therefore, the initial output control value after open() is not defined.

7.1.2.4	Control Modes

There are no terminal devices to the open()�XE "open()"� function, therefore, the initial hardware control value after open() is not defined.

7.1.2.5	Local Modes

Setting IEXTEN �XE "IEXTEN "�has no effect on the interpretation of the ICANON�XE "ICANON"�, ISIG�XE "ISIG"�, IXON�XE "IXON"�, and IXOFF �XE "IXOFF "�flags.

There are no terminal devices to the open()�XE "open()"� function; therefore, the initial local control value after open() is not defined.

7.1.2.6	Special Control Characters

There are no terminal devices to the open()�XE "open()"� function; therefore, the initial values for special control characters after open() are not defined.

7.1.3	Baud Rate Functions

7.1.3.2	Description

The cfsetispeed() �XE "cfsetispeed() "�and cfsetospeed() �XE "cfsetospeed() "�functions do not support the detection of an error when an unsupported baud rate is set.

7.1.3.4	Errors

The cfgetispeed(), �XE "cfgetispeed()"�cfgetospeed(), �XE "cfgetospeed()"�cfsetispeed(), �XE "cfsetispeed() "�and cfsetospeed() �XE "cfsetospeed() "�functions do not support the detection of errors.

7.2	General Terminal Interface Control Functions

7.2.1	Get and Set State

7.2.1.2	Description

The Windows NT POSIX subsystem does not provide any devices that support the general terminal interface; therefore, the tcsetattr() �XE "tcsetattr() "�function does not support differing input and output baud rates.

7.2.2	Line Control Functions

7.2.2.2	Description

The Windows NT POSIX subsystem does not provide any devices that support the general terminal interface; therefore, the tcsendbreak() �XE "tcsendbreak() "�function does not send breaks.

�Section 8: Language-Specific Services for C

8.1	Referenced C Language Routines

8.1.1	Extensions to Time Functions

If the TZ �XE "TZ "� variable is of the “:characters” format, the characters following the colon are ignored.

8.1.2	Extensions to the setlocale() Function

8.1.2.2	Description

The category�XE "category "� argument defines the functions affected by the setlocale() �XE "setlocale()"�function. The locale �XE "locale "�argument is a pointer to a string that specified the name of the locale.

When the locale argument points to an empty string, environment variables can provide a value ($LANG�XE "$LANG"�, $LC_ALL�XE "$LC_ALL"�, or specific variables for the category being set). If none of these environment variables is present or if they have NULL�XE "NULL"� values, the locale �XE "locale "�argument defaults to the value C (the minimal ANSI conforming environment for C translation).

The locale�XE "locale"� argument can be either C or POSIX.

8.2	C Language Input/Output Functions

8.2.1	Map a Stream Pointer to a File Descriptor

8.2.1.4	Errors

The fileno() �XE "fileno() "�function does not support the detection of errors.

8.2.2	Open a Stream on a File Descriptor

8.2.2.2	Description

There are no additional values supported for the type�XE "type"� argument beyond those specified in the POSIX.1 Standard.

8.2.2.4	Errors

The fdopen() �XE "fdopen() "�function supports the detection of errors. If the type�XE "type"� argument is not one of those specified in the POSIX.1 Standard, a call to the fdopen() function returns -1 and sets errno�XE "errno"� to the [EINVAL�XE "EINVAL"�] error code.

8.2.3	Interactions of Other FILE-Type C Functions

Output may be seen twice if a process forks while data is buffered for a stream. Similarly, input may be seen twice under the same circumstances. Otherwise, output and input will be seen exactly once.

8.3	Other C Language Functions

8.3.2	Set Time Zone

8.3.2.2	Description

When the TZ �XE "TZ "�variable is absent from the environment, the default value of “PST8PDT” is used for the time-zone� XE "time-zone" �.

�Section 9: System Databases

9.1	System Databases

The initial working directory may be set from the Windows NT User Manager. If the initial working directory is NULL�XE "NULL"�, then a value of “//C/” is used. The initial working program is always “noshell�XE "noshell"�”.

Only the fields specified in the POSIX.1 Standard for the group and user databases are available to a POSIX-compliant program.

9.2	Database Access

9.2.1	Group Database Access

9.2.1.3	Returns

The data returned from calls to the functions getgrgid() �XE "getgrgid() "�and getgrnam() �XE "getgrnam() "�overwrites the data from previous calls to either function. For example, a call to the getgrgid() function overwrites data from a previous call to the getgrnam() function.

9.2.1.4	Errors

The getgrgid() �XE "getgrgid() "�and getgrnam() �XE "getgrnam() "�functions do not support the detection of errors.

9.2.2	User Database Access

9.2.2.3	Returns

The data returned from calls to the functions getpwuid() �XE "getpwuid()"�and getpwnam() �XE "getpwnam()"�overwrites the data from previous calls to either function. For example, a call to the getpwuid() function overwrites data from a previous call to the getpwnam() function.

9.2.2.4	Errors

The getpwuid() �XE "getpwuid()"�and getpwnam() �XE "getpwnam()"�functions do not support the detection of errors.

�Section 10: Data Interchange Format

10.1	Archive/Interchange File Format

The name of the format-creating utility and format-reading utility is pax. The pax �XE "pax"�utility is fully described in the IEEE POSIX.2-1992 Standard.

10.1.1	Extended tar�XE "tar"� Format

The pax utility supports the use of 8-bit characters in names for users and groups; the character encoding associated with the current locale is used when displaying these names.

? ASCII and any DOS/Windows Code Pages.?

When data is found on the medium that would create an invalid file name, the pax�XE "pax"� utility does not create the file on the file hierarchy and displays an error message to show that the entry is not being stored.

10.1.2	Extended cpio Format

10.1.2.1	cpio Header

The c_rdev�XE "c_rdev"� field is always set to zero.

10.1.2.2	cpio�XE "cpio"� File Name

When data is found on the medium that would create an invalid file name, the pax�XE "pax"� utility does not create the file on the file hierarchy and displays an error message to show that the entry is not being stored.

10.1.3	Multiple Volumes

The pax�XE "pax"� format-creating utility for the tar�XE "tar"� and cpio�XE "cpio"� formats determine what file to read or write for the next volume of a multi-volume archive by prompting the user.

�

�Index

� INDEX \h "—A—" \c "2" ��—$—

$LANG, 19

$LC_ALL, 19

—_—

_POSIX_CHOWN_RESTRICTED, 5

_POSIX_JOB_CONTROL, 5

_POSIX_NO_TRUNC, 5

_POSIX_SAVED_IDS, 5

_POSIX_SOURCE, 4

_POSIX_VDISABLE, 5

_POSIX_VERSION, 5

—A—

access(), 14

ARG_MAX, 4

—B—

buf, 11

buffer, 9

—C—

c_rdev, 22

category, 19

cfgetispeed(), 18

cfgetospeed(), 18

cfsetispeed(), 18

cfsetospeed(), 18

CHILD_MAX, 4

chmod, 1

chmod(), 14

chown(), 14

clock_t, 9

closedir(), 11

cpio, 22

ctermid(), 10

—D—

dirp, 11

—E—

EACCES, 11, 13, 14

EBADF, 11, 14

EBUSY, 13

EDEADLK, 15

EFAULT, 3, 7, 9, 11

EINVAL, 7, 14, 15, 19

EIO, 15

EMFILE, 11

ENAMETOOLONG, 14

ENFILE, 11

ENOENT, 14

ENOMEM, 6

ENOTDIR, 14

errno, 9, 11, 13, 15, 16, 19

ESPIPE, 16

exec, 6

execlp(), 6

execvp(), 6

—F—

fcntl(), 15

fdopen(), 19

FIFO, 13

fileno(), 19

fork(), 6

fpathconf(), 14

fstat(), 1

—G—

getcwd(), 11

getenv(), 10

getgrgid(), 21

getgrnam(), 21

getgroups(), 8

getlogin(), 8

getpwnam(), 21

getpwuid(), 21

grouplist, 8

—I—

ICANON, 17

IEXTEN, 17

isatty(), 10

ISIG, 17

IXOFF, 17

IXON, 17

—L—

l_len, 15

l_start, 15

link(), 12

LINK_MAX, 4

locale, 19

lseek(), 16

—M—

machine, 9

MAX_CANON, 4

MAX_INPUT, 4

mkdir(), 12

mkfifo(), 12, 13

—N—

name, 9, 10

NAME_MAX, 4

nbyte, 15

NGROUPS_MAX, 4

nodename, 9

noshell, 21

NULL, 11, 19, 21

—O—

O_CREAT, 11, 12

O_EXCL, 12

O_NONBLOCK, 12

O_RDONLY, 12

O_TRUNC, 12

open(), 11, 12, 17, 18

OPEN_MAX, 4

opendir(), 11

OPOST, 17

—P—

PATH, 6, 13

PATH_MAX, 4

pathconf(), 14

pax, 22

PIPE files, 16

PIPE_BUF, 4, 13, 14

—R—

read(), 15

readdir(), 11

release, 9

rename(), 13

rewinddir(), 11

rmdir(), 13

—S—

S_ISGID, 14

S_ISUID, 14

set, 7

setlocale(), 19

SIG_IGN, 6, 7

sigaddset(), 7

SIGCHLD, 7

sigdelset(), 7

sigismember(), 7

signo, 7

sigpending(), 7

SSIZE_MAX, 4, 15

ssize_t, 15

st_atime, 6

st_size, 13

START character, 17

stat, 13

stat(), 1

STOP character, 17

STREAM_MAX, 4

sysconf(), 10

sysname, 9

—T—

tar, 22

tcsendbreak(), 18

tcsetattr(), 18

time(), 9

time_t, 4

times(), 9

time-zone, 20

tloc, 9

ttyname(), 10

type, 19

TZ, 19, 20

TZNAME_MAX, 4

—U—

umask(), 12

uname(), 9

unlink(), 13

utimebuf, 14

—V—

version, 9

—W—

wchar_t, 4

wctype_t, 4

write(), 15, 17

��

�PAGE �

� PAGE �22�

�PAGE �ii�

Preface		Preface

�PAGE �13�

Section 1		General

Section 2		Terminology and General Requirements

Section 3		Process Primitives

Section 10		Data Interchange Format

Section 4		Language Specific Services

Section 4		Process Environment

Section 5		Directories and Files

Section 5		Directories and Files

Section 7		Device- and Class-Specific Functions

Section 6		Input and Output Primitives

Section 7		Device- and Class-Specific Functions

Index		Index

Section 8		Language-Specific Services for C

Section 9		System Databases

Section 10		Data Interchange Format

	� PAGE �23�

	� PAGE �23�

