Devctl – Device path exerciser

This program is designed to crash drivers by calling them through various user mode I/O interfaces. It does not test the functionality but rather the dis-functionality of drivers. Drivers should be resilient to bad data from user mode in exactly the same way that kernel entry points have to be. If they are not resilient then they open up denial of service attacks and in some cases a mechanism to bypass system security. This program attempts to locate drivers that don’t handle these calls gracefully:

1) Unexpected entry points into the driver. For example file system query functions to a sound card.

2) Query functions with buffers that are too small to contain all the data to be returned.

3) IOCTL/FSCTL functions with missing buffers or buffers that are two small or contain garbage.

4) IOCTL/FSCTL with direct I/O or type3 buffers with data changing asynchronously.

5) IOCTL/FSCTL with bad pointers for type3 requests.

6) IOCTL/FSCTL and fast path query functions where the users buffer mapping may change asynchronously. Pages become unreadable at arbitrary execution points.

7) Relative opens with strange file names, Opens to strange device objects like the direct device open or file system devices.

8) Issues requests both synchronously and asynchronously to the device.

Graceful behavior does not include any of the following:

1) The system crashes.

2) System memory pools are corrupted.

3) Memory is leaked.

4) IRPs are not completed correctly.

While the program runs it writes lines to the file crashn.log. After each line is written the file is flushed so that in the event of a crash the offending operation is easy to determine should the system be difficult to debug. The flush operation makes this operation expensive so in some places only one portion of a block of operations is logged. For example, only logs for IOCTL for a particular function value are logged rather than each IOCTL. When the program is restarted it takes the last line from crashn.log and places it in the file crash.log. This is assumed to be a failed operation. Operations within crash.log are not performed again by default.

After each operation is performed a check on consumed memory within the system is done. The pool tag database and lookaside information is queried. If this operation caused either one of these memory sources to be depleted the operation is repeated. Obviously this increase in memory consumption may have had nothing to do with the request that was just performed. Typically the second call won’t see an increase and the program continues. Real memory leaks show up as a vast number of repeated calls and the tag in question raised to the top of the poolmon display sorted by difference (d).

For calls that would typically be buffered I/O operations the program tracks the number of exceptions the operating system has dispatched. If the number of exceptions increases the operation is also repeated. Although buffered I/O operations may also reference the users address space, its rare and exception dispatching may signal an internal error that’s being handled by an exception handler masking a true parameter or handle validation problem. Devctl can run with the bottom hardware page mapped so that NULL pointer de-references don’t raise exceptions but return garbage. This gives another possible path to show up bad validation.

Candidates for pool leaks and exceptions are logged to a file (diags.txt) should the leak not crash the system or the many repeated calls are missed by the user.

The programs basic execution passes are:

1) Issue various opens. Synchronous, Asynchronous, Direct, Relative (with various filenames). These catch drivers that are unaware of the relative open semantics and the fact they have to do their own security checks and drivers that may have word integer overflow problems manipulating file names.

2) Issue queries for just about all possible items the driver might understand.

3) Issue miscellaneous functions with the file handle like flush, create section, read and write (for asynchronous handles only). Reads and writes for obscure file offsets are performed. These include append writes where the file offset is a 2^64-1 and reads and writes where the offset is an unsigned 63 bit quantity that wraps to a signed 64 bit value when the length is added on. These catch read and write paths that don’t know the full semantics of file offsets or have overflow problems in their validation.

4) Issue miscellaneous handle less functions such as NtDeletefile, NtQueryFullAttributesFile etc. These exercise some of the fast open paths used for network queries etc.

5) Issue an IOCTL and FSCTL pass with zero length input and output buffers. This pass detects the most common driver error of not checking buffer length properly.

6) Issue random IOCTL and FSCTL calls with random size buffers. For buffered I/O requests the buffers are valid but contain random data. For Direct I/O requests the buffers are valid, contain random data that changes asynchronously with this threads execution and are butted to the ends of H/W pages to make more likely references beyond buffer end will fail.

7) For type 3 buffers the pointers are random.

After IOCTL passes and as part of a ‘miscellaneous function calls pass’ devctl issues a cancel request to the driver. IRPs that were lost (never completed by calling IoCompleteRequest or passed to other drivers but finished with by the device) will cause the process to hang. Through some paths popups appear from the I/O manager warning that IRPs didn’t cancel within an allotted time. These lost IRPs are easily debugged by issuing ‘!process 0 0’ from the debugger. Select the devctl process via a ‘!process xxx’ where xxx is the CID (Client ID) . The IRP (possibly more that one) will show up queued to one of the devctls threads. Use ‘!IRP xxxx’ where xxx is the IRP address to work out what IRP was lost. Occasionally IOCTL or FSCTL requests will pass parameter validation by a driver and will pend for a synchronous request (say some kind of notify request to a driver). Hitting ^C will cause the program to terminate in this case but not for a lost IRP case.

The basic syntax for the program is:

devctl [/i] [/l] [/il nn] [/iu mm] [devnam]

/ and + enable options, - disables options

/a Do all devices in system. Don't prompt for yes/now etc

/al Alert the main thread periodically

/c Enable or disable skipping operations that aborted or crashed

/dl nn Sets lower limit for device type portion of IOCTL and FSCTL code

/du nn Sets upper limit for device type portion of IOCTL and FSCTL code

/e Enable or disable zero length EA's, needed on checked builds

/f Enable or disable all FSCTL paths

/fn Enable or disable FSCTL paths with null buffers

/fr Enable or disable FSCTL paths with random buffers

/fl nn Sets lower limit for function portion of IOCTL and FSCTL code

/fu nn Sets upper limit for function portion of IOCTL and FSCTL code

/h /? Prints this message

/g c h Grabs a handle from another process

/i Enable or disable all IOCTL paths

/if Enable or disable all FSCTL and IOCTL paths

/in Enable or disable IOCTL paths with null buffers

/ir Enable or disable IOCTL paths with random buffers

/l Enable or disable logging and skipping failing functions

/m Enable or disable the misc functions

/n Map zero page so that NULL pointer de-references don't raise

/p Enable or disable the checks on pool usage via tags and lookaside lists

/q Enable or disable the normal handle query functions

/r Enable or disable skipping operations already logged as done

/s Enable or disable the sub or relative opens to obtain handles

/t nn Set maximum number of IOCTL/FSCTL calls made with random buffers

/v Enable or disable the printing of error status values for calls

Devnam is the device to open to issue requests. It must be in native object tree format like ’\device\null’. If this is omitted the program prompts for each device in turn. You can skip to a particular device by typing ‘/prefix’ where prefix is the first few characters of the device you want to match. Here is a typical run:

E:\neillc\devctl>obj\i386\devctl \device\null

Listen socket on port 1192 address 172.31.236.194

Trying to open device \device\null synchronous

Opened crashn.log for reading

Lookaside: PooL, size 128 up 2

Pool: Mdl , Paged up 0, NonPaged up 128

\device\null Open synchronous

Opened file \device\null with access 1f03ff

Pool: File, Paged up 0, NonPaged up 192

Pool: CcBc, Paged up 0, NonPaged up 160

\device\null NtQueryObject ObjectNameInformation

NtQueryObject failed c0000004

NtQueryObject failed c0000004

Lookaside: Pool, size 128 up 1

NtQueryObject failed c0000004

\device\null NtQueryInformationFile FileBasicInformation

\device\null NtQueryInformationFile FileStandardInformation

\device\null NtQueryInformationFile FileInternalInformation

…

…

E:\neillc\devctl>obj\i386\devctl

Listen socket on port 1194 address 172.31.236.194

Device 809A61A0 registered with WMI

Device 8098FC20 registered with WMI

Device 8098F660 registered with WMI

Device 80945B30 registered with WMI

Device 8093DB50 registered with WMI

Device 80948040 registered with WMI

Device 80954040 registered with WMI

Device 80954A80 registered with WMI

Device 80947040 registered with WMI

Device 80947A20 registered with WMI

Device 80946040 registered with WMI

Device 80946A20 registered with WMI

Device 80943A60 registered with WMI

Device 80945040 registered with WMI

Device 80945CF0 registered with WMI

Device 8093DCF0 registered with WMI

Open device Cdfs? /null

Matching "null" against "Cdfs"

Matching "null" against "000126"

Matching "null" against "ASYNCMAC"

Matching "null" against "Afd"

Matching "null" against "Beep"

Matching "null" against "CdRom0"

Matching "null" against "DmLoader"

Matching "null" against "Floppy0"

Matching "null" against "FloppyPDO0"

Matching "null" against "FsWrap"

Matching "null" against "FtControl"

Matching "null" against "Gpc"

Matching "null" against "Hal Pci 0"

Matching "null" against "IdeDeviceP0T0L0"

Matching "null" against "IdeDeviceP1T1L0"

Matching "null" against "IdeFdo809a1288Channel0"

Matching "null" against "IdeFdo809a1288Channel1"

Matching "null" against "IdePort0"

Matching "null" against "IdePort1"

Matching "null" against "Ip"

Matching "null" against "KeyboardClass0"

Matching "null" against "KsecDD"

Matching "null" against "LanmanDatagramReceiver"

Matching "null" against "LanmanRedirector"

Matching "null" against "LanmanServer"

Matching "null" against "Mailslot"

Matching "null" against "MountPointManager"

Matching "null" against "Mup"

Matching "null" against "NTPNP_PCI0000"

Matching "null" against "NamedPipe"

Matching "null" against "Ndis"

Matching "null" against "Null"

Open device Null? y

Trying to open device Null synchronous

Opened crashn.log for reading

Lookaside: Pool, size 32 up 4

Pool: AfdC, Paged up 0, NonPaged up 192

\Device\Null Open synchronous

Opened file Null with access 1f03ff

Pool: File, Paged up 0, NonPaged up 192

\Device\Null NtQueryObject ObjectNameInformation

NtQueryObject failed c0000004

NtQueryObject failed c0000004

Lookaside: Pool, size 128 up 1

Lookaside: Pool, size 192 up 1

NtQueryObject failed c0000004

\Device\Null NtQueryInformationFile FileBasicInformation

\Device\Null NtQueryInformationFile FileStandardInformation

\Device\Null NtQueryInformationFile FileInternalInformation

\Device\Null NtQueryInformationFile FileEaInformation

\Device\Null NtQueryInformationFile FileAccessInformation

\Device\Null NtQueryInformationFile FileNameInformation

\Device\Null NtQueryInformationFile FileModeInformation

\Device\Null NtQueryInformationFile FileAlignmentInformation

Lookaside: PooL, size 128 up 1

Pool: Sect, Paged up 128, NonPaged up 0

Pool: CcSc, Paged up 0, NonPaged up 320

\Device\Null NtQueryInformationFile FileAllInformation

\Device\Null NtQueryInformationFile FileStreamInformation

Pool: VadS, Paged up 0, NonPaged up 32

\Device\Null NtQueryInformationFile FilePipeInformation

\Device\Null NtQueryInformationFile FilePipeLocalInformation

\Device\Null NtQueryInformationFile FilePipeRemoteInformation

^C

E:\neillc\devctl>

Here is an example leak:

C:\>g:\nt\nttest\security\tiger\devctl\obj\i386\devctl -if

…

Open device \Device\000167? /dfs

…

Open device \Dfs? y

…

\Dfs Open synchronous

Opened file Dfs with access 1f03ff

…

\Dfs NtQueryVolumeInformationFile FileFsVolumeInformation

Pool: Mup , Paged up 0, NonPaged up 131136

Lookaside: Scs$, size 64 up 2

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Hal , Paged up 0, NonPaged up 288

Pool: Irp , Paged up 0, NonPaged up 384

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Lookaside: Ntfi, size 264 up 1

Pool: Mup , Paged up 0, NonPaged up 130944

Lookaside: Ntfi, size 264 up 2

Lookaside: Scs$, size 64 up 1

Pool: Mup , Paged up 0, NonPaged up 131008

Pool: Mup , Paged up 0, NonPaged up 129536

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131008

Lookaside: Ntfi, size 264 up 1

Lookaside: Scs$, size 64 up 1

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 130752

Pool: Mup , Paged up 0, NonPaged up 130944

Pool: Mup , Paged up 0, NonPaged up 131008

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Lookaside: PooL, size 256 up 1

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Mup , Paged up 0, NonPaged up 131136

Lookaside: Scs$, size 64 up 2

Pool: Mup , Paged up 0, NonPaged up 131136

Pool: Hal , Paged up 0, NonPaged up 288

Pool: Irp , Paged up 0, NonPaged up 768

^C

 Memory: 65080K Avail: 3424K PageFlts: 0 InRam Krnl: 4632K P: 1916K

 Commit: 52972K Limit: 666632K Peak: 108844K Pool N: 6312K P:10324K

 Tag Type Allocs Frees Diff Bytes Per Alloc

 Mup Nonp 84551 (0) 9870 (0) 74681 4779584 (0) 64

 SYSA Paged 2227 (0) 750 (0) 1477 67136 (0) 45

 CM Paged 6542 (0) 5854 (0) 688 8877504 (0) 12903

 Vad Nonp 1460 (0) 1000 (0) 460 29440 (0) 64

 File Nonp 3434 (0) 3137 (0) 297 57024 (0) 192

C:\>type diags.txt

\Dfs NtQueryVolumeInformationFile FileFsAttributeInformation Pool: Mup , Paged

 up 0, NonPaged up 65600

The IOCTL and FSCTL passes take forever as the space is huge. You can get must quicker coverage if you know the range of IOCTL’s the driver accepts. Here is the procedure with IPNAT:

//

// NAT-supported IOCTL constant declarations

//

#define IOCTL_IP_NAT_SET_GLOBAL_INFO \

 _IP_NAT_CTL_CODE(0, METHOD_BUFFERED, FILE_WRITE_ACCESS)

#define IOCTL_IP_NAT_CREATE_INTERFACE \

 _IP_NAT_CTL_CODE(2, METHOD_BUFFERED, FILE_WRITE_ACCESS)

…

…

#define IOCTL_IP_NAT_DELETE_REDIRECT \

 _IP_NAT_CTL_CODE(13, METHOD_BUFFERED, FILE_WRITE_ACCESS)

The first number in this macro is the function number. You can limit devctl to just cover this range with a command like devctl +fl 0 +fu 13. This limits both the IOCTL and FSCTL zero length and random buffer calls. This will run quite quickly so its probably worth increasing the number of random buffers the program throws at the driver with say +t nnnn.

