
Test Plan for IoCreateDeviceSecure

04/25/2002

Bogdan Andreiu, NT Base Test

1. Description

IoCreateDeviceSecure is a new API that allows driver writers to set security descriptors on the device objects they create. This applies to raw PDOs and legacy devices for which the PnP mechanism of specifying a security descriptor through an INF cannot be applied. This closes the security hole of not being able to set a default security descriptor on a newly created device object, thus opening a small window in which a malicious application can access the unprotected device object.

The API will be added to XP SP1 and .NET server as well.

For Windows XP this function is defined as a wrapper in a separate library, so no code changes to XP SP1 will be needed. For .NET Server, this will probably be made as part of the kernel. A reason for this is that the library wrapper attempts to load a kernel version of the API, so a driver written with the wrapper library for SP1 can actually use a newer and better version implemented in the operating system when running in .NET Server.

The prototype of the function is like this:

NTSTATUS

IoCreateDeviceSecure(

 IN PDRIVER_OBJECT DriverObject,

 IN ULONG DeviceExtensionSize,

 IN PUNICODE_STRING DeviceName OPTIONAL,

 IN DEVICE_TYPE DeviceType,

 IN ULONG DeviceCharacteristics,

 IN BOOLEAN Exclusive,

 IN PCUNICODE_STRING DefaultSDDLString,

 IN LPCGUID DeviceClassGuid,

 OUT PDEVICE_OBJECT *DeviceObject

)

The first 6 parameters are identical to the first 6 parameters of IoCreateDevice, are described in the DDK and will not be discussed here except in the context of the overriding class GUID. A note about DeviceName: this API will work only for named objects (only in this context does the security descriptor make sense).
DefaultSDDLString is a SDDL string that describes the security descriptor to be applied.
The following is taken from the function comments (so it may change):

Only the subset of the SDDL format is currently supported. The format

is:

 D:P(ACE)(ACE)(ACE), where (ACE) is (AceType;;Access;;;SID)

Where:

 AceType - Only Allow ("A") is supported.

 Access - Rights specified in either hex format (0xnnnnnnnn), or via the

 SDDL Generic/Standard abbreviations

 SID - Only a subset of the SDDL abbreviations are supported

 SY (System),

 BA (Admin),

 WD (World),

 IU (Interactive Users),

 LS (Local Service),

 RC, AN, BG, BU, NU, and NS

 The S-w-x-y-z form for SIDs is not supported

 The unmentioned ace fields (AceFlags, ObjectGuid, InheritObjectGuid)

 are not supported.

Example -

 "D:P(A;;GA;;;SY)" which is Allow System to have Generic All access.

DeviceClassGuid is the GUID of a class whose settings can be used to override the settings specified in the API’s parameters. The parameters can be overridden are: DeviceType, DeviceCharacteristics, Exclusive and Security Decsriptor. The idea is that an administrator can modify these settings class-wide and the modified settings can be applied to the new device object. One important detail is that the security descriptor set by IoCreateDeviceSecure has the SE_DACL_DEFAULTED bit set, but when loading security settings from the registry, the settings will be ignored if this bit is set. This way, a more recent version on the driver can apply better default security settings without giving to change the registry. On the other hand, security settings set through other mechanisms (like SetupDiSetClassRegistryProperty) will have this bit cleared and will override driver-supplied settings.
DeviceObject – the same as the last parameter of IoCreateDevice, receives a pointer to the device object that is created.

2. Test cases

The test will use a driver that calls this API with various parameters as described below. Some test cases will involve manual operations. Automating them is not a priority for now. Also, for the first version we will use the bulk of the logic in the kernel-mode driver (e.g. we will check that the function’s return value and expected result are correct in user mode rather than in user mode). This may change in the future.
The central problem is how to check that an SDDL string applied through this mechanism is indeed applied. This task is complicated by the fact that we cannot just retrieve the security descriptor from kernel-mode and apply a reverse conversion (SD to SDDL string) because the access-rights mapping differs (I/O Manager maps differently certain access rights).

In order to check this we build a security descriptor from the SDDL string using the user-mode APIs (ConvertStringSecurityDescriptorToSecurityDescriptor). Then we create a device object using the regular IoCreateDeviceObject, open a handle to it and apply the security descriptor using NtSetSecurity API. Finally we compare at the binary level the 2 security descriptors: the one got from the device object after IoCreateDeviceSecure and the one got from the device object after IoCreateDevice and NtSetSecurityDescriptor).

Incorrect Device Name

2.1 NULL DeviceName and no Autogenerated flag. Expected failure
2.2 NULL DeviceName but Autogenerated flag set, success is expected.
NULL DeviceClassGuid, there is no override

2.3 All parameters valid, NULL DeviceClassGuid. We will check that a device object is created, then we will retrieve his security descriptor through ObGetSecurityDescriptor and check it matches the SDDL string passed in.

2.4 Repeat 2.3 with a different SDDL string, expect settings are not overridden (a NULL DeviceClassGuid does not entail creating a Class that will override subsequent calls, etc.)

Non-NULL DeviceClassGuid, security override works

2.5 The same as 2.3, but use a non-NULL DeviceClassGuid. Expect success and security descriptor matches the SDDL string.

2.6 Repeat 2.5 with a different SDDL string and check that the security settings are not overridden by the class security settings set before. This is because we did not clear the SE_DACL_DEFAULTED bit in the security descriptor by using a external mechanism (like SetupDiSetClassRegistryProperty).
2.7 Use SetupDiSetClassRegistryProperty to set a different security descriptor and check that in this case, the driver settings are overridden by the class settings.
2.8 Repeat 2.5 across a reboot to check that class settings are persistent.

2.9 Edit the class security settings in the registry and check that the new settings will be applied in a new override instead of the old ones.
2.10 Check that Deny ACLs can be applied through the registry override mechanism (since there is no SDDL string to be parsed in this case).
Non-NULL DeviceClassGuid, non-security overrides work (DeviceType, Characteristics and Exclusivity).

The driver will be instructed to call IoCreateDeviceSecure with these 3 parameters different from what is in the class registry key. This way, we can check that the class settings ovevride what the device passes in.

2.11 Check that DeviceType can be overridden by accessing the device object somehow.
2.12 Check that Device Characteristics can be overridden. One interesting question is what happens if somehow the class override specifies FILE_AUTOGENERATED_DEVICE_NAME.
2.13 Check that Exclusive flag can be overriden .
Various SDDL strings
2.14 Pass in an invalid SDDL string and a NULL DeviceClassGUID (for simplicity) and check that an error is returned.

2.15 Pass in a valid SDDL string but with settings that do not apply to device objects (e.g. inherit access rights, etc.)

2.16 We need to try different strings that would make sense for a driver writer to use. A list of strings used is presented here (TRUE near the string means we expect to succeed in creating a secure device object, FALSE means we exepect to fail):

 {L"D:P(A;;GA;;;SY)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GRGX;;;BA)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GRGW;;;WD)(A;;GR;;;RC)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GA;;;BA)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GR;;;WD)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GR;;;WD)(A;;GR;;;RC)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GRGWGX;;;WD)(A;;GRGWGX;;;RC)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;0x0004;;;WD)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GA;;;BA)(A;;GA;;;WD)(A;;GA;;;RC)", TRUE},

 //

 // Various groups

 //

 {L"D:P(A;;GA;;;SY)(A;;GR;;;AO)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;AU)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;BA)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;BG)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;BO)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;BU)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;CA)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;DA)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;DG)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;DU)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;IU)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;LA)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;LG)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;NU)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;PO)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;PU)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;RC)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;SO)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;SU)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;WD)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;NS)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;LS)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;AN)", TRUE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;RN)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;RD)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GR;;;NO)", FALSE},

 //

 // Weird, but valid

 //

 {L"D:P(A;;GA;;;SY)(A;;GA;;;BA)(A;;GA;;;BA)(A;;GA;;;BA)(A;;GA;;;BA)", TRUE},

 //

 // Some bad strings - deny access

 //

 {L"D:P(A;;GA;;;SY)(D;;GW;;;IU)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GA;;;BA)(A;;GA;;;BA)(A;;GA;;;BA)(D;;GW;;;IU)", FALSE},

 {L"D:P(A;;GA;;;SY)(A;;GA;;;BA)(D;;GX;;;SU)", FALSE},

 //

 // SACL

 //

 {L"S:P(A;;GA;;;SY)", FALSE},

 //

 // Object and container inheritance

 //

 {L"D:P(A;OICI;GA;;;SY)", FALSE},

 //

 // Weird

 //

 {L"D:WEIRD", FALSE},

 {L"D:P(A;;GA;;XX)", FALSE},

 {L"D:P(A;;QA;;BA)", FALSE}

 //

2.17 Use the SDDL strings in a file (sddls.txt). All the strings in this file are expected to fail (they contain syntax elements that are not supported by our parser).
Miscelaneous
2.18 Check that registry settings can be modified only by administrators and have no relationship to the security descriptor being set. In other words the class key that is created can be modified by administrators only, irrespective of what the SDDL string is.
2.19 Check that the mechanism to use a kernel import is present works. This will be difficult to test, but we will provide a private kernel with implements IoCreateDeviceSecure and check that the kernel function is used instead of the library one.

2.20 Check that all the default strings can be successfully used. We are not going to check that they exactly represent what they want, we will leave it to a detailed analysis from the security team. We will only check that all the defined strings in wdmsec.h are syntactically correct and can be applied to create device objects.
3. Usage
The files needed by this test are:

wdmsectest.sys, the kernel-mode driver

wdmsectest.exe the user-mode application

wdmsect.inf – the INF file needed to install the kernel-mode driver
ntlog.dll – library used to logging results. Can be obtained from:

\\ntdev\release\main\usa\2600\{x86fre|ia64fre}\test\commontest
sddls.txt – contains the list of interesting SDDL strings

To run the test, make sure ntlog.dll is in the LoadLibrary path, copy wdmsect.inf to %windir%\inf and wdmsectest.sys to %windir%\system32\drivers, then start:

wdmsectest.exe

The first time, we will perform a PnP installation of the driver. The test application opens a handle to the test device and instructs it to execute test cases. The results are logged in a file called wdmsectest.log in the current directory (see below for an example of a log file). Note that the test may break into the debugger if two inconsistent security descriptors are found to facilitate examining the differences between the two.
We will run tests on the following platforms with driver verifier enabled on wdmsectest.sys:

· x86 .NET Server (ADS)

· IA64 .NET Server (ADS)

· x86 XPSP1 (Pro)

· IA64 XPSP1 (Pro)

· x86 Windows 2000. This may require some changes to the test code since some APIs may not work on Windows 2000.
Sample log file (wdmsectest.log):

**** NTLOG INITIATED +DATE+05/04/2002 +TIME+13:13:52

**** NtLog date: Thu Aug 23 18:56:27 2001

**** Exe date: Sat May 04 12:12:03 2002

**** Processor : Intel CPU, Pentium III (Coppermine core), stepping 3, 256K on-chip cache detected

**** CPUS : 1

**** System : Windows NT 5.1[2600], Retail, Hydra Client, Mouse, Service Pack 1, v.1027

**** Build Lab : 2600.xpsp1.020424-1943

**** Vid Driver: rdpdd

**** Chip Type: RDPDD

**** DAC Type : Unknown

**** Adapter : Unknown

**** MiniPort : RDPDD

**** VRAM : 0

**** Hertz : 42

**** X Res : 1152

**** Y Res : 864

**** BPP : 16

**** Planes : 1

**** RGB Masks: (565)(bgr)

**** X Pos : 0

**** Y Pos : 0

**** Machine : BOGDANA-ACP2

**** User Name : bogdana

**** Language : English

**** KM boundary: 2

**** ProductOptions: None

Proc ID Proc.Name Wrkng.Set PagedPool NonPgdPl Pagefile Commit Handles Threads UserObj GdiObj

 0 Idle Process-> 20 0 0 0 0 0 1 N/A N/A

 4 System-> 44 0 0 0 32 234 47 0 0

 532 smss.exe-> 280 5 0 152 152 29 2 0 0

 596 csrss.exe-> 2260 35 16 1748 1748 312 12 70 73

 620 winlogon.exe-> 14136 61 395 13528 13528 627 22 13 46

 664 services.exe-> 2724 25 94 3708 3708 281 15 0 4

 676 lsass.exe-> 3152 36 50 3860 3860 367 22 0 4

 848 svchost.exe-> 1616 20 42 1064 1064 214 9 0 4

 948 svchost.exe-> 12844 88 241 15276 15276 1148 69 3 4

 1148 svchost.exe-> 1180 13 14 636 636 63 5 0 4

 1180 svchost.exe-> 2156 31 47 2044 2044 188 15 1 4

 1292 spoolsv.exe-> 5652 29 18 3088 3088 168 11 0 4

 512 explorer.exe-> 10388 50 35 5212 5212 233 11 77 217

 1772 cmd.exe-> 1164 15 1 1440 1440 20 1 0 4

 1560 csrss.exe-> 384 25 23 728 728 80 9 N/A N/A

 1556 winlogon.exe-> 3784 37 12 1504 1504 137 11 N/A N/A

 784 rdpclip.exe-> 3480 29 18 1396 1396 97 4 4 17

 348 logon.scr-> 488 13 1 360 360 14 1 N/A N/A

 204 wuauclt.exe-> 4384 31 3 1340 1340 90 6 9 15

 2000 ntsd.exe-> 2720 10 1 1416 1416 41 1 0 0

 312 WdmSecTest.exe-> 2164 16 1 424 424 28 1 0 8

138.3CC : +VAR+PASS 0 : Test Device Name

138.3CC : +VAR+PASS 1 : Test NULL DeviceClassGuid

138.3CC : +VAR+PASS 2 : Test Persistent DeviceClassGuid

138.3CC : +VAR+PASS 3 : Change persistent class settings

138.3CC : +VAR+PASS 4 : Apply Deny ACL

138.3CC : VAR[INFO] 5 : Error 0xd after SetClassRegistryProperty(NULL Security)

138.3CC : VAR[INFO] 5 : This may be OK if the class does not exist

138.3CC : +VAR+PASS 5 : Test Temporary DeviceClassGuid

138.3CC : +VAR+PASS 6 : Test Temporary DeviceClassGuid with overriding security settings

138.3CC : +VAR+PASS 7 : Test Temporary DeviceClassGuid with overriding non-security settings

138.3CC : +VAR+PASS 8 : Test ACL set on Class Key by the WdmSec library

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GRGX;;;BA) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GRGW;;;WD)(A;;GR;;;RC) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GA;;;BA) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GR;;;WD) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GR;;;WD)(A;;GR;;;RC) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;GRGWGX;;;WD)(A;;GRGWGX;;;RC) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GRGWGX;;;BA)(A;;0x0004;;;WD) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GA;;;BA)(A;;GA;;;WD)(A;;GA;;;RC) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;AO)

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;AU) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;BA) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;BG) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;BO)

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;BU) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;CA)

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;DA)

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;DG)

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;DU)

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;IU) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;LA)

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;LG)

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;NU) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;PO)

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;PU)

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;RC) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;SO)

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;SU)

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;WD) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;NS) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;LS) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GR;;;AN) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;RN)

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;RD)

138.3CC : VAR[PASS] 9 : Status c0000073 (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GR;;;NO)

138.3CC : VAR[PASS] 9 : Applied SDDL D:P(A;;GA;;;SY)(A;;GA;;;BA)(A;;GA;;;BA)(A;;GA;;;BA)(A;;GA;;;BA) and got back a consistent security descriptor

138.3CC : VAR[PASS] 9 : Status c000000d (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(D;;GW;;;IU)

138.3CC : VAR[PASS] 9 : Status c000000d (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GA;;;BA)(A;;GA;;;BA)(A;;GA;;;BA)(D;;GW;;;IU)

138.3CC : VAR[PASS] 9 : Status c000000d (as expected) after creating devobj with SDDL D:P(A;;GA;;;SY)(A;;GA;;;BA)(D;;GX;;;SU)

138.3CC : VAR[PASS] 9 : Status c000000d (as expected) after creating devobj with SDDL S:P(A;;GA;;;SY)

138.3CC : VAR[PASS] 9 : Status c000000d (as expected) after creating devobj with SDDL D:P(A;OICI;GA;;;SY)

138.3CC : VAR[PASS] 9 : Status c000000d (as expected) after creating devobj with SDDL D:WEIRD

138.3CC : VAR[PASS] 9 : Status c000000d (as expected) after creating devobj with SDDL D:P(A;;GA;;XX)

138.3CC : VAR[PASS] 9 : Status c000000d (as expected) after creating devobj with SDDL D:P(A;;QA;;BA)

138.3CC : +VAR+PASS 9 : Various SDDL strings

138.3CC : +VAR+PASS 10 : Various SDDL strings from a file

138.3CC : NTLOG REPORT ---

138.3CC : Tests Total 0 | Variations Total 11

138.3CC : --

138.3CC : Tests Passed 0 0% | Variations Passed 11 100%

138.3CC : Tests Warned 0 0% | Variations Warned 0 0%

138.3CC : Tests Failed sev3 0 0% | Variations Failed sev3 0 0%

138.3CC : Tests Failed sev2 0 0% | Variations Failed sev2 0 0%

138.3CC : Tests Failed sev1 0 0% | Variations Failed sev1 0 0%

138.3CC : Tests Blocked 0 0% | Variations Blocked 0 0%

138.3CC : Tests Aborted 0 0% | Variations Aborted 0 0%

138.3CC : --

Proc ID Proc.Name Wrkng.Set PagedPool NonPgdPl Pagefile Commit Handles Threads UserObj GdiObj

 0 Idle Process-> 20 0 0 0 0 0 1 N/A N/A

 4 System-> 44 0 0 0 32 234 47 0 0

 532 smss.exe-> 280 5 0 152 152 29 2 0 0

 596 csrss.exe-> 2260 35 16 1748 1748 313 12 70 73

 620 winlogon.exe-> 14136 61 395 13528 13528 627 22 13 46

 664 services.exe-> 2732 25 98 3724 3724 286 16 0 4

 676 lsass.exe-> 3200 37 58 3860 3860 371 22 0 4

 848 svchost.exe-> 1616 20 42 1064 1064 214 9 0 4

 948 svchost.exe-> 12844 88 245 15276 15276 1153 69 3 4

 1148 svchost.exe-> 1180 13 14 636 636 63 5 0 4

 1180 svchost.exe-> 2156 31 47 2044 2044 188 15 1 4

 1292 spoolsv.exe-> 5652 29 18 3088 3088 168 11 0 4

 512 explorer.exe-> 10388 50 35 5212 5212 233 11 77 217

 1772 cmd.exe-> 1164 15 1 1440 1440 20 1 0 4

 1560 csrss.exe-> 384 25 23 728 728 80 9 N/A N/A

 1556 winlogon.exe-> 3784 37 12 1504 1504 137 11 N/A N/A

 784 rdpclip.exe-> 3480 29 18 1396 1396 97 4 4 17

 348 logon.scr-> 488 13 1 360 360 14 1 N/A N/A

 204 wuauclt.exe-> 4384 31 3 1340 1340 90 6 9 15

 2000 ntsd.exe-> 2720 10 1 1416 1416 41 1 0 0

 312 WdmSecTest.exe-> 2580 16 1 468 468 41 1 0 8

**** NTLOG TERMINATED +DATE+05/04/2002 +TIME+13:13:55
Microsoft Confidential

6

