Application Verifier Stops

2Introduction

3Heap verifier

4Code 0001: UNKNOWN_ERROR

4Code 0002: ACCESS_VIOLATION

4Code 0003: UNSYNCHRONIZED_ACCESS

5Code 0004: EXTREME_SIZE_REQUEST

5Code 0005: BAD_HEAP_HANDLE

6Code 0006: SWITCHED_HEAP_HANDLE

6Code 0007: DOUBLE_FREE

6Code 0008: CORRUPTED_HEAP_BLOCK

9Code 0009: DESTROY_PROCESS_HEAP

9Code 000A: UNEXPECTED_EXCEPTION

10Lock verifier

10Code 0200: EXIT_THREAD_OWNS_LOCK

10Code 0201: LOCK_IN_UNLOADED_DLL

11Code 0202: LOCK_IN_FREED_HEAP

11Code 0203: LOCK_DOUBLE_INITIALIZE

12Code 0204: LOCK_IN_FREED_MEMORY

12Code 0205: LOCK_CORRUPTED

13Code 0206: LOCK_INVALID_OWNER

13Code 0207: LOCK_INVALID_RECURSION_COUNT

14Code 0208: LOCK_INVALID_LOCK_COUNT

14Code 0209: LOCK_OVER_RELEASED

14Code 0210: LOCK_NOT_INITIALIZED

15Code 0211: LOCK_ALREADY_INITIALIZED

15Handle checking

15Code 0300: INVALID_HANDLE

16Code 0301: INVALID_TLS_VALUE

16Code 0302: INCORRECT_WAIT_CALL

16Code 0303: NULL_HANDLE

17Code 0304: WAIT_IN_DLLMAIN

17Virtual Memory Verifier

17Code 0600: INVALID_FREEMEM

19Code 0601: INVALID_ALLOCMEM

19Code 0602: INVALID_MAPVIEW

20COM verifier

20Code 0401: COM_API_IN_DLLMAIN

20Code 0402: COM_UNHANDLED_EXCEPTION

20Code 0403: COM_UNBALANCED_COINIT

21Code 0404: COM_UNBALANCED_OLEINIT

21Code 0405: COM_UNBALANCED_SWC

22Code 0406: COM_NULL_DACL

22Code 0407: COM_UNSAFE_IMPERSONATION

23Code 0408: COM_SMUGGLED_WRAPPER

23Code 0409: COM_SMUGGLED_PROXY

24Code 040A: COM_CF_SUCCESS_WITH_NULL

24Code 040B: COM_GCO_SUCCESS_WITH_NULL

25Code 040C: COM_OBJECT_IN_FREED_MEMORY

25Code 040D: COM_OBJECT_IN_UNLOADED_DLL

26Code 040E: COM_VTBL_IN_FREED_MEMORY

26Code 040F: COM_VTBL_IN_UNLOADED_DLL

27Code 0410: COM_HOLDING_LOCKS_ON_CALL

27RPC verifier

27Code 0500: RPC_ERROR

29Other crashes

29Dirty stacks

29Stack overflows

29The structure of a heap block

29Light page heap block structure

30Full page heap block structure

31Debugging application verifier failures

31The heap verifier debugger extension

31Typical debug scenarios

31Access violation in non-accessible page

31Corrupted block message

32Special fill pointers

33!cs debugger extension

33Dump information about a critical section using its address

33Dump information about a critical section using its address, including initialization stack trace

33Dump information about a critical section using its debug info address

34Dump information about a critical section using its debug info address, including initialization stack trace

34Dump information about all the active critical sections in the current process

34Dump information about all the active critical sections in the current process, including initialization stack trace

36!htrace debugger extension

36Dump information about handle 7CC in process 815328b0

37Dump information about all handles in process 815328b0

37Dump information about handle 7DC in the current process

39Revision History:

Introduction

The application verifier prints messages formatted like below before breaking into debugger.

VERIFIER STOP stop-code: pid process-PID: description message
parameter-1: description

parameter-2: description

parameter-3: description

parameter-4: description

Here it is an example of a verifier stop for an application that caused an access violation.

===

VERIFIER STOP 00000002: pid 668: access violation exception

 C0C0C0C0 : Invalid address being accessed

 780034D2 : Code performing invalid access

 0006F9B0 : .exr (exception record)

 0006F9CC : .cxr (context record)

===

For every code we have added a frequency field that gives an indication of how often we have encountered that type of bug. The categories are: zero, very low, low, average, high and very high.

The stop code values can belong to the following ranges:

0000 – 01FF
general errors and heap verifier

0100 – 02FF
invalid system calls

0200 – 02FF critical section verifier

0300 – 03FF handle checking

0400 – 04FF COM verifier

0500 – 1000 reserved

1000 – 2000
application compatibility

2000 - …
future extensions

There is a unique description message associated with each stop code. The only exception is for the CORRUPTED_HEAP_BLOCK stop which can have several different descriptions based on the type of corruption detected.

There are bugs for which application verifier cannot crash in a controlled manner. For example if stack extensions are disabled this will cause stack overflow exceptions and this is how the crash will manifest. No verifier stop message will be displayed. All these special cases are described in the “Other crashes” section.

Heap verifier

Code 0001: UNKNOWN_ERROR

Message:
process heap list count is wrong
Parameter 1:
RESERVED

Parameter 2:
RESERVED

Parameter 3:
0

Parameter 4:
0

Frequency:
zero

This message can happen if while calling GetProcessHeaps() interface the page heap manager detects some internal inconsistencies. This can be caused by some random corruption in the process space.

Code 0002: ACCESS_VIOLATION

Message:
access violation exception
Parameter 1:
Invalid address causing the exception

Parameter 2:
Code address executing the invalid access

Parameter 3:
Exception record

Parameter 4:
Context record

Frequency:
very high

This is the most common application verifier stop. Typically it is caused by a buffer overrun error. The heap verifier places a non-accessible page at the end of a heap allocation and a buffer overrun will cause an exception by touching this page. To debug this stop identify the access address that caused the exception and then use the following debugger command:

· !heap –p –a ACCESS_ADDRESS : this command will give details about the nature of the error and what heap block is overrun. It will also give the stack trace for the block allocation.

There are several other causes for this stop. For example accessing a heap block after being freed. The same debugger command will be useful for this case too. For more information about the structure of a heap block please read the “The structure of a heap block” section from this manual.

Code 0003: UNSYNCHRONIZED_ACCESS

Message:
multithreaded access in HEAP_NO_SERIALIZE heap
Parameter 1:
Heap in which operation happens

Parameter 2:
Thread ID for current owner of the heap critical section

Parameter 3:
Thread ID of current thread trying to enter

Parameter 4:
0

Frequency:
low

A heap created with HEAP_NO_SERIALIZE flag is not supposed to be accessed simultaneously from two threads. If such a situation is detected you will get this message. The typical way this situation creeps into a program is by linking with a single-threaded version of the C-runtime. Visual C++ can for instance link statically such a library when proper flags are used. Then people forget about this detail and use multiple threads. The bug is very difficult to debug in real life because it will show up as mysterious data corruptions.

Code 0004: EXTREME_SIZE_REQUEST

Message:
extreme size request
Parameter 1:
Heap in which operation happens

Parameter 2:
Size requested

Parameter 3:
0

Parameter 4:
0

Frequency:
very low

This message will be generated if in a HeapAlloc() or HeapReAlloc() operation the size of the block is above any reasonable value. Typically this value is 0x80000000 on 32-bit platforms and a lot bigger on 64-bit platforms.

Code 0005: BAD_HEAP_HANDLE

Message:
heap handle with incorrect signature
Parameter 1:
Heap handle used in the call to a heap interface

Parameter 2:
0

Parameter 3:
0

Parameter 4:
0

Frequency:
low

The heap structures are tagged with a magic value. If the heap handle used in the call to a heap interface does not have this pattern then this stop will be generated. This bug can happen if somehow the internal heap structure got corrupted (random corruption) or simply a bogus value is used as a heap handle. To get a list of valid heap handle values use the following debugger commands:

· !heap –p

Note that if you just switch a valid heap handle with another valid one in a heap operation you will not get this stop (the handle looks valid after all). However the heap verifier detects this situation and reports it with stop CORRUPTED_HEAP_BLOCK.

Code 0006: SWITCHED_HEAP_HANDLE

This stop code is reserved for future extensions. A switched heap handle is reported in the current version of the application verifier with stop code CORRUPTED_HEAP_BLOCK and the description “corrupted heap pointer or using wrong heap”.

Code 0007: DOUBLE_FREE

This stop code is reserved for future extensions. A switched heap handle is reported in the current version of the application verifier with stop code CORRUPTED_HEAP_BLOCK and the description “block already freed”.

Code 0008: CORRUPTED_HEAP_BLOCK

This verifier stop occurs in several situations. Each has a different description message. If the debugging information presented for each variant does not suffice please read the section that describes the structure of a heap block. It contains many additional debugging tips. As a general rule for each of these stops use the !heap –p –a HEAP_BLOCK_ADDRESS debugger command to get an idea about the nature of the address passed to a heap interface.

Message:
exception raised while verifying block header
Parameter 1:
Heap handle for the heap owning the block

Parameter 2:
Heap block that is corrupted

Parameter 3:
Size of the block or zero if size cannot be determined

Parameter 4:
RESERVED

Frequency:
Average

This situation happens if we really cannot determine any particular type of corruption for the block. For instance you will get this if during a heap free operation you pass an address that points to a non-accessible memory area.

Message:
block already freed
Parameter 1:
Heap handle for the heap owning the block

Parameter 2:
Heap block being freed again

Parameter 3:
Size of the heap block

Parameter 4:
RESERVED

Frequency:
High

This situation happens if the block is freed twice. Freed blocks are marked in a special way and are kept around for a while. If a buggy program tries to free the block again this will be caught.

Message:
corrupted infix pattern for freed block
Parameter 1:
Heap handle for the heap owning the block

Parameter 2:
Heap block being freed again

Parameter 3:
Size of the heap block

Parameter 4:
RESERVED

Frequency:
High

Freed blocks are sometimes marked non-accessible and a program touching them will access violate (different verifier stop). In other cases (light page heap) the block is marked with a magic pattern and will be kept for a while. Eventually in a FIFO fashion the blocks get really freed. At this moment the infix pattern is checked and if it has been modified you will get this break. The stack at the break moment is not relevant. You need to find out the nature of the block and code review the code that might be wrong. Please read “The structure of a heap block” section” for debugging tips.

Message:
corrupted heap pointer or using wrong heap
Parameter 1:
Heap handle used in the call

Parameter 2:
Heap block involved in the operation

Parameter 3:
Size of the heap block

Parameter 4:
Heap that actually owns the block

Frequency:
Average

Most typically this happens if a block gets allocated in one heap and freed in another. Use !heap –p command to get a list of all valid heap handle values.

Message:
corrupted suffix pattern
Parameter 1:
Heap handle used in the call

Parameter 2:
Heap block involved in the operation

Parameter 3:
Size of the heap block

Parameter 4:
RESERVED

Frequency:
very high

Most typically this happens for buffer overrun errors. Sometimes the application verifier places non-accessible pages at the end of the allocation and buffer overruns will cause an access violation and sometimes the heap block is followed by a magic pattern. If this pattern is changed when the block gets freed you will get this break. These breaks can be quite difficult to debug because you do not have the actual moment when corruption happened. You just have access to the free moment (stop happened here) and the allocation stack trace (!heap –p –a HEAP_ADDRESS)

Message:
corrupted prefix pattern
Parameter 1:
Heap handle used in the call

Parameter 2:
Heap block involved in the operation

Parameter 3:
Size of the heap block

Parameter 4:
RESERVED

Frequency:
low

This happens for buffer underruns. Read “The structure of a heap block” section for more information.

Message:
corrupted start stamp
Parameter 1:
Heap handle used in the call

Parameter 2:
Heap block involved in the operation

Parameter 3:
Size of the heap block

Parameter 4:
Corrupted stamp value

Frequency:
low

This happens for buffer underruns. Read “The structure of a heap block” section for more information.

Message:
corrupted end stamp
Parameter 1:
Heap handle used in the call

Parameter 2:
Heap block involved in the operation

Parameter 3:
Size of the heap block

Parameter 4:
Corrupted stamp value

Frequency:
low

This happens for buffer underruns. Read “The structure of a heap block” section for more information.

Message:
exception raised while verifying block
Parameter 1:
Heap handle used in the call

Parameter 2:
Heap block involved in the operation

Parameter 3:
Size of the heap block

Parameter 4:
RESERVED

Frequency:
average

This situation happens if we really cannot determine any particular type of corruption for the block. For instance you will get this if during a heap free operation you pass an address that points to a non-accessible memory area.

This can also happen for double free situations if we do not find the block among full page heap blocks and we probe it as a light page heap block. Read “The structure of a heap block” section for more information.

Message:
corrupted heap block
Parameter 1:
Heap handle used in the call

Parameter 2:
Heap block involved in the operation

Parameter 3:
Size of the heap block

Parameter 4:
RESERVED

Frequency:
zero

This is a catch all generic message if we cannot classify the error in any of the above categories.

Code 0009: DESTROY_PROCESS_HEAP

Message:
attempt to destroy process heap
Parameter 1:
Heap handle used with HeapDestroy

Parameter 2:
0

Parameter 3:
0

Parameter 4:
0

Frequency:
very low

It is illegal to try to destroy the default process heap (the one returned by GetProcessHeap() interface).

Code 000A: UNEXPECTED_EXCEPTION

Message:
unexpected exception raised in heap code path
Parameter 1:
Heap involved in the operation

Parameter 2:
Exception code (C0000005 – access violation)

Parameter 3:
Exception record (TBD update code)

Parameter 4:
Context record (TBD update code)

Frequency:
low

This stop is generated if while executing the heap manager code an access violation is raised in illegitimate situations. There are very few situations where this is ok, for example when calling HeapValidate() or HeapSize(). The exception record information (third parameter) can be used to find the exact context of the exception. Use the following debugger commands for this:

· dd parameter2 L2

· .exr first_dword
· .cxr second_dword
Usually this stop can happen if there is some random corruption in the internal heap structures.

Lock verifier

Code 0200: EXIT_THREAD_OWNS_LOCK

Message:
Thread is in a state in which it cannot own a critical section
Parameter 1:
Thread identifier

Parameter 2:
Critical section address

Parameter 3:
Critical section debug information address.

Parameter 4:
Critical section initialization stack trace.

Frequency:
Low

This stop is generated if a thread (thread ID is parameter1) is terminated, suspended or is in a state (worker thread finished a work item) in which it cannot hold a critical section. The current thread is the culprit. To debug this stop use the following debugger commands:

· kb – to get the current stack trace. If the current thread is the owner of the critical section it is probably calling ExitThread. The current thread should have released the critical section before exiting. If the current thread is calling TerminateThread or SuspendThread then it should not do this for a thread holding a critical section.

· !cs –s parameter2 - dump information about this critical section.

· ln parameter2 – to show symbols near the address of the critical section. This should help identify the leaked critical section.

· dds parameter4 – to dump the stack trace for this critical section initialization.

Code 0201: LOCK_IN_UNLOADED_DLL

Message:
unloading dll containing active critical section

Parameter 1:
Critical section address

Parameter 2:
Critical section initialization stack trace.

Parameter 3:
DLL name address

Parameter 4:
DLL base address

Frequency:
High

This stop is generated if a DLL has a global variable containing a critical section and the DLL is unloaded but the critical section has not been deleted. To debug this stop use the following debugger commands:

· du parameter3 – to dump the name of the culprit DLL.

· .reload dllname or .reload dllname = parameter4 - to reload the symbols for that DLL.

· !cs –s parameter1 - dump information about this critical section.

· ln parameter1 – to show symbols near the address of the critical section. This should help identify the leaked critical section.

· dds parameter2 – to dump the stack trace for this critical section initialization.

Code 0202: LOCK_IN_FREED_HEAP

Message:
releasing heap allocation containing active critical section

Parameter 1:
Critical section address

Parameter 2:
Critical section initialization stack trace.

Parameter 3:
Heap block address

Parameter 4:
Heap block size

Frequency:
High

This stop is generated if a heap allocation contains a critical section, the allocation is freed and the critical section has not been deleted. To debug this stop use the following debugger commands:

· !cs –s parameter1 - dump information about this critical section.

· ln parameter1 – to show symbols near the address of the critical section. This should help identify the leaked critical section.

· dds parameter2 – to dump the stack trace for this critical section initialization.

· parameter3 and parameter4 might help understand where was this heap block allocated (the size of the allocation is probably significant).

Code 0203: LOCK_DOUBLE_INITIALIZE

Message:
double initialized or corrupted critical section

Parameter 1:
Critical section address.

Parameter 2:
Address of the debug information structure found in the active list.

Parameter 3:
First initialization stack trace.

Parameter 4:
Second initialization stack trace.

Frequency:
High

Usually this stop is generated if a critical section has been initialized more than one time. In this case parameter3 and parameter4 are the stack trace addresses for two of these initializations. Some other times it is possible to get this stop if the critical section or its debug information structure has been corrupted. In this second case it is possible that parameter3 and parameter4 are invalid and useless.

To debug this stop:

· !cs –s –d parameter2 - dump information about this critical section.

· ln parameter1 – to show symbols near the address of the critical section. This might help identify the critical section if this is a global variable.

· dds parameter3 and dds parameter4 - to identify the two code paths for initializing this critical section.

Code 0204: LOCK_IN_FREED_MEMORY

Message:
undeleted critical section in freed memory

Parameter 1:
Critical section address.

Parameter 2:
Critical section debug information address.

Parameter 3:
Critical section initialization stack trace.

Parameter 4:
NULL

Frequency:
Low

This stop is generated if the memory containing a critical section was freed but the critical section has not been deleted using DeleteCriticalSection. To debug this stop use the following debugger commands:

· !cs –s –d parameter2 - dump information about this critical section.

· dds parameter3 - to identify the code path for initializing this critical section.

Since the lock verifier detects on the spot leaked critical sections contained in a heap allocation or a DLL range and issues different stops there are very few cases left for this verifier stop. The lock must be in a memory range allocated with VirtualAlloc() or some shared memory area created with MapViewOfFile(). Most typically this stop will be encountered if a previous stop (LOCK_IN_FREED_HEAP or LOCK_IN_UNLOADED_DLL) was continued by hitting `g’ in the debugger console.

Code 0205: LOCK_CORRUPTED

Message:
corrupted critical section

Parameter 1:
Critical section address.

Parameter 2:
Invalid debug information address of this critical section.

Parameter 3:
Address of the debug information found in the active list.

Parameter 4:
Initialization stack trace.

Frequency:
Low

This stop is generated if the DebugInfo field of the critical section is pointing freed memory. Usually another valid DebugInfo structure is found in the active critical section list. Without corruption the two pointers should be identical. To debug this stop use the following debugger commands:

· !cs –s –d parameter3 - dump information about this critical section based on the current contents of the debug info structure found in the active list (this structure is rarely corrupted so usually this information is trustworthy).

· !cs –s parameter1 - dump information about this critical section based on the current contents of the critical section structure (the structure is corrupted already so sometimes this information is NOT trustworthy).
· dds parameter4 - to identify the code path for initializing this critical section.

· Dump the critical section at address parameter1 and look for the corruption pattern. With good symbols for ntdll.dl you can use the following commands:

· dt ntdll!_RTL_CRITICAL_SECTION LOCK_ADDRESS
· dt ntdll!_RTL_CRITICAL_SECTION_DEBUG DEBUG_ADDRESS
Code 0206: LOCK_INVALID_OWNER

Message:
invalid critical section owner thread

Parameter 1:
Critical section address.

Parameter 2:
Owning thread.

Parameter 3:
Expected owning thread.

Parameter 4:
Critical section debug info address.

Frequency:
Low

This stop is generated if the owner thread ID is invalid in the current context. To debug this stop:

· !cs –s parameter1 - dump information about this critical section.

· ln parameter1 – to show symbols near the address of the critical section. This should help identify the critical section.

Code 0207: LOCK_INVALID_RECURSION_COUNT

Message:
invalid critical section owner thread

Parameter 1:
Critical section address.

Parameter 2:
Recursion count.

Parameter 3:
Expected recursion count.

Parameter 4:
Critical section debug info address.

Frequency:
Low

This stop is generated if the recursion count field of the critical section structure is invalid in the current context. To debug this stop:

· !cs –s parameter1 - dump information about this critical section.

· ln parameter1 – to show symbols near the address of the critical section. This should help identify the critical section.

Code 0208: LOCK_INVALID_LOCK_COUNT

Message:
deleting critical section with invalid lock count

Parameter 1:
Critical section address.

Parameter 2:
Lock count.

Parameter 3:
Expected lock count.

Parameter 4:
Owning thread.

Frequency:
High

This stop is generated if a critical section is owned by a thread if it is deteled or if the critical section is uninitialized. To debug this stop:

· !cs –s parameter1 - dump information about this critical section. If the owning thread is 0 the critical section has not been initialized.

· ln parameter1 – to show symbols near the address of the critical section. This should help identify the critical section.

Code 0209: LOCK_OVER_RELEASED

Message:
critical section over-released or corrupted

Parameter 1:
Critical section address.

Parameter 2:
Lock count.

Parameter 3:
Expected lock count.

Parameter 4:
Critical section debug info address.

Frequency:
High

This stop is generated if a critical section is released more times than the current thread acquired it. To debug this stop:

· !cs –s parameter1 - dump information about this critical section.

· !cs –s –d parameter4 - dump information about this critical section.

· ln parameter1 – to show symbols near the address of the critical section. This should help identify the critical section.

Code 0210: LOCK_NOT_INITIALIZED

Message:
critical section not initialized

Parameter 1:
Critical section address.

Parameter 2:
Critical section debug info address.

Parameter 3:
NULL.

Parameter 4:
NULL.

Frequency:
High

This stop is generated if a critical section is used without being initialized or after it has been deleted. To debug this stop:

· ln parameter1 – to show symbols near the address of the critical section. This should help identify the critical section.

Code 0211: LOCK_ALREADY_INITIALIZED
Message:
reinitializing critical section
Parameter 1:
Critical section address.

Parameter 2:
Critical section debug info address.

Parameter 3:
First initialization stack trace. Use dds to dump it if non-NULL.
Parameter 4:
NULL.

Frequency:
High

This stop is generated if a critical section is reinitialized by the current thread. To debug this stop:

· !cs –s parameter1 or !cs –s –d parameter2 - dump information about this critical section.

· ln parameter1 – to show symbols near the address of the critical section. This might help identify the critical section if this is a global variable.

· dds parameter3 - to identify the code path for the first initialization of this critical section.

· kb – to display the current stack trace, that is reinitializing this critical section.
Handle checking
Code 0300: INVALID_HANDLE

Message:
invalid handle exception for current stack trace

Parameter 1:
NULL.

Parameter 2:
NULL.

Parameter 3:
NULL.

Parameter 4:
NULL.

Frequency:
High

This stop is generated if the function on the top of the stack passed an invalid handle to system routines. Usually a simple kb command will reveal what is the value of the handle passed (must be one of the parameters – usually the first one). If the value is null then this is clearly wrong. If the value looks ok you need to use !htrace debugger extension to get a history of operations pertaining to this handle value. In most cases it must be that the handle value is used after being closed.

Code 0301: INVALID_TLS_VALUE

Message:
Invalid TLS index used in current stack (use kb).
Parameter 1:
Invalid TLS index.

Parameter 2:
Expected lower part of the index.

Parameter 3:
NULL.

Parameter 4:
NULL.

Frequency:
Low

This stop is generated if the function on the top of the stack passed an invalid TLS index to TLS system routines. Usually a simple kb command will reveal what is wrong. The typical bug here is to assume a certain value for a TLS index instead of calling TlsAlloc. This can happen either by thinking that you always get value N therefore there is no need to call TlsAlloc or more frequently due to an uninitialized variable.
Code 0302: INCORRECT_WAIT_CALL
Message:
incorrect Wait call

Parameter 1:
Address of object handle(s).

Parameter 2:
Number of handles.

Parameter 3:
NULL.

Parameter 4:
NULL.

Frequency:
Low

This stop is generated if the function on the top of the stack called WaitForMultipleObjects with NULL as the address of the array of handles to wait for or with zero as the number of handles. A simple kb command will reveal the function calling this API incorrectly.

Code 0303: NULL_HANDLE

Message:
using NULL handle
Parameter 1:
NULL.

Parameter 2:
NULL.

Parameter 3:
NULL.

Parameter 4:
NULL.

Frequency:
High
This stop is generated if the function on the top of the stack passed a NULL handle to system routines. Usually a simple kb command will reveal what is the value of the handle passed (must be one of the parameters – usually the first one).
Code 0304: WAIT_IN_DLLMAIN
Message:
waiting on a thread handle in DllMain
Parameter 1:
Thread handle.

Parameter 2:
NULL.

Parameter 3:
NULL.

Parameter 4:
NULL.

Frequency:
Low
This stop is generated if the current thread is currently running code inside the DllMain function of one of the DLLs loaded in the current process and it calls WaitForSingleObject or WaitForMultipleObjects to wait on a thread handle in the same process. This would most likely lead to a deadlock because the thread handle will not get signaled unless that second thread is exiting. When the second thread will call ExitThread it will try to acquire the DLL loader lock then call DllMain (DLL_THREAD_DETACH) for all DLLs in the current process. But the loader lock is owned by the first thread (the one that is waiting on the thread handle) so the two threads will deadlock.
Virtual Memory Verifier

Code 0600: INVALID_FREEMEM

Message:
Trying to free virtual memory block that is already free

Parameter 1:
Memory block address.
Parameter 2:
NULL.
Parameter 3:
NULL.

Parameter 4:
NULL
Frequency:
low

This stop is generated if the app verifier detects a VirtualFree for an address that is already free. To debug this stop look at the current stack trace (kb) and try to determine why the memory is already free but the application is trying to free it again. “!avrf –vs –a parameter1” will search for a log of stack traces of the code paths that allocated/freed that address and display these stack traces if they are available. This might show the stack trace that freed up this memory.
Message:
Freeing virtual memory block with invalid size or start address
Message:
Unloading DLL with invalid size or start address

Parameter 1:
Allocation base address.
Parameter 2:
Memory region size.
Parameter 3:
NULL.
Parameter 4:
NULL.
Frequency:
low

This stop is generated if the app verifier detects a VirtualFree or a DLL unload with an invalid start address or size of the memory allocation.
In the case of DLL unload this probably means a memory corruption inside the loaded DLL list.
To debug this stop look at the current stack trace and the memory address and size that is about to be freed and try to determine why they are invalid.

Message:
Freeing heap memory block inside current thread's stack address range
Message:
Freeing memory block inside current thread's stack address range
Message:
Unmapping memory region inside current thread's stack address range

Parameter 1:
Allocation base address.
Parameter 2:
Memory region size.
Parameter 3:
Stack low limit address.

Parameter 4:
Stack high limit address.
Frequency:
low

This stop is generated if the app verifier detects a HeapFree, VirtualFree or UnmapViewOfFile for a block of memory that is actually part of the current thread’s stack (!).
To debug this stop look at the current stack trace (kb) and try to understand why the function that called HeapFree, VirtualFree ot UnmapViewOfFile thought that the memory block was dynamically allocated or mapped but that was actually memory allocated from the stack.
Message:
Unloading DLL inside current thread's stack address range Parameter 1:
Allocation base address

Parameter 2:
Memory region size

Parameter 3:
DLL name address. Use du to dump it.
Parameter 4:
Stack low limit address.
Frequency:
very low

Same as the above break but this usually means a memory corruption inside the loaded DLL list. The stack high limit address can be found using !teb (it is the StackBase field).
Code 0601: INVALID_ALLOCMEM

Message:
Incorrect virtual alloc call

Parameter 1:
Pointer to allocation base address.

Parameter 2:
Pointer to memory region size.
Parameter 3:
NULL.

Parameter 4:
NULL
Frequency:
very low

This stop is generated if the app verifier detects a VirtualAlloc call with an invalid start address or size of the memory allocation. To debug this stop look at the current stack trace (kb) and the memory address and size that is about to be allocated and try to determine why they are invalid.

Code 0602: INVALID_MAPVIEW
Message:
Incorrect map view call
Parameter 1:
Pointer to mapping base address.
Parameter 2:
Pointer to view size.
Parameter 3:
NULL.

Parameter 4:
NULL
Frequency:
very low

This stop is generated if the app verifier detects a MapViewOfFile call with an invalid base address or size of the mapping. To debug this stop look at the current stack trace (kb) and the memory address and size that is about to be mapped and try to determine why they are invalid.

COM verifier

Code 0401: COM_API_IN_DLLMAIN

Message:
COM API or Proxy called from DllMain

Parameter 1:
NULL.

Parameter 2:
NULL.

Parameter 3:
NULL.

Parameter 4:
NULL.

Frequency:
High
This stop is generated when a COM Proxy or a dangerous COM API is called with the loader lock held. This is simple to debug… a simple kb will show the stack of the misbehaving DLL. The DLL should remove its call to the COM API in question.

Code 0402: COM_UNHANDLED_EXCEPTION

Message:
Unhandled exception in COM call

Parameter 1:
Exception pointers for exception.

Parameter 2:
Object being called on.

Parameter 3:
Pointer to IID being called on.

Parameter 4:
Method number being called on.

Frequency:
High
This stop is generated if, while processing a COM call, the object being invoked raises an exception. The exception record information (first parameter) can be used to find the exact context of the exception. Use the following debugger commands for this:

· dd parameter1 L2

· .exr first_dword
· .cxr second_dword
Sometimes we know the exact object we called into that raised the error. In these cases, the second parameter will point to the interface pointer we tried to call on. The third and fourth parameters will indicate which interface and method we think we called on, as well.
Code 0403: COM_UNBALANCED_COINIT

Message:
Varies

Parameter 1:
Current number of CoInitialize calls on this thread.

Parameter 2:
Previous number of CoInitialize calls on this thread.

Parameter 3:
Stack trace of most recent CoInitialize call on this thread.

Parameter 4:
Stack trace of most recent CoUninitialize call on this thread.

Frequency:
High

This stop is generated when COM detects that there has been an unbalanced call to CoInitialize on this thread. Causes for this include exiting a thread with outstanding CoInitialize calls on it, calling CoInitialize without calling CoUninitialize, or calling CoUninitialize without calling CoInitialize. The stacks of the most recent CoInitialize and CoUninitialize calls may be present in the third and fourth parameters. If they exist, they may help to locate the culprit.

Code 0404: COM_UNBALANCED_OLEINIT

Message:
Varies

Parameter 1:
Current number of OleInitialize calls on this thread.

Parameter 2:
Previous number of OleInitialize calls on this thread.

Parameter 3:
Stack trace of most recent OleInitialize call on this thread.

Parameter 4:
Stack trace of most recent OleUninitialize call on this thread.

Frequency:
Very Low

This stop is identical to the COM_UNBALANCED_COINIT stop, except that it applies to unbalanced calls to OleInitialize and OleUninitialize.

Code 0405: COM_UNBALANCED_SWC

Message:
Varies

Parameter 1:
Current COM object context

Parameter 2:
Stack trace of most recent CoEnterServiceDomain call on this thread.

Parameter 3:
Stack trace of most recent CoLeaveServiceDomain call on this thread.

Parameter 4:
NULL

Frequency:
Very Low

This stop is generated when COM detects that there has been an unbalanced call to CoEnterServiceDomain on this thread. Causes for this include exiting a thread with outstanding CoEnterServiceDomain calls on it, calling CoEnterServiceDomain without calling CoLeaveServiceDomain, or calling CoLeaveServiceDomain without calling CoEnterServiceDomain. The stacks of the most recent CoEnterServiceDomain and CoLeaveServiceDomain calls may be present in the second and third parameters. If they exist, they may help to locate the culprit.

Code 0406: COM_NULL_DACL

Message:
Calling CoInitializeSecurity with a NULL DACL

Parameter 1:
Security Descriptor that was used for CoInitializeSecurity

Parameter 2:
NULL

Parameter 3:
NULL

Parameter 4:
NULL

Frequency:
High

This stop is generated when COM detects that DCOM security is being initialized with a security descriptor containing a NULL DACL. A NULL DACL for COM means that anybody can call any of your objects. While not functionally different from supplying no security descriptor at all, the rationale behind this stop is that if you went through all the trouble to create a security descriptor with a NULL DACL, you must think you’re getting something you’re not.

To debug this, look at the call stack. The security descriptor can come from one of the following places:

1. The calling code could pass it in directly. If the security descriptor is being supplied directly by the function calling CoInitializeSecurity, then that code needs to be corrected.

2. CoInitializeSecurity could be reading the values out of the AppID key specified in the call to CoInitializeSecurity. In this case, the specific application configuration needs to be fixed.

3. CoInitializeSecurity could be reading the values out of the AppID key associated with the current EXE. Again, the specific application configuration needs to be fixed.

4. CoInitializeSecurity could be using the global default access permissions. This indicates a machine-wide misconfiguration. The administrator should fix the machine-wide settings.

Code 0407: COM_UNSAFE_IMPERSONATION

Message:
SYSTEM Process allowing impersonation by default

Parameter 1:
Process token

Parameter 2:
Default impersonation level

Parameter 3:
NULL

Parameter 4:
NULL

Frequency:
Low

This stop is generated when COM detects that a process running as SYSTEM is initializing DCOM security with an impersonation level of RPC_C_IMP_LEVEL_IMPERSONATE or better. This means that, by default, any COM call made grants the callee the right to impersonate SYSTEM.

To debug this, look at the call stack. Either the caller is passing the unsafe impersonation level directly to CoInitializeSecurity, or the impersonation level is being read out of the registry, from the AppID key associated with the current process.

Code 0408: COM_SMUGGLED_WRAPPER

Message:
A COM+ Proxy was called from the wrong context.

Parameter 1:
Pointer to IID of interface being called on.

Parameter 2:
Method number being called.

Parameter 3:
NULL

Parameter 4:
Pointer to the COM+ proxy that was smuggled.

Frequency:
Low

This stop is generated when COM detects that a user has tried to call a COM+ proxy from the wrong object context. In general, COM+ proxies have affinity to the context that they were unmarshalled in, and must only be called from those contexts.

To debug, look at the call stack. The caller of the proxy (the code before ole32.dll) needs to check to make sure that they correctly unmarshalled that interface pointer into the current context.

Code 0409: COM_SMUGGLED_PROXY

Message:
A COM Proxy was called from the wrong context.

Parameter 1:
Pointer to IID of interface being called on.

Parameter 2:
Method number being called.

Parameter 3:
The apartment that the proxy is valid in.

Parameter 4:
The current apartment.

Frequency:
Low

This stop is generated when COM detects that a user has tried to call a COM proxy from the wrong apartment or context. In general, COM objects have affinity to the apartment and context that they were unmarshalled in, and must only be called from those places.

To debug, look at the call stack, and parameters three and four. Parameter four indicates the apartment that the proxy is valid in, and parameter three indicates the apartment that the current call stack is in. The apartment values are interpreted as follows:

· If the number is 0, then the apartment is the MTA.

· If the number is 0xFFFFFFFF, then the apartment is the NA.

· Otherwise, the number is the thread ID of an STA.

If the numbers match, this indicates that the proxy was smuggled to a different COM+ object context. In this case, treat this stop as a COM_SMUGGLED_WRAPPER stop.

The most common cause of this error is putting an interface pointer into a global variable and using it from more than one thread.

Code 040A: COM_CF_SUCCESS_WITH_NULL

Message:
A class factory has returned success, but with a NULL object

Parameter 1:
Pointer to the class factory

Parameter 2:
Pointer to the CLSID being created

Parameter 3:
Pointer to the IID being requested

Parameter 4:
The HRESULT returned

Frequency:
Low

This stop is generated when COM detects that a class factory has returned a success HRESULT from IClassFactory::CreateInstance(), but has returned NULL in the ppv argument. This is always a bug in the implementation of the class factory.

To debug, examine the implementation of the class factory. Information about which class and interface were being requested is available from the second and third parameters. The first parameter is the pointer that ole called on, so you can dump that to examine the state of the class factory in question. Finally, the HRESULT might be something strange when it was supposed to be an error—the fourth parameter will tell you what was actually returned from the class factory.

Code 040B: COM_GCO_SUCCESS_WITH_NULL

Message:
A call to DllGetClassObject has returned success, but with a NULL object

Parameter 1:
Name of the DLL whose DllGetClassObject we called.

Parameter 2:
Pointer to the CLSID being created

Parameter 3:
Pointer to the IID being requested

Parameter 4:
The HRESULT returned

Frequency:
Low

This stop is generated when COM detects that a call to DllGetClassObject has returned a success HRESULT, but a NULL class factory. This is always a bug in the implementation of the DllGetClassObject function.

To debug, examine the implementation of the DllGetClassObject function in the DLL named by parameter 1. Information about which class and interface were being requested is available from the second and third parameters. Finally, the HRESULT might be something strange when it was supposed to be an error—the fourth parameter will tell you what was actually returned from the function.

Code 040C: COM_OBJECT_IN_FREED_MEMORY

Message:
Freeing memory containing marshaled COM object

Parameter 1:
Pointer to the COM object in the block of memory

Parameter 2:
Pointer to the start of the memory block being freed

Parameter 3:
Size of the memory block

Parameter 4:
NULL

Frequency:
Low

This stop is generated when COM detects that a block of memory is being freed that contains a COM object. This is generally the result of freeing a COM object that still has outstanding marshaled references to it (i.e., COM is still holding a stub alive for the object). It indicates a reference counting bug for the object in question.

To debug, use ‘ln poi <parameter 1>’ to identify the VTBL of the COM object being freed. Examine the implementation and clients of the COM object for obvious reference counting problems. Unfortunately, debugging reference counting problems is difficult, as it generally requires putting a breakpoint on the AddRef() and Release() implementations for this kind of object and reproducing the problem.
Code 040D: COM_OBJECT_IN_UNLOADED_DLL

Message:
Unloading a DLL containing marshaled COM object

Parameter 1:
Pointer to the COM object in the block of memory

Parameter 2:
The name of the DLL being freed

Parameter 3:
The base address of the DLL

Parameter 4:
NULL

Frequency:
Very Low

This stop is generated when COM detects that a DLL is being unloaded which contains a COM object. As this stop is only issued when unmapping a DLL from memory, the COM object in question is almost always a global object or a singleton. Therefore, this stop indicates a bug in the DLLs DllCanUnloadNow implementation.

To debug, use ‘ln poi <parameter 1>’ to identify the VTBL of the COM object being freed, and ‘du <parameter 2>’ to identify the DLL. Examine the implementation of the DLL’s DllCanUnloadNow function, and make sure that the DLL always returns S_FALSE when there are still active objects in the DLL. The other possible cause of this is a DLL handle reference counting bug. If the current stack does not indicate that ole32 is unloading the DLL, then check to make sure that the code unloading the DLL actually has a valid module handle.
Code 040E: COM_VTBL_IN_FREED_MEMORY

Message:
Freeing memory containing implementation of marshaled COM object.

Parameter 1:
The object VTBL

Parameter 2:
The address of the start of the memory block.

Parameter 3:
The size of the memory block.

Parameter 4:
NULL

Frequency:
Zero

This stop is generated when COM detects that a block of memory is being freed which contains a VTBL (i.e., the implementation) for a COM object. This is extremely rare—in general, it only happens when code is generated dynamically into memory, or code is mapped into memory with a mechanism other than LoadLibrary(). As such, this stop usually indicates a problem in a runtime (i.e., in a VM) that is implementing the COM object.
To debug, dump the memory block and see if it has useful information in it. To be perfectly honest, this stop has never hit, and is only included for completeness and symmetry. If this ever hits, and you know the code in question is using the CLR or JVM, then probably the page heap information on the block will give the best information for debugging this.
Code 040F: COM_VTBL_IN_UNLOADED_DLL
Message:
Unloading a DLL containing implementation of a marshaled COM object.
Parameter 1:
The object VTBL
Parameter 2:
The name of the DLL being freed

Parameter 3:
The base address of the DLL

Parameter 4:
NULL

Frequency:
Very Low

This stop is generated when COM detects that a DLL is being unloaded which contains a VTBL (i.e., the implementation) for a COM object. This is generally the result of unloading a DLL that implements one or more COM objects that still have outstanding marshaled references to them (i.e., COM is still holding a stub alive for objects implemented in this DLL). As this stop is only issued when unmapping a DLL from memory, this stop indicates a bug in the DLLs DllCanUnloadNow implementation.

To debug, use ‘ln <parameter 1>’ to identify the VTBL of the COM object being freed, and ‘du <parameter 2>’ to identify the DLL. Examine the implementation of the DLL’s DllCanUnloadNow function, and make sure that the DLL always returns S_FALSE when there are still active objects in the DLL.

Code 0410: COM_HOLDING_LOCKS_ON_CALL

Message:
A lock is being held across a COM call (examine the current stack)

Parameter 1:
NULL

Parameter 2:
NULL

Parameter 3:
NULL

Parameter 4:
NULL

Frequency:
Very High

This stop is generated when COM detects that a critical section is being held across a remote (i.e., at least cross-thread) COM call. This is not a bug, per se, it’s usually just a bad design. First of all, callbacks to the object on a different thread have a good chance of deadlocking. Second of all, there is no way of knowing how long the remote call is going to block, so holding the lock across the call is generally very bad from a scalability and performance point of view.
To debug, look at the stack, and use the !locks debugger extention to figure out which locks this thread is holding.
RPC verifier

Code 0500: RPC_ERROR
Message:
Possible security threat: An unsecure interface becomes remotely accessible

Message:
Possible security threat: Server is forced to listen on all interfaces circumventing the firewall

Message:
Possible security threat: Server that is remotely accessible is registering an unsecure interface

Message:
Possible security threat: Client is calling a remote endpoint without RPC_C_AUTHN_LEVEL_PKT_PRIVACY

Message:
Possible security threat: Client is calling a remote endpoint without mutual authentication
Parameter 1:
NULL

Parameter 2:
NULL

Parameter 3:
NULL

Parameter 4:
NULL

Frequency:
High

This stop is generated if a component uses RPC in such a way as to create security vulnerabilities. The user code in the current thread is the culprit. The stop does not cause a debug break and machine needs to be broken-into prior to debugging. The stop message is followed by some debugging information.
 To debug this stop use the following debugger commands:

· Ctrl-C or PrintScr – to break into the machine.

· !process pid 0 – to get the address ADDR of the faulting process; here pid is the faulting process id displayed in the verifier stop message.
· .process ADDR – to switch into the context of the faulting process.

· After the verifier stop message RPC will print the dump of the stack that has caused the stop. The printout will be preceded by: “RPC: Offending Stack:”. In the context of the faulting process, do an “ln” on the displayed stack addresses to get the corresponding symbols.

· If the faulting stack is not displayed or in addition to it, RPC will print some information identifying the faulting user code or component. These massages begin with “RPC:” and contain interface UUID’s and other useful information:

===

VERIFIER STOP 00000500: pid 0x3A4: Possible security threat: An unsecure interface becomes remotely accessible

 00000000 : (null)

 00000000 : (null)

 00000000 : (null)

 00000000 : (null)

===

RPC: Starting to listen on protsec: ncacn_ip_tcp endpoint: (null)

RPC: Unsecure interface UUID: 621dff68-3c39-4c6c-aae3-e68e2c6503ad

RPC: Unsecure interface UUID: 00000134-0000-0000-c000-000000000046

RPC: Unsecure interface UUID: 18f70770-8e64-11cf-9af1-0020af6e72f4

RPC: Unsecure interface UUID: 00000131-0000-0000-c000-000000000046

In the above example, the owners of the interfaces that have not been secured are at fault.

Other crashes

There are several types of bugs for which application verifier cannot crash in a controlled manner. This section describes these cases.

Dirty stacks

Application verifier periodically dirties the unused portions of the stack with the value BAD1BAD1. If the application crashed with an access to the BAD1BAD1 address it is very likely that it has code that assumes a local variable was initialized. The investigation should start with the top function that crashed accessing this bogus value.

Stack overflows

Application verifier by default disables stack extensions. This exposes a weakness in a process that is prone to getting stack overflows under memory pressure. If an application has this bug it will crash with a stack overflow exception (0xC00000FD). There will not be any verifier stop message.

The structure of a heap block

The heap verifier uses internally two heap managers: the full page heap manager and the light page heap manager. Full page heap blocks have always a non-accessible page at the end of the allocation. Such allocations use a minimum of two pages and therefore using full page heap tends to be memory demanding. This is the default setting when application verifier is enabled. To accommodate memory demanding applications the heap verifier can be controlled to direct some of the allocations to the light page heap manager which requires only a few extra bytes for each allocation. Therefore at any instant a process can have two types of heap blocks: full page heap blocks and light page heap blocks. Their internal structure is useful in debugging complicated failures.

Light page heap block structure

Full page heap block structure

The suffix pattern for full page heap blocks is required if the block size is not a multiple of the guaranteed alignment for the start address (8 bytes on x86 platforms and 16 bytes on 64-bit platforms). Since the start address must be a multiple of the guaranteed alignment we cannot simultaneously insure that the end of the block is page aligned.

The information block has the following structure:

DPH_BLOCK_INFORMATION

ULONG

StartStamp;

PVOID

Heap;

SIZE_T
RequestedSize;

SIZE_T
ActualSize;

LIST_ENTRY
FreeQueue;

PVOID

StackTrace;

ULONG

EndStamp;

The Heap field stores the owning heap. The user requested size for the block is in RequestedSize. The stack can be obtained by issuing a dds debugger command at StackTrace address. The best way to get a dump of this structure in Whistler is to use the dt debugger command:

dt ntdll!DPH_BLOCK_INFORMATION ADDRESS
For Windows2000 Service Pack builds a dd debugger command must be used.

The StackTrace field will not always contain a non-null value for various reasons. First of all stack trace detection is supported only on x86 platforms and second, even on x86 machines the stack trace detection algorithms are not completely reliable. If the block is an allocated block the stack trace is for the allocation moment. If the block was freed, the stack trace is for the free moment.

Debugging application verifier failures

The heap verifier debugger extension

The heap verifier debugger extension is part of the !heap extension (NT heap debugger extension). Simple help can be obtained with !heap -?, or more extensive with !heap –p -?. The current extension does not detect on its own if page heap is enabled for a process and act accordingly. For now the user of the extension needs to know that page heap is enabled and use commands prefixed by !heap –p .

!heap –p
Dumps addresses of all full page heaps created in the process.

!heap –p –h ADDRESS-OF-HEAP
Full dump of full page heap at ADDRESS-OF-HEAP.

!heap –p –a ADDRESS
Tries to figure out if there is a heap block at ADDRESS. This value does not need to be the address of the start of the block. The command is useful if there is no clue whatsoever about the nature of a memory area.

!heap –p –t NUMBER
This command dumps the first NUMBER heavy users of heap allocations. This command is useful for leak analysis.

Typical debug scenarios

There are several failure scenarios that might be encountered. Some of them require quite a bit of detective work to get the whole picture.

Access violation in non-accessible page

This happens when full page heap is enabled if the tested application accesses beyond the end of buffer. It can also happen if it touches a freed block. In order to understand what is the nature of the address on which the exception happened you need to use:

!heap –p –a ADDRESS-OF-AV

Corrupted block message

At several moments during the lifetime of an allocation (allocation, user free, real free) the page heap manager checks if the block has all fill patterns intact and the block header has consistent data. If this is not the case you will get a verifier stop. If this is a full page heap block (for example if you know for sure full page heap is enabled for all allocations) then you can use “!heap –p –a ADDRESS” to find out what are the characteristics of the block. If it is a light page heap block then you need to find out the start address for the block header. This can be achieved by dumping 30-40 bytes below the reported address and look for the magic start/end patterns for a block header (ABCDAAAA, ABCDBBBB, ABCDAAA9, ABCDBBBA – see subsection “The structure of a heap block”). The header will give all the information you need to understand the failure. Particularly the magic patterns will tell if the block is allocated or free, if it is a light page heap or a full page heap block. The information here has to be matched carefully with the offending call. For example if a call to HeapFree is made with the address of a block plus four bytes then you will get the corrupted message. The block header will look fine but you will have to notice that the first byte after the end of the header (first byte after 0xDCBAXXXX magic value) has a different address then the one in the call.

Special fill pointers

The page heap manager fills the user allocation with values that will look as kernel pointers. This happens when the block gets freed (fill value is F0) and when the block gets allocated but no request is made for the block to be zeroed (fill value is E0 for light page heap and C0 for full page heap). The non-zeroed allocations are typical for malloc/new users. If there is a failure (access violation) where a read/write is attempted at addresses like F0F0F0F0, E0E0E0E0, C0C0C0C0 then most probably you hit one of these cases.

A read/write at F0F0F0F0 means a block has been used after it got freed. Unfortunately you will need some detective work to find out which block caused this. You need to get the stack trace of the failure and then inspect the code for the functions on the stack. One of them might make a wrong assumption about an allocation being alive.

A read/write at E0E0E0E0/C0C0C0C0 means the application did not initialize properly the allocation. This requires also code inspection of the functions in the current stack trace. Here it is an example for this kind of failure. In a test process we noticed an access violation while doing a HeapFree on address E0E0E0E0. It turned out that the test allocated a structure, did not initialize it correctly and then called the destructor of the object. Since a certain field was not null (it had E0E0E0E0 in it) it called delete on it.

!cs debugger extension

!cs can be used in both user-mode debugger and kernel debugger to display information about critical sections in the current process. Matching symbols with type information is required, especially for ntdll.dll.

The syntax for this extension is:

cs [-s]

- dump all the active critical sections in the current process.

!cs [-s] address
- dump critical section at this address.

!cs [-s] -d address
- dump critical section corresponding to DebugInfo at this address.

-s will dump the critical section initialization stack trace if it's available.

Examples:

Dump information about a critical section using its address

0:001> ! cs 0x7803B0F8

Critical section = 0x7803B0F8 (MSVCRT!__app_type+0x4)

DebugInfo = 0x6A262080

NOT LOCKED

LockSemaphore = 0x0

SpinCount = 0x0

Dump information about a critical section using its address, including initialization stack trace

0:001> !cs -s 0x7803B0F8

Critical section = 0x7803B0F8 (MSVCRT!__app_type+0x4)

DebugInfo = 0x6A262080

NOT LOCKED

LockSemaphore = 0x0

SpinCount = 0x0

Stack trace for DebugInfo = 0x6A262080:

0x6A2137BD: ntdll!RtlInitializeCriticalSectionAndSpinCount+0x9B

0x6A207A4C: ntdll!LdrpCallInitRoutine+0x14

0x6A205569: ntdll!LdrpRunInitializeRoutines+0x1D9

0x6A20DCE1: ntdll!LdrpInitializeProcess+0xAE5

Dump information about a critical section using its debug info address

0:001> !cs -d 0x6A262080

DebugInfo = 0x6A262080

Critical section = 0x7803B0F8 (MSVCRT!__app_type+0x4)

NOT LOCKED

LockSemaphore = 0x0

SpinCount = 0x0

Dump information about a critical section using its debug info address, including initialization stack trace

0:001> !cs -s -d 0x6A262080

DebugInfo = 0x6A262080

Critical section = 0x7803B0F8 (MSVCRT!__app_type+0x4)

NOT LOCKED

LockSemaphore = 0x0

SpinCount = 0x0

Stack trace for DebugInfo = 0x6A262080:

0x6A2137BD: ntdll!RtlInitializeCriticalSectionAndSpinCount+0x9B

0x6A207A4C: ntdll!LdrpCallInitRoutine+0x14

0x6A205569: ntdll!LdrpRunInitializeRoutines+0x1D9

0x6A20DCE1: ntdll!LdrpInitializeProcess+0xAE

Dump information about all the active critical sections in the current process

0:001> !cs

DebugInfo = 0x6A261D60

Critical section = 0x6A262820 (ntdll!RtlCriticalSectionLock+0x0)

LOCKED

LockCount = 0x0

OwningThread = 0x460

RecursionCount = 0x1

LockSemaphore = 0x0

SpinCount = 0x0

DebugInfo = 0x6A261D80

Critical section = 0x6A262580 (ntdll!DeferedCriticalSection+0x0)

NOT LOCKED

LockSemaphore = 0x7FC

SpinCount = 0x0

DebugInfo = 0x6A262600

Critical section = 0x6A26074C (ntdll!LoaderLock+0x0)

NOT LOCKED

LockSemaphore = 0x0

SpinCount = 0x0

.....

Dump information about all the active critical sections in the current process, including initialization stack trace

0:001> !cs -s

...

DebugInfo = 0x6A261EA0

Critical section = 0xA8001C (+0xA8001C)

NOT LOCKED

LockSemaphore = 0x0

SpinCount = 0x0

No stack trace saved

DebugInfo = 0x6A261EC0

Critical section = 0x6A263560 (ntdll!RtlpDphTargetDllsLock+0x0)

NOT LOCKED

LockSemaphore = 0x0

SpinCount = 0x0

No stack trace saved

DebugInfo = 0x6A261EE0

Critical section = 0xA90608 (+0xA90608)

NOT LOCKED

LockSemaphore = 0x7EC

SpinCount = 0x0

Stack trace for DebugInfo = 0x6A261EE0:

0x6A2137BD: ntdll!RtlInitializeCriticalSectionAndSpinCount+0x9B

0x6A20B0DC: ntdll!CsrpConnectToServer+0x1BE

0x6A20B2AA: ntdll!CsrClientConnectToServer+0x148

0x77DBE83F: KERNEL32!BaseDllInitialize+0x11F

0x6A207A4C: ntdll!LdrpCallInitRoutine+0x14

0x6A205569: ntdll!LdrpRunInitializeRoutines+0x1D9

0x6A20DCE1: ntdll!LdrpInitializeProcess+0xAE5

DebugInfo = 0x6A261F00

Critical section = 0x77E1AEB8 (KERNEL32!BaseDllRegistryCache+0x18)

NOT LOCKED

LockSemaphore = 0x0

SpinCount = 0x0

Stack trace for DebugInfo = 0x6A261F00:

0x6A2137BD: ntdll!RtlInitializeCriticalSectionAndSpinCount+0x9B

0x6A207A4C: ntdll!LdrpCallInitRoutine+0x14

0x6A205569: ntdll!LdrpRunInitializeRoutines+0x1D9

0x6A20DCE1: ntdll!LdrpInitializeProcess+0xAE5

...
!htrace debugger extension

!htrace can be used in both user-mode debugger and kernel debugger to display stack trace information for one or all the handles in a process. This information is available if handle tracing is enabled for the process – automatically enabled if handle checking is enabled in the application verifier. Stack traces are saved every time the process is opening or closing a handle or when it is referencing an invalid handle.

The kernel debugger syntax for this extension is:

!htrace [handle [process]]

If handle is not specified or is 0, information about all the handles in the process will be displayed. If process is not specified, the current process will be used.

The user-mode debugger syntax is:

!htrace [handle]

The user-mode debugger extension always displays information about the current debugee process.

Examples:

Dump information about handle 7CC in process 815328b0

kd> !htrace 7CC 815328b0

Loaded \\kstress\public\dmihai\kdexts extension DLL

Process 0x815328B0

ObjectTable 0xE15ECBB8

Handle 0x7CC - CLOSE:

0x8018FCB9: ntoskrnl!ExDestroyHandle+0x103

0x801E1D12: ntoskrnl!ObpCloseHandleTableEntry+0xE4

0x801E1DD9: ntoskrnl!ObpCloseHandle+0x85

0x801E1EDD: ntoskrnl!NtClose+0x19

0x77DBFCD6: KERNEL32!GetLocaleFileInfo+0x3D

0x77DBF942: KERNEL32!NlsProcessInitialize+0x11D

0x77E0C6DF: KERNEL32!NlsDllInitialize+0x35

0x6A20785C: ntdll!LdrpCallInitRoutine+0x14

0x6A205393: ntdll!LdrpRunInitializeRoutines+0x1D9

0x6A20DD80: ntdll!LdrpInitializeProcess+0xAF6

Handle 0x7CC - OPEN:

0x8018F44A: ntoskrnl!ExCreateHandle+0x94

0x801E3180: ntoskrnl!ObpCreateHandle+0x304

0x801E1563: ntoskrnl!ObOpenObjectByName+0x1E9

0x77DBFCD6: KERNEL32!GetLocaleFileInfo+0x3D

0x77DBF942: KERNEL32!NlsProcessInitialize+0x11D

0x77E0C6DF: KERNEL32!NlsDllInitialize+0x35

0x6A20785C: ntdll!LdrpCallInitRoutine+0x14

0x6A205393: ntdll!LdrpRunInitializeRoutines+0x1D9

0x6A20DD80: ntdll!LdrpInitializeProcess+0xAF6

Parsed 0x1CA stack traces.

Dumped 0x2 stack traces.

Dump information about all handles in process 815328b0

kd> !htrace 0 81400300

Process 0x81400300

ObjectTable 0xE10CCF60

Handle 0x7CC - CLOSE:

0x8018FCB9: ntoskrnl!ExDestroyHandle+0x103

0x801E1D12: ntoskrnl!ObpCloseHandleTableEntry+0xE4

0x801E1DD9: ntoskrnl!ObpCloseHandle+0x85

0x801E1EDD: ntoskrnl!NtClose+0x19

0x010012C1: badhandle!mainCRTStartup+0xE3

0x77DE0B2F: KERNEL32!BaseProcessStart+0x3D

Handle 0x7CC - OPEN:

0x8018F44A: ntoskrnl!ExCreateHandle+0x94

0x801E3390: ntoskrnl!ObpCreateUnnamedHandle+0x10C

0x801E7317: ntoskrnl!ObInsertObject+0xC3

0x77DE23B2: KERNEL32!CreateSemaphoreA+0x66

0x010011C5: badhandle!main+0x45

0x010012C1: badhandle!mainCRTStartup+0xE3

0x77DE0B2F: KERNEL32!BaseProcessStart+0x3D

Handle 0x7DC - BAD REFERENCE:

0x8018F709: ntoskrnl!ExMapHandleToPointerEx+0xEA

0x801E10F2: ntoskrnl!ObReferenceObjectByHandle+0x12C

0x801902BE: ntoskrnl!NtSetEvent+0x6C

0x80154965: ntoskrnl!_KiSystemService+0xC4

0x010012C1: badhandle!mainCRTStartup+0xE3

0x77DE0B2F: KERNEL32!BaseProcessStart+0x3D

Handle 0x7DC - CLOSE:

0x8018FCB9: ntoskrnl!ExDestroyHandle+0x103

0x801E1D12: ntoskrnl!ObpCloseHandleTableEntry+0xE4

0x801E1DD9: ntoskrnl!ObpCloseHandle+0x85

0x801E1EDD: ntoskrnl!NtClose+0x19

0x010012C1: badhandle!mainCRTStartup+0xE3

0x77DE0B2F: KERNEL32!BaseProcessStart+0x3D

Handle 0x7DC - OPEN:

0x8018F44A: ntoskrnl!ExCreateHandle+0x94

0x801E3390: ntoskrnl!ObpCreateUnnamedHandle+0x10C

0x801E7317: ntoskrnl!ObInsertObject+0xC3

0x77DE265C: KERNEL32!CreateEventA+0x66

0x010011A0: badhandle!main+0x20

0x010012C1: badhandle!mainCRTStartup+0xE3

0x77DE0B2F: KERNEL32!BaseProcessStart+0x3D

Parsed 0x6 stack traces.

Dumped 0x5 stack traces.

Dump information about handle 7DC in the current process

kd> !htrace 7DC

Process 0x81400300

ObjectTable 0xE10CCF60

Handle 0x7DC - BAD REFERENCE:

0x8018F709: ntoskrnl!ExMapHandleToPointerEx+0xEA

0x801E10F2: ntoskrnl!ObReferenceObjectByHandle+0x12C

0x801902BE: ntoskrnl!NtSetEvent+0x6C

0x80154965: ntoskrnl!_KiSystemService+0xC4

0x010012C1: badhandle!mainCRTStartup+0xE3

0x77DE0B2F: KERNEL32!BaseProcessStart+0x3D

Handle 0x7DC - CLOSE:

0x8018FCB9: ntoskrnl!ExDestroyHandle+0x103

0x801E1D12: ntoskrnl!ObpCloseHandleTableEntry+0xE4

0x801E1DD9: ntoskrnl!ObpCloseHandle+0x85

0x801E1EDD: ntoskrnl!NtClose+0x19

0x010012C1: badhandle!mainCRTStartup+0xE3

0x77DE0B2F: KERNEL32!BaseProcessStart+0x3D

Handle 0x7DC - OPEN:

0x8018F44A: ntoskrnl!ExCreateHandle+0x94

0x801E3390: ntoskrnl!ObpCreateUnnamedHandle+0x10C

0x801E7317: ntoskrnl!ObInsertObject+0xC3

0x77DE265C: KERNEL32!CreateEventA+0x66

0x010011A0: badhandle!main+0x20

0x010012C1: badhandle!mainCRTStartup+0xE3

0x77DE0B2F: KERNEL32!BaseProcessStart+0x3D

Parsed 0x6 stack traces.

Dumped 0x3 stack traces.

Revision History:

· 03/01/2001 - Silviu Calinoiu (SilviuC) - Initial version.

· 03/20/2001 - Daniel Mihai (DMihai) - Information about the Beta 2 critical section breaks.

· 04/02/2001 - Daniel Mihai (DMihai) - Information about more critical section breaks, !cs.

· 04/06/2001 – Silviu Calinoiu (SilviuC) – Other crashes section

· 04/19/2001 – Daniel Mihai (DMihai) – Examples for !cs and !htrace.

· 07/08/2001 – Silviu Calinoiu (SilviuC) – document stop 300 (invalid handle)

· 03/09/2002 – Daniel Mihai (DMihai) – document stops 302, 303, 304

Prefix start magic: ABCDAAAA if allocated and ABCDAAA9 if free.

Block information: user size, real size, stack trace.

Prefix end magic: DCBAAAAA if allocated and DCBAAAA9 if free.

Suffix pattern: 8/16 bytes of A0

User allocation: the infix pattern can be E0 (allocated and user did not request zeroed block) or F0 (free).

 N/A page

Prefix end magic: DCBABBBB if allocated and DCBABBBA if free.

User allocation: the infix pattern can be C0 (allocated and user did not request zeroed block) or F0 (free).

Suffix pattern: up to 8/16 bytes of D0

Block information: user size, real size, stack trace.

Prefix start magic: ABCDBBBB if allocated and ABCDBBBA if free.

