
The Common Diagnostic Model (CDM) is a framework for publishing device diagnostics and their results. Since it is based upon CIM it is closely coupled with other CIM classes and is part of the CIM heirarchy. However this would require that any kernel mode device driver that wants to expose diagnostics via CDM to not only implement the diagnostics in the device driver, but also write a WMI user mode provider that can interface with CIM. Having to also write the WMI user mode provider would be a disincentive to driver writers to include diagnostics. This paper describes a generic WMI user mode provider (CDMProv) that would bridge the gap between CDM and the kernel mode device driver. Device driver writers could implement diagnostics within their kernel device driver and the CDM provider would publish the tests and results on behalf of the device driver.

WDM Instrumentation Overview

Since device drivers run in kernel mode they cannot interface with the DCOM interfaces provided by WMI and thus cannot be a traditional WMI provider. Drivers have no access to the WMI schema and due to the spartan nature of device driver design, drivers must expose their instrumentation data in a very simple way. Device drivers define data blocks which are named by a unique guid. Each data block may contain one or more data items. There may be more than one instance of the data block for a particular device and multiple devices may support the same data block so each instance of a data block is assigned an instance name which is typically a permutaion on the device’s PnP device id.

So each data block is roughly equivalent to a WMI class and each data item within the class is roughly equivalent to a WMI property within the class. Because the interface to the device driver expects that the data block is formatted in a particular way a number of WDM specific qualifiers were invented that describe the order of the class properties within the data block, the guid that associates the driver data block to the class, and how to interpert variable length arrays. The device driver supplies the MOF as a blob of data and does no interpertation of it.

In order to allow access to the device driver’s data blocks by WMI consumers a WMI user mode provider named Wmiprov was written. This provider will access the device driver’s data blocks via the classes and WDM specific qualifiers specified in the driver’s MOF. However this provider is rather limited in functionality and cannot express associations, object references and does not try to associate the PnP ids specified in the data blocks with the PnP ids as stored within CIM classes such as CIM_LogicalDevice.

WDM to CDM/CIM Mappings

Since CDM relies upon CIM and always associates diagnostics tests with a CIM_ManagedSystemElement and Wmiprov can only supply a PnP Id for a WDM data block, some sort of mapping is needed so that diagnostics exposed by the driver as WDM data blocks can be exposed by CDM within the CIM framework. Typically there is an instance of a class derived from CIM_LogicalDevice would be related to the device that supplies WDM data blocks. Since a class derived from CIM_LogicalDevice is also derived from CIM_ManagedSystemElement instances of that class could be used wherever the CDM framework requires a CIM_ManagedSystemElement class instance. Additionally CIM_LogicalDevice contains a PnPDeviceId property whose value is the PnP Id associated with the device. Thus it should be possible to do a mapping between WDM data blocks and instances of classes derived from CIM_LogicalDevice.

In order to implement the mapping between CIM and WDM classes it is required that the device driver use PDO or PnP Device Id based instance names when registering its data blocks. It is also required that a name of a CIM_LogicalDevice derived class be supplied so that the CIM class instance can be found.
 A situation where there is more than one device that has the same PnP Id would not be an issue as this would only occur in the situation where more than one device object in the device stack is supplying WDM data blocks. Typically all of the devices objects in a stack are supplying information about the same physical (or logical) device so mapping them all to the same CIM_LogicalDevice derived class instance would not be problematic.

Another situation that may occur is when a PnP Id would map to more than one CIM_LogicalDevice derived class instance. Typically this would be for a multifunction device, for example a CD/DVD drive that might map to an instance of a DVD class and an instance of a CD class. Depending upon the CIM mapping class chosen the diagnostic could apply to both the CD and DVD CIM class instance or apply to only one of them whichever is appropriate.
Generic CDM Provider Architecture

Wmiprov has strict rules for how the classes that represent the WDM data blocks must be composed and is limited in the WMI functionality that it can expose to the device driver. Additionally Wmiprov does not do the CIM_LogicalDevice to PnP Id mapping described above. Therefore it is not possible to directly take a CDM derived class and expect Wmiprov to be able to implement it. There is an intermediate layer that implements the CDM classes and interfaces with the device driver via the WDM provider. This layer is the generic CDM provider or CDMProv.

The device driver writes MOF for both the CDM classes which specify those classes that are implemented by the CDM provider and the WDM classes which specify those classes that are implemented by the device driver to support the implementation of the CDM classes.. The CDM classes include special CDM provider specific qualifers that inform the CDM provider how to implement the CDM classes and which WDM classes shadow them.
. The device driver implements the data blocks represented by the shadow WDM classes and are handled directly by Wmiprov as any other WDM class would be
. So whenever a CDM class is invoked the CDM provider will reflect the operation to the WDM class and via the WDM provider a request is made of the device driver implementing those classes.

The CDM provider will create and maintain all of the CDM specific class instances and associations. It does this on demand; whenever the particular class or association is accessed the CDM provider will obtain all information needed to complete the operation. The CDM provider will invoke the WDM classes only when it needs to interact with the device driver.
WDM Classes Needed to Implement CDM Classes

The shadow classes for all CIM_DiagnosticTest, CIM_DiagnosticSetting and CIM_DiagnosticResults derived classes are based upon the idealized WDM classes WDM_DiagnosticTest, WDM_DiagnosticSettings and WDM_DiagnosticResults.

WDM_DiagnosticTest. The actual driver WDM classes are not derived from these classes, but are modeled from them. This is because each class must be able to define unique values within a ValueMap and it is not possible to extend a ValueMap that is specified in a base class.
Additional properties may be specified in the CDM class and in the shadow class. The CDM provider maps these properties between the CDM and WDM shadow classes, but only maps those properties if the names and data types are identical. The only exception to this is that the CDM provider will map enumerations (ValueMaps) from the WDM shadow classes into strings in the CDM classes.
WDM Diagnostic Test class

The WDM Diagnostic Test class is the WDM class that returns information about the specific diagnostic test and has methods that can run or discontinue the specific test. The CDM provider assigns the shadow class based upon WDM Diagnostic Test to the corresponding CDM CIM_DiagnosticTest derived classes. The CDM provider uses the shadow class when the corresponding CIM_DiagnosticTest class is invoked. The driver implements the data block and methods in the driver to return the test information and execute the methods as specified by the shadow class.

The WDM Diagnostic Test class includes a RunTest method that has a single input parameter and a single output parameter, both of which are embedded classes. The class names of the parameter embedded classes can be arbitrary, however the property names and types of those classes are not. The input embedded class has two parameters: a string named ExecutionID and an embedded WDM Diagnostic Setting class named DiagSettings. The output embedded class has a uint32 value named Result and an embedded WDM Diagnostic Result class named DiagResult.
WDM Diagnostic Settings class

The WDM Diagnostic Settings class is an embedded class that is an input parameter to the WDM Diagnostic Test RunTest method. It specifies all of the settings to use when executing the test. An array of these embedded classes is also returned when the WDM Diagnostic Settings List class is queried. Additional properties may be specified in the CDM and WDM classes provided the property names and types are identical.
WDM Diagnostic Settings List class

The WDM Diagnostic Settings List class is implemented by the device driver and returns an array of WDM Diagnostic Settings embedded classes. Each embedded class is a WDM_DiagnosticSettings embedded class that specifies the possible settings that can be used by the consumer to execute the test.
WDM Diagnostic Results class

The WDM Diagnostic Results class is an embedded class that is an output from the WDM Diagnostic Test RunTest method. It contains all of the results returned by the driver after the test has been completed. Additional properties may be specified in the WDM and CDM classes provided the property names and types are identical or the WDM property is a valuemap and the CDM property is a string.

CDM Provider Class Requirements

In order for the CDM consumer to access the device driver via the WDM provider there needs to be a set of CDM classes that include additional CDM provider specific qualifiers. These qualifiers are used as either runtime information for the CDM provider or as information to generate the shadow classes. Each diagnostic test must have an entire set of CDM classes specifically for that test and that test alone. Even if the CIM_DiagnosticSettings derived class is identical for different tests, the CDM provider requires that there be two different classes.
CIM_DiagnosticTest Class Qualifiers

For classes that are derived from CIM_DiagnosticTest the CDM Provider requires that it have all of the following class qualifiers.

WdmDiagTest(“Wdm Class Name”)

This qualifier specifies the name of the WDM_DiagnosticTest based class assigned to this CDM class. If specified it indicates that the driver writer has included a shadow WDM Diagnostic Test based class named “Wdm Class Name” in the driver’s MOF that should be used to implement this CDM class.

CdmDiagResult(“Cdm Class Name”)

This qualifier specifies the name of the CIM_DiagnosticResults derived class that the CDM provider should instantiate to create a results class instance.

CdmDiagSetting(“Cdm Class Name”)

This qualifier specifies the name of the CIM_DiagnosticSetting derived class that the CDM provider should instantiate to create a settings class instance.

CdmDiagResultForMSE(“Cdm Class Name”)

This qualifier specifies the name of the CIM_DiagnosticResultForMSE derived class that the CDM provider should instantiate to create a diagnostic result for MSE class instance.

CdmDiagResultForTest(“Cdm Class Name”)

This qualifier specifies the name of the CIM_DiagnosticResultForTest derived class that the CDM provider should instantiate to create a diagnostic result for test class instance.

CdmDiagTestForMSE(“Cdm Class Name”)

This qualifier specifies the name of the CIM_DiagnosticTestForMSE derived class that the CDM provider should instantiate to create a diagnostic test for MSE class instance.

CdmDiagSettingForTest(“Cdm Class Name”)

This qualifier specifies the name of the CIM_DiagnosticSettingForTest derived class that the CDM provider should instantiate to create a diagnostic setting for test class instance.

CimClassMapping(“Cim Class Name”)

This qualifier specifies the CIM_LogicalDevice derived class name which has an instance that represents the device for which this test is written. The CDM provider will map the PnPId for the CIM_LogicalDevice derived class instance with the PnPId specified in the instance of the WDM Diagnostic Test shadow class.

CIM_DiagnosticResults Class Qualifiers

WdmDiagResults(“Wdm Class Name”)

This qualifier specifies the name of the WDM Diagnostic Results class assigned to this CDM class.

WdmDiagOfflineResult(“Wdm Class Name”)

This qualifier specifies the name of the WDM class that can be queried to retrieve the diagnostic test results from the last offline diagnostic test executed.

CdmDiagTest(“CDM Diagnostic Test Class Name”)

This qualifier specifies the name of the CIM_DiagnosticTest derived class associated with this class. It is used by the CDM provider as a “back pointer” to the CIM_DiagnosticTest derived class.

CIM_DiagnosticSettings Class Qualifiers

WdmDiagSettings(“Wdm Class Name”)

This qualifier specifies the name of the WDM Diagnostic Settings based class assigned to this CDM class.

WdmDiagSettingsList(“Wdm Class Name”)

This qualifier specifies the name of the WDM class that the CDM provider will query to obtain the list of settings that can be used to execute the test.

CdmDiagTest(“CDM Diagnostic Test Class Name”)

This qualifier specifies the name of the CIM_DiagnosticTest derived class associated with this class. It is used by the CDM provider as a “back pointer” to the CIM_DiagnosticTest derived class.

How CDMProv implements CDM Classes

The CDM provider will need to implement and populate all CDM class instances based upon the MOF and the information in the WDM Diagnostic Test and WDM Diagnostic Settings List data blocks returned by the device driver. When the first CDM class in the set of CDM classes for a test is referenced by a consumer, the CDM provider will attempt to establish the mapping from the CDM to WDM classes and build internal data structures to manage the CDM class instances.

The first step in this process is to find the CIM_DiagnosticTest derived class for the set of CDM classes. This is done by determining if the first class is derived from CIM_DiagnosticTest and if not then looking for a CdmDiagTest qualifier on the referenced class. Once the CIM_DiagnosticTest derived class is found the class specified by the WdmDiagTest qualifier is queried all instances are mapped to instances of the class specified by the CimClassMapping qualifier. Note that there may be more than one mapping that results and in this case the CIM_DiagnosticTest derived class can have its RunTest method called with more than one MSE.

At this point the CDM provider will use the information returned by the WDM Diagnostic Test class instance to populate the information in the CIM_DiagnosticTest derived class instance. The CDM provider will then query the WDM Diagnostic Settings List class and obtain the available settings for the test and use it to populate the CIM_DiagnosticSettings derived class instances.

The CDM provider will also use this information to make available instances of the CDM association classes, ie those classes derived from CIM_DiagnosticSettingForTest and CIM_DiagnosticTestForMSE.

When the RunTest method on a CIM_DiagnosticTest derived class is executed the CDM provider will determine the associated WDM Diagnostic Test class and the WDM instance name from the passed MSE via the CIM class mappings. The CDM provider will then copy the passed CIM_DiagnosticSettings class instance into an instance of the WDM Diagnostic Settings class and invoke the WDM Diagnostic Test class RunTest method. This method will return a WDM Diagnostic Result class instance which the CDM provider will copy into a newly created instance of the CIM_DiagnosticResult class. This new instance will be added to the list of diagnostic results and new instances of the CIM_DiagnosticResultForMSE derived class and CIM_DiagnosticResultForTest derived class are created. Results are persisted until the WinMgmt service is restarted or the ClearResults method is invoked.

 CIM_DiagnosticResultForMSE Information

Each instance of this class describes an association between CIM_DiagnosticResult derived class instances and CIM_ManagedSystemElement class instance. To get all of the results for a particular instance of a CIM_ManagedSystemElement you would query CIM_DiagnosticResultForMSE for all instances that contained a particular value for CIM_ManagedSystemElement.

Instances of CIM_DiagnosticResultForMSE are created by the CDM provider whenever it creates a new CIM_DiagnosticResult derived class. Instances are removed whenever the ClearResults method is called.

 CIM_DiagnosticResultForTest Information

Each instance of this class describes an association between CIM_DiagnosticResult derived class instances and CIM_DiagnosticTest class instance. To get all of the results for a particular instance of CIM_DiagnosticTest you would query CIM_DiagnosticResultForTest for all instances that contained a particular value for CIM_DiagnosticTest.

Instances of CIM_DiagnosticResultForTerst are created by the CDM provider whenever it creates a new CIM_DiagnosticResult derived class. Instances are removed whenever the ClearResults method is called.

 CIM_DiagnosticTestForMSE Information

Each instance of this class describes an association between CIM_DiagnosticTest derived class instances and CIM_ManagedSystemElement class instances. To get all of the CIM_ManagedSystemElements that support a particular instance of CIM_DiagnosticTest you would query CIM_DiagnosticTestForMSE for all instances that contained a particular value for CIM_DiagnosticTest. Alternatively you could determine all of the tests a particular managed system element supports.

How Offline Diagnostics Fit In

Offline diagnostics are those tests that cannot be executed while the device is servicing other requests. For example a disk cannot execute a long duration surface scan while files are opened and being accessed. The only “safe” time when offline diagnostics can be executed is during the processing of the IRP_MN_START_DEVICE irp. The basic mechanism to execute offline diagnostics is to call the device driver with a request to execute a diagnostic. The device driver will then persist the request in the registry. The next time that the device receives a IRP_MN_START_DEVICE irp the device will get the request from the registry, clear the registry value and execute the test. It will then store the results of the test in its device extension and continue with the IRP_MN_START_DEVICE processing. Later user mode consumers can query for the saved results and know the results of the offline diagnostics.
The CDM provider has support to allow devices to work within this structure. If CIM_DiagnosticResult derived class has a WdmDiagOfflineResult class qualifier then this means that the diagnostic may need to run offline. The value of the qualifier is the WDM class that when queried will report the results of the offline diagnostic.
When the CDM provider calls the WDM RunTest method it always passes the ExecutionID assigned to the test execution. After executing the RunTest method the CDM Provider examines the TestResults property returned and if it has the value “Offline Pending Execution” and the CIM_DiagnosticResults class has a WdmDiagOfflineResult qualifer then the CDM provider will know that the diagnostic is one that the device driver has requested to be run offline. At this point the CDM provider will call the operating system to request that PnP remove the device stack containing the device and then restart it. If this succeeds then the CDM provider will query the Wdm Diagnostic Offline Result class to retrieve the ExecutionID and the results of the offline diagnostics and use it to fill the CIM_DiagnosticResult derived class. The CDM Provider will validate that the ExecutionID was the one expeeted.

�PAGE \# "'Page: '#'�'" ��An alternative approach to the cdm prov generating the shadow classes is to have the driver writer add the shadow classes in the mof itself. The disadvantage of this scheme is that it is more (and in some cases unneeded) work is needed to be done by the driver writer and that he will need to maintain 2 classes, rather than 1. This has the following advantages

Less work for CDM provider to do

CDMProv Don’t need to worry about keeping classes in sync or cleaning up shadow classes

If the CDM base classes add a new property, how is that property represented (ie, what is WmiDataId) in the generated class ? The driver would be written to the old base class so the CDM provider would need to know that it should not include the new base class properties in the derived class. Also what happens when a v2 driver gets on a machine with v1 base classes ? The driver will return extra stuff that the cdmprov won’t understand. How can we ensure that the data block format will always be understood by the CDMProv ?

If the driver writes the WDM classes itself then they can be used directly via wmiprov.

I suspect tThe right compromise wouldsolution is be for the CDM provider not to generate the classes, but expect the shadow classes to be in the schema. The shadow classes would then come in the driver’s mof and either be written by hand or generated by the wmimofck tool.

�PAGE \# "'Page: '#'�'" ��A related approach would be to skip generating the WDM classes in the schema and maintain that information in the CDM provider itself. The CDM provider would then call the device driver directly using undocumented apis and have to parse the WDM data blocks itself. I believe that generating MOF is a better approach as it more appropriately layers the functionality. The latter is the current implementation.

�PAGE \# "'Page: '#'�'" ��An issue here is how to do the shadow classes get updated and/or deleted. Shadow classes are implemented and written by the driver writer so this is not an issue anymore.

�PAGE \# "'Page: '#'�'" ��Add the sample mof

�PAGE \# "'Page: '#'�'" ��The CDM provider cannot generate the WDM shadow classes. Consider the case where a driver writes to v2 of the CDM spec and returns a data block that has data for the properties in the base v2 CDM class plus some data for a derived class. If this runs on v2 of the CDM provider then all is fine since the provider knows how to split up the data between the base properties and the derived class properties. Now lets say the same driver is run on a machine with a v1 CDM provider. The v1 CDM provider has no idea about the extra base properties in v2 and so will assign the v2 base property values to the derived class property values. Now this could be resolved by having a versioning mechanism, but that would introduce unneeded complexity. In any case if CDM is upgraded to v2 then the driver would need to be updated to v2 as well if it wanted to implement v2 features. And if the driver is updated then the driver writer can update its MOF at the same time. The WDM shadow class description is really a description of an interface into the device driver and so should be defined by the device driver writer and carried around by the device driver.

�PAGE \# "'Page: '#'�'" ��Include information about the rules and process for generating the shadow classes from CDM classes

�PAGE \# "'Page: '#'�'" ��How do we deal with packages where only some of the tests are implemented by WDM ?

�PAGE \# "'Page: '#'�'" ��The definition for WDM_DiagnosticTest may not include enough information to completely fill out CIM_DiagnosticTestForMSE. Revisit the mof and add any needed properties.

�PAGE \# "'Page: '#'�'" ��Does the CDM provider need to worry about this ? I don’t know how to map pnpids to CIM_SoftwareElement. Maybe we can get the driver filename from the pnp id and map that to the CIM_SoftwareElement ?

�PAGE \# "'Page: '#'�'" ��How do offline diagnostics fit within the CDM framwork ? How about scheduling diagnostics that need to wait ? Or wait til next boot ? How do we change driver filenames ? Do we mark some diags as needing a stack resart and do so automatically ? Do we expose on/offline primitives ?

�PAGE \# "'Page: '#'�'" ��How about a model where async events can be posted as diagnostic results ? This could apply to devices that fail to start. Issue: How does failed device mof get into the schema ? How about exposing eventlog items as diagnostic results ?

�PAGE \# "'Page: '#'�'" ��Operations

 Provider Load

 RunTest

 DiscontinueTest

How do Offline Diagnostics fit in

 Gather boot time and failed results and create CIM_DiagnosticResults

 Need methods to schedule offline diags and then to bring them offline

 and/or restart

 Some standards for BIST so that dumb code could initiate diags ?? Or

 do we want policy outside kernel ??

 Do we want kernel support for managing the scheduling of diagnostics,

 how they are maintained in the registry, and dispatching requests

 to run those diags ? Or is it the driver's responsibility ??

Logging is really posting DiagResults asynchronously

 How to persist the logging to safe builds and how to expose this via

 WMI running on safe build ??

 Aren't eventlogs also just DiagResults ???

Supply Driver File and other config info

Preboot/EFI interaction

Recovery console and boot loader support for enabling diagnostics

�PAGE \# "'Page: '#'�'" ��Include a list of all of the rules to check for

