Project Event Tracing

Page 1

Windows Development

Programming Tips & Hints
Feature Specification: Code Review
Author: Jee Fung Pang

Draft Version 1.0
11/01/2000

Status: PRELIMINARY
Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 2000-2001. All Rights Reserved

Microsoft Confidential

Printed on 11/21/00 at 12:03 PM
Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

31.
Introduction

32.
Common issues

32.1 Determining the size of WCHAR string, from ANSI CHAR string

32.2 Comparing ULONG for negative values

32.3 Protect your library functions

43.
Kernel mode programming

43.1
Using a SpinLock

43.2
Capturing pointers

43.3
Can your routine be paged?

54.
User mode programming

54.1 Using realloc(), HeapRealloc()

54.2 Combining different allocation routines

55.
What other tips that can be helpful

1.
Introduction

This document describes the tips/hints and programming practices that will be helpful in improving readability and quality. It will be updated frequently as newer issues are uncovered.

2. Common issues

The first section will cover issues that are common in Windows environment, and applies to both user-mode and kernel-mode development.

2.1 Determining the size of WCHAR string, from ANSI CHAR string

Assuming you have a string of char *string. Often, we need to convert it to UNICODE, typically using one of the Rtl routines. Here’s a common mistake in determining the size of the UNICODE string.

size_t Unicode_size = strlen(string) * sizeof(WCHAR);

The problem is that the ANSI string can contain double byte character, and the conversion routine from ANSI to UNICODE will not increase the size of the string. If you subsequently copy this string based on Unicode_size, you will have buffer overrun.

The solution is to either use the Length field of the UNICODE_STRING structure, if you use the appropriate Rtl routines, do pointer arithmetic to determine the actual size:

size_t Unicode_size = (char*) &unicode_string[wcslen(unicode_string)]

 - (char*) &unicode_string[0];

Note that the above size does not include the terminating UNICODE_NULL;

2.2 Comparing ULONG for negative values

This has not detrimental effect, but can probably indicate an error in the algorithm:

ULONG number;

…

while (number >= 0) {

Do something

}

Since the unsigned number is always positive or zero, the above code fragment is actually an infinite loop.

Similarly, watch out for tests such as

if (number < 0) …

that will always fails.

2.3 Protect your library functions

Whether you are implemented something in user-mode or kernel-mode, you should always prevent yourself from “crashing” by enclosing references to caller’s memory in a try and except block. Here’s an example:

	DWORD

MyRoutine(

 IN PDWORD pReturn)

{

 try {

 *pReturn = 0;

 }

 except (EXECUTE_EXCEPTION_HANDLER) {

 return GetExceptionCode();

 }

…

}

Furthermore, if what you need to return needs to be updated more than once, always use a local variable, e.g.

DWORD

MyRoutine(

 IN PDWORD pReturn)

{

 DWORD lReturn;

 LReturn = 0;

 ….

 LReturn = SomeOtherFunction();

 try {

 *pReturn = lReturn;

 }

 except (EXECUTE_EXCEPTION_HANDLER) {

 return GetExceptionCode();

 }

 return 0;

}

3. Kernel mode programming

Some of this should already be obvious to DDK developers, and listed here again so that it will not get missed.

3.1
Using a SpinLock

A common mistake when using a spinlock is to reference anything that can be paged. This includes variables and routines that can be paged.

3.2 Capturing pointers

If an entry point in kernel mode accepts pointers from user-mode, the address must be captured. This insulates your routine in kernel mode from pointer changes. A common example is UNICODE_STRING, where the buffer is a pointer. Before using the structure, it is best that the entire structure be captured to a local version, and all subsequent references should be to this local version.

3.3 Can your routine be paged?

By default, if you do not do anything, any routine that you implement in kernel mode will not be paged. This will easily increase the footprint of the operating system. Most of the time, if your routine does not use spinlock or raise IRQL to DISPATCH_LEVEL or above, your routine can be made pagable. The following steps show you how:

	VOID

MyRoutine();

#ifdef ALLOC_PRAGMA

#pragma alloc_text(PAGE, MyRoutine);

#endif

…

VOID

MyRoutine()

{

PAGED_CODE();

…

}

4. User mode programming

This section covers issues that pertain the programming in user-mode only.

4.1 Using realloc(), HeapRealloc()

When using a re-allocation routines such as those listed above, it is important to handle the previous pointer. For example, assuming ptr is a valid pointer to a memory location:

ptr = realloc(ptr, newsize);

if (ptr == NULL) return;

The above will result in a memory leak of the older ptr. The proper way is to remember the older location and handle it properly, e.g.

oldptr = ptr;

ptr = realloc(oldptr, newsize);

if (ptr == NULL) {

free(oldptr);

return;

}
The above example assumes that you want to fail completely if memory allocation fails, as most library routines do. If you wish to do more, you will need to handle oldptr as appropriate.

4.2 Combining different allocation routines

When using C, you are presented with at least 3 memory allocation routines. You can use C’s malloc()/free(), Win32’s HeapAlloc()/HeapFree(), or reserve your own chunk of virtual memory and use Rtl heap routines to operate on it. If you are using C++, you also can use new and delete.

As a practice, you should avoid mixing these different schemes, unless you are clearly and consciously look for a separate memory management scheme.

4.3 Creating a global lock in a dll

If your library function needs to create a global lock, such as a mutex, you have to make sure that it is created in a thread-safe manner, and that only one such lock is created within the process.

5. What other tips that can be helpful

We will cover a few tools that will be helpful in our everyday programming and debugging environment.

	Tools
	Description

	Windbg.exe (http://dbg)
	GUI Debugger – better for user-mode debugging

	Ntsd.exe (http://dbg)
	User-mode debugger – command line

	Kd{x86,ia64}.exe (http://dbg)
	Kernel debugger – need to debugger machine

	Verifier.exe
	Useful to verifying kernel-mode systems

	Gflags.exe
	User-mode memory checking

	Remote.exe (idw)
	Allows remote command line access to kd,ntsd

	Heapmon.exe, pageheap.exe
	Heap monitoring/debugging tools

SYMBOL 227 \f "Symbol" Microsoft Corporation, 20007 All Rights Reserved.

Microsoft Confidential

