
Any WMI data blocks that are provided by a data provider must be described by so that a data consumer can understand how to parse the data block returned from a query. A data provider does this by building a resource that contains MOF information and attaching it to one of its binary files. When the data provider registers it provides the path to the resource to WMI.

The resource is built by creating a text file containing the definitions for the data blocks associated with the guids registered by the data provider. Next this text file is compiled by the MofComp tool which will create a binary representation of it in another file. This binary file should be referenced by the data provider’s resource script when building the data providers binary image. The syntax for compiling file.mof into file.bmf is as follows:

 MofComp –BMOF file.bmf file.mof

Each data block is described in the MOF file by a class. Each data item within a data block is described by a property. Both properties and classes may have qualifiers associated with them. Qualifiers allow meta-data to be stored in the MOF and associated with various classes and properties. Some qualifiers are required for a WMI MOF while some are optional.

Each class must include two properties that are not part of the WMI data block, but are used by higher level management applications to access the WMI data blocks. The first property is InstanceName and is a counted unicode string and must have the qualifier [key]. The other property is Active and is a boolean. These properties are not part of the data block that is provided by the data provider, but is exposed to clients of the WBEM data consumer. Active denotes if WMI is able to return data for the data block or not. The property InstanceName holds the instance name for the data block returned in the WNODE data structure.

Properties can be a basic data type, an embedded class or a fixed or variable length array of the a basic data type embedded class.

Here is an example of a class definition:

//

// Standard class for reporting serial port information

//

[WMI, guid(“{85F64E01-5A9B-11d0-A838-00AA0060D45C}”),

 locale(“ms\\0x409”),

 WmiHelp009("English.hlp"),

 WmiHelp010("French.hlp"),

 WmiBaseHelpId(0x20),

 WmiClassHelpId(0x1f),

 WmiExpense(1),

 Description(“Description of class”]

class StandardSerialInformation

{

//

// InstanceName and Active are the required properties for WBEM to be able to

// manage WMI data blocks. The must not have Id’s associated with them.

 [key, read]

 string InstanceName;

 [read]

 boolean Active;

//

// This is the first data item in the blob and is a 64 bit integer and is readonly

 [read,

 Id(1),

 WmiScale(0),

 WmiCounterType(0x00000000),

 WmiComplexity(1),

 WmiVolatility(1000),

 Description(“Description of property”)]

 uint64 BytesSent; // bytes sent on port

//

// This is the second data item in the blob and is also a 64 bit integer and is

// readable or writable.

 [read,

 write,

 Id(2),

 WmiScale(0),

 WmiCounterType(0x00000000),

 WmiVolatility(1000)]

 uint64 BytesReceived; // Bytes received on port

//

// This data item is only present in version 2 or higher of the data block and is the

// fourth data item in the data block. It is a read only counted unicode string.

 [read,

 WmiVersion(2),

 Id(4),

 WmiScale(0),

 WmiCounterType(0x00000b00),

 WmiVolatility(60000)]
 string Owner; // Who owns the port

//

// This is the third data item in the data block and is part of version 1 and higher

// of the data block. It is a fixed length array of 16 bytes. Note that the order in

// the MOF class definition is not relevant to the order in the data block

 [read, write,

 Id(3),

 WmiScale(0),

 max(16), // fixed length array of 16

 WmiCounterType(0x00000300)]

 byte Status[]; // Status bit array

 //

 // This the fifth data item in the data block and is only in version 3 and higher

 // of the data block.

 [read,

 Id(5),

 WmiVersion(3),

 WmiScale(0),

 WmiCounterType(0x00000000),

 WmiComplexity(1),

 WmiVolatility(1000)]

 uint32 XmitDescriptorCount;

 //

 // This the sixth data item in the data block and is only in version 3 and higher

 // of the data block. It is a variable length array of XmitDescriptor structures.

 // The number of elements in the array can be found in the XmitDescriptorCount

 // property.

 [read,

 Id(6),

 WmiSizeIs(“XmitDescriptorCount”),

 WmiScale(0),

 WmiCounterType(0x00000000),

 WmiComplexity(1),

 WmiVolatility(1000)]

 XmitDescriptor embedding XmitBufferSize[];

}

//

// Note that this class does not have InstanceName or Active properties since it is

// only used as an embedded class.

class XmitDescriptor

{

 [read, Id(1)] int32 DestinationIndex;

 [read, Id(2)] int32 DestinationTarget;

}

[WMI, guid(“{85F64E02-5A9B-11d0-A838-00AA0060D45C}”),

 locale(“ms\\0x409”),

 WmiHelp009("English.hlp"),

 WmiHelp010("French.hlp"),

 WmiBaseHelpId(0x20),

 WmiClassHelpId(0x1f),

 WmiExpense(1),

 WmiEvent]

class SerialSendEvent

{

//

// InstanceName and Active are the required properties for WBEM to be able to

// manage WMI data blocks. The must not have Id’s associated with them.

 [key, read]

 string InstanceName; // Instance name returned from WMI

 [read]

 boolean Active;

//

// This data item is an event that can be enabled by a data consumer. The

// SendEventTrigger data item can be used to set or read the trigger for event

// generation while the SendEventRate data item can be set or read to regulate the

// event generation rate.

 [read,

 Id(1),

 WmiScale(0),

 WmiCounterType(0x00000000),

 WmiEvent,

 WmiEventTrigger(“SendEventTrigger”),

 WmiEventRate(“SendEventRate”)]

 int32 SendEventValue;

 [read,

 write,

 Id(2)]

 int32 SendEventRate;

 [read,

 write,

 Id(3)]

 int32 SendEventTrigger;

}

A class may have the following qualifiers:

 [guid(“guid-string”)] declares the guid that represents the class within WMI. This qualifier is REQUIRED.

[locale(“locale-id”)] specifies the locale for which this MOF was written. If this qualifier is not present then a locale-id of “ms\\0x409” is assumed.

[Description(“description-text”)] specifies description text for the class or property in the locale specified for the locale qualifier.

[WmiHelp009("help-file-for-language-009")] declares the name of the helpfile for lang id 009

[WmiHelp010("help-file-for-language-010")] declares the name of the helpfile for lang id 010

[WmiHelpXXX("help-file-for-language-XXX")] declares the name of the helpfile for lang id XXX

[WmiBaseHelpId(help-id)] specifies the base id to add to the data item id to obtain the help id corresponding to the data item.

[WmiClassHelpId(help-id)] specifies the help id for the entire class.

[WmiExpense(expense-value)] specifies how much system resources is required in order to collect data in the data block. expense-value is defined to be the average number of cpu cycles needed to collect the data block. If this qualifier is not specified then the expense-value is assumed to be 0.

A data item may have the following qualifiers:

 [read] specifies that the data item may be read

 [write] specifies that the data item may be written

[Id(data-item-id)] specifies the data item id for the data item. This qualifier is REQUIRED.

[WmiScale(scale-factor)] specifies the scaling factor to use when displaying the data. Before displaying the data returned from a query of the data item it is multiplied by 10 to the power of scale-factor. If this qualifier is not specified then the scale-factor is assumed to be 0.

[WmiCounterType(counter-type-flags)] specifies additional information that describes how to display the data item. See below for more information.

[WmiVersion(version-number)] specifies the version of the data block that the data item belongs. If this qualifier is not specified then version-number is assumed to be the version number specified in the next lowest data item that specifies a version number. In the previous example SendEventRate is defined to be version number 2.

[WmiTimeStamp] specifies that the 64 bit data item is really a timestamp in units of 100 nanoseconds since 1/1/1601. This qualifier is only valid for 64 bit data items.

[WmiEvent] specifies that the data item can generate an event when enabled.

[WmiEventTrigger(“data-item-name”)] specifies the name of the data item that can be used to trigger the event. data-item-name is the name of a data item that could be a trigger for the event. In the example above SendEventValue will fire an event when SendEventTrigger is reached. This is an optional qualifier and may only be used on those data items which have the [WmiEvent] qualifier.

[WmiEventRate(“data-Item-name”)] specifies the name of the data item that can be used to specify a rate for the event. This is an optional qualifier and may only be used on those data items which have the [WmiEvent] qualifier.

[WmiEventAssociatedGuid(“guid”)] specifies a guid that is associated with a event generated by this event item. This is an optional qualifier and may only be used on those data items which have the [WmiEvent] qualifier.

[WmiComplexity(“complexity-category”)] specifies the level of detail associated with the counter. complexity-category can have the value of “Novice” for the information that anyone can understand, “Advanced” for information that is useful for advanced users, “Expert” for information that is useful to only expert users and “Wizard” for information that is useful for the data provider designer. If this qualifier is not specified then a complexity-category of “Novice” is assumed.

[WmiVolatility(validity-interval)] specifies how often the this data item value is updated internally. validity-interval is defined in units of milliseconds so a validity-interval of 1000 would mean that the data item is updated internally every second. Data consumers can use this measure to determine how frequently it should poll for changes in a data item. If this qualifier is not specified then no assumption on the length of validity for a data item can be made.

[WmiSizeIs(“property-name”)] specifies the property within the current class that has the count of the number of array elements (not bytes) contained in a variable length array.

[max(number-elements)] specifies the number of elements in a fixed length array.

The order that the data items are laid out in the data block is controlled by the data item id. Data item ids must be allocated contiguously starting with data item id 1. The data item order specified in the MOF is not relevant. If a class (or data block) must be updated to include additional data items the first new data item must have a WmiVersion qualifier with the next version number. See section “Versioning” for more information. In the example above data items with ids 1,2 and 3 are part of version 1 and data item ids 4 is part of version 2 and data items 5 and 6 are part of version 3.

MOF localization issues are under investigation by the SMS team and are TBD.

The following table shows the different data types that MOF supports. MOF also supports arrays of these types as well. A variable sized array must have a WmiSizeIs qualifier that specifies the property that has number of elements in the array.

Data Types
Data Format

string
Counted unicode string

 int32
 Signed 32-bit integer

uint32
 Unsigned 32-bit integer

int16, short
 Signed 16-bit integer

uint16, ushort
 Unsigned 16-bit integer

 int64
 Signed 64-bit integer

 uint64
 Unsigned 64-bit integer

char, int8
 Signed 8-bit character

 uchar, byte , uint8
 Unsigned 8-bit integer

Date
25 character string used to specify absolute dates or time intervals. See Below

 bool, boolean
 Byte where 0 is FALSE, != 0 is TRUE

Note that presently UINT16, USHORT, CHAR, INT8 and UCHAR are broken since it appears that the binary mof contains the wrong type code for the data type.

The Date property type is a fixed length Unicode string and is not preceeded by a count value. It isin the following fixed format:

 yyyymmddhhmmss.mmmmmmsutc

 Where yyyy is a 4 digit year, mm is the month, dd is the day, hh is the hour (24-hour clock), mm is the minute, ss is the second, the mmmmmm is the number of microseconds (typically all zeros) and s is a

 "+" or "-" indicating the sign of the UTC (correction field, and utc is the offset from UTC in minutes (using the sign indicated by s). For example, Wednesday, May 25, 1994, at 1:30:15 PM EDT would be represented as:

 19940525133015.0000000-300

 Values MUST be zero-padded so that the entire string is always the same 25-character length. Fields which are not significant MUST be replaced with asterisk characters. Similarly, intervals use the same format, except that the interpretation of the fields is based on elapsed time. For example, an elapsed time of 1 day, 13 hours, 23 minutes, and 12 seconds would be:

 00000001132312.000000+000

 A UTC offset of zero is always used for interval properties.

The WmiCounterType has a DWORD value that is composed of the following flags which are similar to those that describe Performance Monitor Counters.

// -

//

// WmiCounterType qualifier field values

//

//

// Counter ID Field Definition:

//

// 3 2 2 2 2 1 1 1

// 1 8 4 2 0 6 2 0 8 0

// +--------+--------+----+----+--------+--------+----+----+----------------+

// |Display |Calculation |Time|Counter | |Ctr |Size| |

// |Flags |Modifiers |Base|SubType |Reserved|Type|Fld | Reserved |

// +--------+--------+----+----+--------+--------+----+----+----------------+

//

//

// The counter type is the "or" of the following values as described below

//

// select one of the following to indicate the counter's data size

//

#define WMICT_SIZE_DWORD 0x00000000 // 32 bit value

#define WMICT_SIZE_LARGE 0x00000100 // 64 bit value

#define WMICT_SIZE_ZERO 0x00000200 // for Zero Length fields

#define WMICT_SIZE_VARIABLE_LEN 0x00000300 // length is not 32 or 64 bits

//

// select one of the following values to indicate the counter field usage

//

#define WMICT_TYPE_NUMBER 0x00000000 // a number (not a counter)

#define WMICT_TYPE_COUNTER 0x00000400 // an increasing numeric value

#define WMICT_TYPE_TEXT 0x00000800 // a Unicode text field

#define WMICT_TYPE_ZERO 0x00000C00 // displays a zero

//

// If the WMICT_TYPE_NUMBER field was selected, then select one of the

// following to describe the Number

//

#define WMICT_NUMBER_HEX 0x00000000 // display as HEX value

#define WMICT_NUMBER_DECIMAL 0x00010000 // display as a decimal integer

#define WMICT_NUMBER_DEC_1000 0x00020000 // display as a decimal/1000

//

// If the WMICT_TYPE_COUNTER value was selected then select one of the

// following to indicate the type of counter

//

#define WMICT_COUNTER_VALUE 0x00000000 // display counter value

#define WMICT_COUNTER_RATE 0x00010000 // divide ctr / delta time

#define WMICT_COUNTER_FRACTION 0x00020000 // divide ctr / base

#define WMICT_COUNTER_BASE 0x00030000 // base value used in fractions

#define WMICT_COUNTER_ELAPSED 0x00040000 // subtract counter from current ti¬

me

#define WMICT_COUNTER_QUEUELEN 0x00050000 // Use Queuelen processing func.

#define WMICT_COUNTER_HISTOGRAM 0x00060000 // Counter begins or ends a histogr¬

am

//

// Timer SubTypes

//

#define WMICT_TIMER_TICK 0x00000000 // use system perf. freq for base

#define WMICT_TIMER_100NS 0x00100000 // use 100 NS timer time base units¬

#define WMICT_OBJECT_TIMER 0x00200000 // use the object timer freq

//

// Any types that have calculations performed can use one or more of

// the following calculation modification flags listed here

//

#define WMICT_DELTA_COUNTER 0x00400000 // compute difference first

#define WMICT_DELTA_BASE 0x00800000 // compute base diff as well

#define WMICT_INVERSE_COUNTER 0x01000000 // show as 1.00-value (assumes:

#define WMICT_MULTI_COUNTER 0x02000000 // sum of multiple instances

//

// Select one of the following values to indicate the display suffix (if any)

//

#define WMICT_DISPLAY_NO_SUFFIX 0x00000000 // no suffix

#define WMICT_DISPLAY_PER_SEC 0x10000000 // "/sec"

#define WMICT_DISPLAY_PERCENT 0x20000000 // "%"

#define WMICT_DISPLAY_SECONDS 0x30000000 // "secs"

#define WMICT_DISPLAY_NOSHOW 0x40000000 // value is not displayed

//

// Predefined counter types

//

// 32-bit Counter. Divide delta by delta time. Display suffix: "/sec"

#define WMICT_COUNTER_COUNTER \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

 WMICT_TIMER_TICK | WMICT_DELTA_COUNTER | WMICT_DISPLAY_PER_SEC)

// 64-bit Timer. Divide delta by delta time. Display suffix: "%"

#define WMICT_COUNTER_TIMER \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

 WMICT_TIMER_TICK | WMICT_DELTA_COUNTER | WMICT_DISPLAY_PERCENT)

// Queue Length Space-Time Product. Divide delta by delta time. No Display Suffix.

#define WMICT_COUNTER_QUEUELEN_TYPE \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_QUEUELEN |\

 WMICT_TIMER_TICK | WMICT_DELTA_COUNTER | WMICT_DISPLAY_NO_SUFFIX)

// Queue Length Space-Time Product. Divide delta by delta time. No Display Suffix.

#define WMICT_COUNTER_LARGE_QUEUELEN_TYPE \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_QUEUELEN |\

WMICT_TIMER_TICK | WMICT_DELTA_COUNTER | WMICT_DISPLAY_NO_SUFFIX)

// Queue Length Space-Time Product. Divide delta by delta time. No Display Suffix.

#define WMICT_COUNTER_LARGE_QUEUELEN_TYPE \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_QUEUELEN |\

 WMICT_TIMER_TICK | WMICT_DELTA_COUNTER | WMICT_DISPLAY_NO_SUFFIX)

// 64-bit Counter. Divide delta by delta time. Display Suffix: "/sec"

#define WMICT_COUNTER_BULK_COUNT \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

 WMICT_TIMER_TICK | WMICT_DELTA_COUNTER | WMICT_DISPLAY_PER_SEC)

// Indicates the counter is not a counter but rather Unicode text Display as text.

#define WMICT_COUNTER_TEXT \

 (WMICT_SIZE_VARIABLE_LEN | WMICT_TYPE_TEXT | \

 WMICT_DISPLAY_NO_SUFFIX)

// Indicates the data is a counter which should not be

// time averaged on display (such as an error counter on a serial line)

// Display as is. No Display Suffix.

#define WMICT_COUNTER_RAWCOUNT \

 (WMICT_SIZE_DWORD | WMICT_TYPE_NUMBER | WMICT_NUMBER_DECIMAL |\

 WMICT_DISPLAY_NO_SUFFIX)

// Same as WMICT_COUNTER_RAWCOUNT except its size is a large integer

#define WMICT_COUNTER_LARGE_RAWCOUNT \

 (WMICT_SIZE_LARGE | WMICT_TYPE_NUMBER | WMICT_NUMBER_DECIMAL |\

 WMICT_DISPLAY_NO_SUFFIX)

// Special case for RAWCOUNT that want to be displayed in hex

// Indicates the data is a counter which should not be

// time averaged on display (such as an error counter on a serial line)

// Display as is. No Display Suffix.

#define WMICT_COUNTER_RAWCOUNT_HEX \

 (WMICT_SIZE_DWORD | WMICT_TYPE_NUMBER | WMICT_NUMBER_HEX |\

 WMICT_DISPLAY_NO_SUFFIX)

// Same as WMICT_COUNTER_RAWCOUNT_HEX except its size is a large integer

#define WMICT_COUNTER_LARGE_RAWCOUNT_HEX \

 (WMICT_SIZE_LARGE | WMICT_TYPE_NUMBER | WMICT_NUMBER_HEX |\

 WMICT_DISPLAY_NO_SUFFIX)

// A count which is either 1 or 0 on each sampling interrupt (% busy)

// Divide delta by delta base. Display Suffix: "%"

#define WMICT_SAMPLE_FRACTION \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_FRACTION |\

 WMICT_DELTA_COUNTER | WMICT_DELTA_BASE | WMICT_DISPLAY_PERCENT)

// A count which is sampled on each sampling interrupt (queue length)

// Divide delta by delta time. No Display Suffix.

#define WMICT_SAMPLE_COUNTER \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

 WMICT_TIMER_TICK | WMICT_DELTA_COUNTER | WMICT_DISPLAY_NO_SUFFIX)

// A label: no data is associated with this counter (it has 0 length)

// Do not display.

#define WMICT_COUNTER_NODATA \

 (WMICT_SIZE_ZERO | WMICT_DISPLAY_NOSHOW)

// 64-bit Timer inverse (e.g., idle is measured, but display busy %)

// Display 100 - delta divided by delta time. Display suffix: "%"

#define WMICT_COUNTER_TIMER_INV \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

 WMICT_TIMER_TICK | WMICT_DELTA_COUNTER | WMICT_INVERSE_COUNTER | \

 WMICT_DISPLAY_PERCENT)

// The divisor for a sample, used with the previous counter to form a

// sampled %. You must check for >0 before dividing by this! This

// counter will directly follow the numerator counter. It should not

// be displayed to the user.

#define WMICT_SAMPLE_BASE \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_BASE |\

 WMICT_DISPLAY_NOSHOW |\

 0x00000001) // for compatibility with pre-beta versions

// A timer which, when divided by an average base, produces a time

// in seconds which is the average time of some operation. This

// timer times total operations, and the base is the number of opera-

// tions. Display Suffix: "sec"

#define WMICT_AVERAGE_TIMER \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_FRACTION |\

 WMICT_DISPLAY_SECONDS)

// Used as the denominator in the computation of time or count

// averages. Must directly follow the numerator counter. Not dis-

// played to the user.

#define WMICT_AVERAGE_BASE \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_BASE |\

 WMICT_DISPLAY_NOSHOW |\

 0x00000002) // for compatibility with pre-beta versions

// A bulk count which, when divided (typically) by the number of

// operations, gives (typically) the number of bytes per operation.

// No Display Suffix.

#define WMICT_AVERAGE_BULK \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_FRACTION |\

 WMICT_DISPLAY_NOSHOW)

// 64-bit Timer in 100 nsec units. Display delta divided by

// delta time. Display suffix: "%"

#define WMICT_100NSEC_TIMER \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

WMICT_TIMER_100NS | WMICT_DELTA_COUNTER | WMICT_DISPLAY_PERCENT)

// 64-bit Timer inverse (e.g., idle is measured, but display busy %)

// Display 100 - delta divided by delta time. Display suffix: "%"

#define WMICT_100NSEC_TIMER_INV \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

 WMICT_TIMER_100NS | WMICT_DELTA_COUNTER | WMICT_INVERSE_COUNTER |\

 WMICT_DISPLAY_PERCENT)

// 64-bit Timer. Divide delta by delta time. Display suffix: "%"

// Timer for multiple instances, so result can exceed 100%.

#define WMICT_COUNTER_MULTI_TIMER \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

 WMICT_DELTA_COUNTER | WMICT_TIMER_TICK | WMICT_MULTI_COUNTER |\

 WMICT_DISPLAY_PERCENT)

// 64-bit Timer inverse (e.g., idle is measured, but display busy %)

// Display 100 * _MULTI_BASE - delta divided by delta time.

// Display suffix: "%" Timer for multiple instances, so result

// can exceed 100%. Followed by a counter of type _MULTI_BASE.

#define WMICT_COUNTER_MULTI_TIMER_INV \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_RATE |\

 WMICT_DELTA_COUNTER | WMICT_MULTI_COUNTER | WMICT_TIMER_TICK |\

 WMICT_INVERSE_COUNTER | WMICT_DISPLAY_PERCENT)

// Number of instances to which the preceding _MULTI_..._INV counter

// applies. Used as a factor to get the percentage.

#define WMICT_COUNTER_MULTI_BASE \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_BASE |\

 WMICT_MULTI_COUNTER | WMICT_DISPLAY_NOSHOW)

// 64-bit Timer in 100 nsec units. Display delta divided by delta time.

// Display suffix: "%" Timer for multiple instances, so result can exceed 100%.

#define WMICT_100NSEC_MULTI_TIMER \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_DELTA_COUNTER |\

 WMICT_COUNTER_RATE | WMICT_TIMER_100NS | WMICT_MULTI_COUNTER |\

 WMICT_DISPLAY_PERCENT)

// 64-bit Timer inverse (e.g., idle is measured, but display busy %)

// Display 100 * _MULTI_BASE - delta divided by delta time.

// Display suffix: "%" Timer for multiple instances, so result

// can exceed 100%. Followed by a counter of type _MULTI_BASE.

#define WMICT_100NSEC_MULTI_TIMER_INV \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_DELTA_COUNTER |\

 WMICT_COUNTER_RATE | WMICT_TIMER_100NS | WMICT_MULTI_COUNTER |\

 WMICT_INVERSE_COUNTER | WMICT_DISPLAY_PERCENT)

// Indicates the data is a fraction of the following counter which

// should not be time averaged on display (such as free space over

// total space.) Display as is. Display the quotient as "%".

#define WMICT_RAW_FRACTION \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_FRACTION |\

WMICT_DISPLAY_PERCENT)

// Indicates the data is a base for the preceding counter which should

// not be time averaged on display (such as free space over total space.)

#define WMICT_RAW_BASE \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_BASE |\

 WMICT_DISPLAY_NOSHOW |\

 0x00000003) // for compatibility with pre-beta versions

// The data collected in this counter is actually the start time of the

// item being measured. For display, this data is subtracted from the

// sample time to yield the elapsed time as the difference between the two.

// In the definition below, the PerfTime field of the Object contains

// the sample time as indicated by the WMICT_OBJECT_TIMER bit and the

// difference is scaled by the PerfFreq of the Object to convert the time

// units into seconds.

#define WMICT_ELAPSED_TIME \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_ELAPSED |\

 WMICT_OBJECT_TIMER | WMICT_DISPLAY_SECONDS)

//

// The following counter type can be used with the preceding types to

// define a range of values to be displayed in a histogram.

//

#define WMICT_COUNTER_HISTOGRAM_TYPE 0x80000000

 // Counter begins or ends a histogram

//

// This counter is used to display the difference from one sample

// to the next. The counter value is a constantly increasing number

// and the value displayed is the difference between the current

// value and the previous value. Negative numbers are not allowed

// which shouldn't be a problem as long as the counter value is

// increasing or unchanged.

//

#define WMICT_COUNTER_DELTA \

 (WMICT_SIZE_DWORD | WMICT_TYPE_COUNTER | WMICT_COUNTER_VALUE |\

 WMICT_DELTA_COUNTER | WMICT_DISPLAY_NO_SUFFIX)

#define WMICT_COUNTER_LARGE_DELTA \

 (WMICT_SIZE_LARGE | WMICT_TYPE_COUNTER | WMICT_COUNTER_VALUE |\

 WMICT_DELTA_COUNTER | WMICT_DISPLAY_NO_SUFFIX)

