TCO - EventTraceModuleInteraction.doc

by: Manivel Chandrasekaran

<Title> <Contact>

WMI TCO: EventTraceModuleInteraction

TCO Owner:
Manivel Chandrasekaran

Written By:
Manivel Chandrasekaran

Start date:
03/01/1999
Run Test Contact:

Dev Contact:

Jee Fung Pang/Melur Raghuraman

PM Contact:

Jee Fung Pang

Spec Name:

Spec Locale:

% Complete

TCO Sign Offs:

Description:
Title:
Who:
Date:

Initial TCO Review
Test Lead

03/04/1999

Initial TCO Review
Development

Initial TCO Review
Test Case Engineer

Follow-up TCO Review
Program Manager

Follow-up TCO Review
Development

Follow-up TCO Review
Test Case Engineer

History:

Date:
Author:
Reason:

03/01/1999
Manivel Chandrasekaran
Created Initial Document

Table of Contents:

4Introduction:

References:
4
Assumptions:
4
Global Test Classes:
4
1.
An instance of logger will be created when StartTrace is called correctly.
5
1.1.
Logger will notify the Provider to enable tracing only when it is enabled by calling EnableTrace.
5
1.2.
Logger will notify Provider to disable logging when it is disabled by calling EnableTrace.
6
1.3.
Any attempt to create a new logger with same logfile name will return !!!!
6
1.4.
Multiple providers will be able to log to the same logger if all the providers had registered for the same control GUID.
6
1.5.
If the buffers allocated is not sufficient for logging all the events, Logger will log the number of events lost correctly.
6
1.6.
If the Log file is deleted, a new log file will be created with same file name.
6
1.7.
Any attempt to create a new logger with the same logger name will return success.
6
1.8.
If the Buffers are not accessed for more than 15 minutes, the buffer will be freed.
6
2.
Logger can be stopped by calling StopTrace correctly.
6
2.1.
If the Logger is stopped, all subsequent Event tracing by Providers will return INVALID_HANDLE.
7
2.2.
Notification will be sent to all the Providers which had registered the control GUID with the logger.
7
2.3.
Logger will be stopped even if the Provider returns error upon receiving the notification.
7
2.4.
Consumers will not be notified that the Logger has been stopped.
7
2.5.
Any attempt by the consumer to read the data will return success.
7
2.6.
Any new logger will be able to write to the log file.
7
2.7.
The Logger will release all the buffers it had allocated.
7
3.
User mode Provider can register the GUIDs for logging by calling RegisterTraceGuids
8
3.1.
User mode Provider can pass Binary mof to the WDM Service by calling RegisterTraceGuids
8
3.2.
A user mode Provider will be able to write data to different loggers if it different loggers are enabled for different control GUIDs.
8
4.
Kernel mode Provider can register the GUIDs for logging by calling IoWmiRegistrationControl.
8
4.1.
Kernel mode provider can pass binary MOF to the WDM Service by including as a resource in driver file.
8
4.2.
Kernel mode provider can register BINARY_MOF_GUID as one of the GUID supported.
8
5.
User mode Provider can unregister the GUIDs for logging by calling UnregisterTracedGuids.
8
5.1.
Any subsequent enable or disable of logger will not result in calling the callback functions.
8
5.2.
The WDM Service will notify the WDM Provider that the provider has unloaded.
8
6.
Kernel mode Provider can deregister the GUIDs for logging by calling IoWmiRegistrationControl.
8
6.1.
Any subsequent enable or disable of logger will not result in IRPs to the driver.
9
7.
User mode Provider can generate event trace by calling TraceEvent.
9
7.1.
If the Provider tries to log data more than the size of the Buffer size set for the logger, TraceEvent will return !!!!
9
7.2.
Provider can use WNODE_FLAG_USE_MOF_PTR in Event header to send pointer to the datablock.
9
8.
Consumers can process trace events by calling SetTraceCallback
9
8.1.
One consumer can receive events from different loggers if consumer has callback routines for different GUIDs.
9
9.
Consumers can read the trace log file by calling OpenTrace
9
9.1.
Different consumers can process the same logfile by getting different handles
9
10.
Consumers can process trace by calling ProcessTrace
9
Specific Test Classes:
9
Interoperability:
9
Stress/Performance:
10
Anomalies & Special Cases:
10
Non Testable Behavior:
10
Behavior to be tested in BVT:
10
International:
10
Appendix:
10
Glossary:
10

Introduction:

Event tracing is an event-driver mechanism of performance data collection commonly used in the industry to gather metrics that can be correlated to workload activities. This documents outlines the test cases to test the interaction between the three modules (Providers, Consumers and Collection Control) that support Event tracing.

References:

1. Jee Fung Pang, Melur Raghuraman – Developers of Event Trace APIs

2. TCO-Event Trace API

3. Event Tracing for Capacity Planning

-
http://capplan
Assumptions:

The assumption is made that event trace APIs have been fully tested and this TCO is designed to test Event Tracing as a single module.

Since the objective of the TCO is to test the full functionality of Event Tracing, all the APIs to be used for testing this should be called with correct parameters. Behavior of APIs with invalid parameters is discussed in TCO- Event ProviderAPI TCO and is not the purpose of this TCO.

Tester is familiar with all the Event Trace APIs.

Global Test Classes:

-ALL -ALL -ALL -0 -ALL -0

1. An instance of logger will be created when StartTrace is called correctly.

1.1. Logger will notify the Provider to enable tracing only when it is enabled by calling EnableTrace.

1.1.1. If a logger tries to enable a GUID, for which logging is already enabled for another logger, EnableTrace will return ERROR_WMI_ALREADY_ENABLED.

1.1.2. If EnableTrace is called for a GUID registered by the provider, notification will be sent to the Provider immediately.

1.1.3. If a control GUID is registered by multiple providers, enable tracing will be sent to all the Providers.

1.1.4. If the Provider exits and then starts again from another process and if the logger is still running, the provider will receive enable notification immediately.

1.1.5. Any New provider will be able to register for a new set of GUIDS.

1.1.5.1. If the new provider registers any GUID for which tracing is already enabled, notification will be sent immediately.

1.1.6. Consumers will not be notified when EnableTrace is called.

1.2. Logger will notify Provider to disable logging when it is disabled by calling EnableTrace.

1.2.1. Any subsequent logging of the Provider will result in ERROR_INVALID_HANDLE.

1.3. Any attempt to create a new logger with same logfile name will return ERROR_FILE_EXISTS.

1.4. Multiple GUIDs will be able to enabled for the same logger.

1.5. Multiple providers will be able to log to the same logger if all the providers had registered for the same control GUID.

1.6. If the buffers allocated is not sufficient for logging all the events, Logger will log the number of events lost correctly.

1.7. The Log file cannot be deleted when the logger is started.

1.8. Any attempt to create a new logger with the same logger name will return success.

1.8.1. Always the first logger will be referred when logger is stopped or queried by using the logger name.

1.8.2. User can stop or query different loggers by using the logger handle.

1.8.3. If the logger is stopped continuously by name, all the loggers will be stopped in the order in which it were created.

1.9. If the Buffers are not accessed for more than 15 minutes, the buffer will be freed.

1.10. If the Logger name is NT Kernel Logger, kernel logger will be started with the filename given.

1.10.1. EnableFlag can be used to individually turn on Process Creation, Thread Creation, Disk IO, Soft & Hard Faults, Network TCP IP.

1.10.2. Kernel Logger will be able to started with real time mode.

1.10.3. Any attempt to start Kernel logger while it is running will result in INVALID_PARAMETER.

1.11. Active buffers will be flushed to disk on a periodic basis by setting FlushTime parameter

2. Logger can be stopped by calling StopTrace correctly.

2.1. If the Logger is stopped, all subsequent Event tracing by Providers will return INVALID_HANDLE.

2.2. Notification will be sent to all the Providers which had registered the control GUID with the logger.

2.3. Logger will be stopped even if the Provider returns error upon receiving the notification.

2.4. Consumers will not be notified that the Logger has been stopped.

2.5. StopTrace will return success even if any consumer is already running.

2.6. Any attempt by the consumer to read the log file will return success.

2.7. Any new logger will be able to write to the log file.

2.8. The Logger will release all the buffers it had allocated.

3. User mode Provider can register the GUIDs for logging by calling RegisterTraceGuids

3.1. User mode Provider can pass Binary mof to the WDM Service by calling RegisterTraceGuids

3.1.1. Success will be returned by RegisterTraceGuids if the mof resource is not successfully compiled in WMI repository.

3.1.2. Success will be returned by RegisterTraceGuids even if the MofResource is not available in the MofImagePath.

3.1.3. If the classes given by the User mode provider are queried for instances, Provider will not be called.

3.2. A single user mode Provider will be able to write data to different loggers if it the provider had registered with multiple loggers.

4. Kernel mode Provider can register the GUIDs for logging by calling IoWmiRegistrationControl.

4.1. Kernel mode provider can pass binary MOF to the WDM Service by including as a resource in driver file.

4.2. Kernel mode provider can register BINARY_MOF_GUID as one of the GUID supported.

4.2.1. BinaryMof will be returned when this GUID is queried.

5. User mode Provider can unregister the GUIDs for logging by calling UnregisterTracedGuids.

5.1. Any subsequent enable or disable of logger will not result in calling the callback functions.

6. Kernel mode Provider can deregister the GUIDs for logging by calling IoWmiRegistrationControl.

6.1. Any subsequent enable or disable of logger will not result in IRPs to the driver.

7. User mode Provider can generate event trace by calling TraceEvent.

7.1. If the Provider tries to log data more than the size of the Buffer size set for the logger, TraceEvent will return ERROR_BUFFER_OVERFLOW.

7.2. Provider can use WNODE_FLAG_USE_MOF_PTR in Event header to send pointer to the datablock.

7.3. If the Provider attempts to log data for a GUID for which Logging is not enabled, TraceEvent will return ERROR_INVALID_HANDLE

8. User mode Provider can log the transaction by calling TraceEventInstance

8.1. The InstanceId is generated by calling CreateTraceInstanceId.

8.1.1. If two providers are logging data for the same GUID, InstanceIds returned for each provider will be unique.

8.2. When a consumer is registered when the provider has already started logging by calling TraceEventInstance, the data will be able to retreived correctly by the consumer.

9. Kernel mode Provider can generate event trace by calling IoWmiWriteEvent.

9.1. If the Provider tries to log data more than the size of the buffer size set for the logger, IoWmiWriteEvent will return STATUS_BUFFER_OVERFLOW.

10. Consumers can process trace events in real time by calling SetTraceCallback.

10.1. One consumer can receive events from different loggers if consumer has registered separately with different loggers.

10.2. Different consumers can receive events from same logger by calling SetTraceCallback with different callback functions.

10.3. Different GUIDs can be registered with same CallBack function.

11. Consumers can unregister by calling RemoveTraceCallback.

11.1. Logger will continue to log data even after if all the consumers have unregistered.

12. Consumers can read the trace log file by calling OpenTrace

12.1. Different consumers can process the same logfile by getting different handles

12.2. Open trace will return success even if Logging is not enabled for the Logger if called from different process.

13. Consumers can process trace by calling ProcessTrace.

13.1. If StartTime and EndTime is set, consumers can process events within the time window.

13.1.1. If any events are lost during this time, Consumers can get this information from EventsLost in EVENT_TRACE_LOGFILE.

13.2. If EVENT_TRACE_LOGFILE->BufferCallback is set to valid callback function during OpenTrace, the function will be called for all the events from the stream.

13.2.1. BufferCallBack will be called by filling with Number of buffers filled and the Number of events lost.

13.3. If BufferCallBack is not set, EventCallback will be called.

13.3.1. EventCallback will be called with the Number of buffers read. (what are the other values set??? All the values under TRACE_LOG_FILE_HEADER are set???)

13.4. If the log file is in circular mode, ProcessTrace will correctly retreive all the events from the Logfile.

14. Consumers can close the stream by calling CloseTrace.

14.1. Even if all the consumers exits, Logger will continue to log data supplied by Providers.

14.2. CloseTrace will return success only when ProcessTrace is complete.

14.3. Any attempt to use the same handle which is previously closed will result in ERROR_INVALID_HANDLE.

Specific Test Classes:

Interoperability:

Stress/Performance:

Anomalies & Special Cases:

Non Testable Behavior:

Behavior to be tested in BVT:

International:

Appendix:

Glossary:

Note:

Provider in this document implies both User mode and Kernel mode providers. Whenever this is not the case, User mode and kernel mode providers are discussed separately.

Microsoft Confidential
Page 1 of 1

