XIP Implementation notes

DavePr – 2000/10/14-17:00
ISSUES:

Because of how XIPDisk registers itself, there is a pop-up announcing new hardware (just dismiss it).

There is a limit on how long the boot.ini options can be, which will cause NTLDR to silently fail (black screen). If you hit this (I did with all my explicit debugger setting, /fastdetect, all the XIP options, and specifying both a kernel and a hal).

Other Notes:

Turning on the verifier (on fastfat, mountmgr, partmgr, xipdisk) didn’t find any problems.

Format doesn’t work. You have to put a 32MB fat file system image on your system disk (e.g. copy \\davepr\public\XIP-FATIMAGE\xiptest32 \).

XIP boot.ini flags:

	/xipmegs=32

	 specify number of megabytes to reserve for XIP

	/xipverbose

	 turns on some debug output

	/xipboot

	 the XIP rom is the boot/system partition (coming soon).

	/xipram=\xiptest32

/xiprom=\xiptest32

	 says to read in \xiptest32 into the allocated memory and (if xiprom) treat memory as readonly (e.g. in xipdisk.sys).

So, for example, I have a boot.ini line:

….\WINXIP=”XIP boot” /xipram=\xiptest32 /xipmegs=32 /xipverbose /…

Code Changes (base change #12596):

NTLDR
Published\arc.w – added new memory type (LoaderXIPRom) for use by NTLDR in identifying ROM memory to ntos.
Base\boot\bldr\sources.inc – add fastfat to include path to get fat.h
Base\boot\lib\blmemory.c – add processing for LoaderXIPRom to allocate high LoaderFirmwareTemporary
Base\boot\bldr\osloader.c –

· Added definitions for unpacking Bios Parameter Bock

· Added routine to read a file into physical memory by mapping a 4MB windows (x86 only).

· Process boot.ini /XIP* options and allocate memory as requested. I handle both upper and lower case like NOPAE does – but I think they are upcased somewhere so this is unnecessary.

· Use the new routine to read in the fat file system image file to the allocated memory.

Base\boot\lib\i386\wakea.asm – add FLUSH_TB and ENABLE_PSE assembly routines (I didn’t know how to make .586 work for the latter, so I didn’t put these inline in the C-code).
XIPDisk.sys
Base\xip\xipdisk – the ROM disk driver (.c, .h, .rc, .ini, makefile, sources)

· Builds on x86 only

· Binplaces in dump

· regini xipdisk.ini will set keys in registry to load the driver

NTOS
Base\ntos\inc\io.h – added DO_XIP device object flag
Base\ntos\inc\cpyuchr.h – added file with unpacking definitions used with the BIOS Parameter Block (needed by routines that now include fs\fastfat\fat.h)
Base\ntos\inc\xip.h – added kernel XIP definitions for capturing boot parameter information and communicating between the driver and the kernel.

Base\ntos\init\i386def.src – Defined XIPDispatch() entry point so XIPDisk.h can pick-up the boot parameter information about which pages were allocated to XIP by NTLDR.

Base\ntos\init\init.c – add call to XIPInit() for x86.

Base\ntos\ex\xipdisp.c –

· XIPInit() processes boot parameters, finds LoaderXIPRom, validates FAT BIOS Parameter Block, and enables XIP.

· XIPDispatch() for communicating with XIPDisk.sys

· XIPLocate(fileobject, &base) returns the pages corresponding to contiguous files (wraps FSRTL_GET_RETRIEVAL_POINTERS call)

Base\ntos\mm\mi.h – Include xip.h on x86 to get definition of XIPLocate and XIPConfigured.

Base\ntos\mm\creasect.c – Added demo code for calling XIPLocate().
