

Overview of CLR JIT Compiler

An internals and debugging guide

Introduction

This document is meant as a guide to anyone wanting internal implementation details about the common language runtime’s just in time (JIT) compiler.     It is intended as a document to new JIT compiler team members and other ‘power users’ of the JIT. 

Environment for the JIT compiler

The EE-JIT interface

The JIT compiler code lives in MSCORJIT.DLL.   While it is responsible for generating native code from IL, it knows nothing about file format, class loading or layout and other important details necessary for compilation.   The Execution Engine (EE) is responsible for these details.   The execution engine code lives in either MSCORWKS.DLL (for a workstation configuration) or MSCORSVR.DLL (for a server configuration).   Exactly which version of the EE that gets loaded is determined at load time, but in most cases it is MSCORWKS.DLL.  

Because the EE and the JIT live in different DLLs, the interface between them is reasonably clean.  This EE-JIT interface is defined by two interfaces.

· ICorJitCompiler – this is the interface that the JIT compiler implements. It has only one method defined on it ‘compileMethod’.   This interface is defined in src\inc\corjit.h and its implementation is in src\jit\ee_il_dll.cpp

· ICorJitInfo – this is the interface that the EE implements.  It has many methods defined on it that allow the JIT to look up meta data tokens, traverse type signatures, compute field and vtable offsets, find method entry points, construct string liters etc.  This bulk of this interface is inherited from ICorJitDynamicInfo which is defined in src\inc\corinfo.h.  The implementation is defined in src\vm\jitInterface.cpp.   

All communication between the EE and the JIT take place through these two interfaces.   Every time the EE needs the native code for a method, it calls ‘compileMethod’ on an instance of a compiler, passing the IL instructions, method header and flags.  The JIT then compiles the method to native code (making many calls to ICorJitInfo along the way), and returns the following items

1) The native code itself.

2) A block of data that describes the stack frame layout and register usage.  This block of data is the critical piece of data that distinguishes managed code from unmanaged code.    This data allows the EE to determine where every GC pointer resides on the method’s stack frame.  This allows the garbage collector to update all the pointers when it compacts the heap.  This data also allows the EE to unwind the stack frame during exception handling.   This information is commonly referred to as the ‘GCInfo’ for the method, and is described in gruesome detail in the document

  http://comrtime/specs/EE/JIT GC Info.htm
3) A block of data that indicates the entry points for catch, finally and filter clauses as well as the regions of instructions that are protected by TRY blocks.   The EE uses this information in conjunction with the frame layout data to handle exceptions.   

4) Optionally, the JIT can produce a variety of information for use by debuggers.  It can produce a map from IL offsets to native code offsets, as well as information about where local variables in the frame got put etc.   

The Code Manager

The GCInfo block combined with the EH information is a pretty complicated description of the stack frame.  To isolate most of the EE from the details of decoding this information an additional interface within the EE called ICodeManager (defined in src\vm\codeman.h) was defined.   A ICodeManager has the job of hiding the encoding details of the GCInfo and EH data from the rest of the EE.   It gets requests like 

1) Enumerate all GC pointers in this frame

2) Unwind the current frame 

3) Prepare to jump to a catch clause

A code manager has the job of decoding the GCInfo blobs and servicing such requests.    Every JIT compiler needs a corresponding code manager.  Basically the compiler creates GCInfo blobs and the code manager decodes them, however it is possible that two different compilers use the same GCInfo encoding and thus can use the same code manager.  This was the situation when the VC compiler produced managed native code.  The implementation for the JIT compilers code manager (called EECodeManager) is in src\vm\eetwain.cpp.  

Internals of the JIT compiler

Fundamental transformations

The compiler can be thought of performing three basic transformations

1) Reading in the IL code and producing a graph of basic blocks containing expression trees.   The basic blocks and expression trees main representation of the program within the compiler.  

2) Converting the expression trees to instruction descriptions.  Instruction descriptions represent native instructions and have sufficient information to do instruction scheduling.

3) Converting the instruction descriptions into the native code and the GC and EH information that gets passed back to the EE.  

Along with these basic transformations, are many transformations that do not fundamentally later the representation of the program.   Most compiler optimization fall into this category.   

Basic Data Types

·  Compiler (defined in src\jit\il\compiler.h) represents the JIT compiler itself.  It holds all ‘global’ data structures).

· BasicBlock (defined in src\jit\il\block.h) represents a single basic block in the program.  It contains a list of statement trees, and is decorated with dataflow information

· GenTree (defined in src\jit\il\gentree.h) represents a single operation or statement in the program.  It is decorated with its type, variable liveness, temporary register assignments and IDs used in CSE, constant and copy propagation.  

· instrDesc (defined in src\jit\il\emit.h) represents a single output instruction ready for scheduling.  It has sufficient information to determine what ‘resources’ (registers) it needs, kills, and sets.   This information is need to schdule the instruction

· LclVarDsc (defined in src\jit\il\compiler.h) represents a local variable or argument.  It gets decorated with its type, use count, weighted use count, frame or register assignment etc.  

Phases of Compilation

The main compilation routine in the compiler is compCompile (in src\jit\il\compiler.cpp).  It dispatches the rest of the phases of the compilation as show below.

1) Initialize local variable table (lvaInitTypeRef)

2) Scan IL to find branch targets and form basic blocks (fgFindBasicBlocks)

3) Convert IL instructions into a expression tree representation (impImportBlock,  gtNewNode) (we detect :? patterns here).  

4) Optimize recursion (why is it here so early?)

5) Perform local transformation (fgMorph)

A) Determine which args get passed in registers for calls (fgMorphCall).

B) Inline functions (impExpandInline).

C) Constant folding. (gtFoldExpr)
D) Convert certain instructions (conv, etc) into helper calls.

E) Convert field and array access into pointer arithmetic.

F) Rearange expression to minimize temps (more complicated thing eval last).

G)  Add helpers for synchronized methods

6) Compute the predecessors for the basic blocks. 

7) Compute Dominators (fgComputeDom)

8) Flow of control optimizations

A) Loop transformation (while -> do while)  (optOptimizeLoops) find natural loops
B) Remove unreachable  blocks, jumps to jumps … (fgUpdateFlowgraph)

C) moving little used basic blocks to the end (frReorderBlocks)

9) More optimizations
A) Loop Unrolling (optUnrollLoops)

B) Hoisting code out of loops (optHostLoopCode)

10) Determine the reference counts for the local variables and decide which ones are tracked (only 64 variables are tracked).  (lvaMarkLocalVars)

11) Optimize Boolean operations (optOptimzeBools)

12) Link the trees in evaluation order (set gtNext and gtPrev fields) (fgFindOperOrer, fgSetBlockOrder)

13) More optimizations

A) Range check elimination 

B) Common Sub Expression Elmination

C) Constant and copy propagation. 

D) Again remove unreachable  blocks, jumps to jumps … (fgUpdateFlowgraph)

14) Compute variable liveness and interference (fgPerBlockDataFlowGraph, fgGlobalDataFlow)

15) Optimize loops that are useless. (optLoopCodeMotion)

16) Register allocation (raAssignVars)

17) Code generation (genGenerateCode), this emits the code as ‘instrDesc’s
18) Generating Prolog / Epilog  (genFnProlog, genFnEpilog)

19) Scheduling (P5 only) (emitEndCodeGen, scGroup)

20) Writing final instruction bytes, Frame information, EH information  (emitOutputInstr, gcInfoBlockHdrSave)

JIT Control flags

There are a variety of useful flags that can be set that will control the behavior the JIT compiler for a checked build of the runtime.  These are described here

· JitDump  - A list of whitespace separated method names that indicate which method should have a verbose compilation dump printed to standard output.

· JitHalt – A list of whitespace separated method names that indicate which methods should have a breakpoint instruction inserted as its first instruction.

· JitBreak – A list of whitespace separated method names for which the JIT compiler will hit a breakpoint just before compiling their code (in Compiler::compCompile).   

· JitEnable – A DWORD which if 0 indicates that the JIT compiler should not be run.  In this case the FJIT compiler is run instead.  If a program behaves differently when changing this flag it is either a compiler bug or a bug that depends on the exact timing of the program.  

· JitInclude – A list of whitespace separated method names that indicate which methods should be JIT compiled even when the JIT JitEnable is 0.   This is particular useful when setting breakpoints in the JIT, as you are usually only interested in the breakpoint when a particular method is being compiled.   
· JitRange – A whitespace delimited list of decimal ranges.  (eg. “0-10 34 500-1000”).  Each method in the runtime is given a hash number from 0-70000.   All methods with a hash that are within the specified ranges are compiled with the JIT compiler even if JitEnable is 0.   If there is a difference in program behavior when the JIT is on or off, this flag allows that difference to be localized to a single method quickly.  

· JitFramed – a DWORD which if 1 forces all methods to have a EBP based frame.  This is convenient during debugging because MSDEV and other debuggers give an accurate stack trace when this flag is on. 

· JitNoInline – a DWORD which if 0 inhibits the inlining of methods.  If a bug reproduces with inlining off, it is often better to debug it that way since the amount of code compile is significantly smaller

· JitDisAsm – A list of whitespace separated method names that indicate which methods should dump their native code.   If you are only interested in the native code and not the process of compilation this is a better choice then JitDump

· JITPInvokeEnabled – a DWORD which if 0 inhibits the inlining of calls to unmanaged code.  Useful for debugging Pinvoke call problems.

Setting the flags

The flags can be set in one of three ways

21) Setting the environment variable COMPLUS_<flagname>.  For example 

set COMPLUS_JITDump=Main

will set the JITDump flag so that the compilation of all methods named ‘Main’ will be dumped

22) Setting the registry key HKCU\Software\Microsoft\Complus\<flagName>

23) Setting the registry key HKLM\ Software\Microsoft\Complus\<flagName>

Specifying method names

The complete syntax for the method name is 



[[<Namespace>.]<ClassName>::]<MethodName>[([<types>)]

For example



System.Object::ToString(System.Object)

The namespace, className and argument types are optional, and if they are not present default to a wildcard.  Thus stating 



Main

Will match all methods named Main from any class and any number of arguments.  

<types> is a comma separated list of type names.  Note that presently only the number of arguments and not the types themselves are used to distinguish methods.   Thus Main(Foo, Bar), and Main(int, int) will both match any main method with two arguments.

The wildcard character ‘*’ can be used for <ClassName> and <MethodName>.  In particular * by itself indicates every method.  This is useful when used in conjunction with JITRange  as discussed below.  

Using JitRange

JitRange is useful for locating compiler code generation problems.   The procedure is to first set JITEnable=0 and confirm that the problem does not occur with the JIT disabled.   Then set JITRange=0-35000 which compiles half the methods with the JIT and half without.  Using binary search the problem can be narrowed down to a single JITRange number.  At that point set JITDump=*, and the identity of the method that is causing the problem can be determined.    

At this point you can try setting JITNoInline=1 to see if the problem still repros.  If so, it usually better to leave it off as it makes the method shorter.   JITHalt is also useful at this point to allow the code to be inspected as it runs to determine what is going on.  

Reading a JITDump

One of the best ways of learning about the JIT compiler is examining a compilation dump in detail.  The dump shows you all the really important details of the basic data structures without all the implementation detail of the code.   Debugging a JIT bug almost always begins with a JITDump.  Only after the problem is isolated by the dump does it make sense to start debugging the JIT code itself.  

Dumps are also useful because they give you good places to place breakpoints.  If you want to see what is happening at some point in the dump, simply search for the dump text in the source base.  This gives you a great place to put a conditional breakpoint.  

Reading expression trees

Much of the dump is self-explanatory, however the expression trees need some elaboration  Here is an example dump 

[00158A30] -----------               stmtExpr  void  

   [001589FC] --C--------               jmpTrue   void  

         [00158994] -----------               const     int    2

      [001589C8] --C------U-               !=        int   

         [001588E4] --C--------              call       int    Int32[,].Get

            [00158848] ----------- this in ECX   lclVar    ref    V01

            [0015887C] ----------- arg1 on STK   const     int    0

            [001588B0] ----------- arg2 on STK   const     int    0

The tree nodes are indented to represent the parent-child relationship.  Binary operators print first the right hand side, then the operator node itself, then the left hand side.  This scheme makes sense if you look at the dump ‘sideways’.   Oriented this way, the left hand side operator is actually on the left side, and the right hand operator is on the right side so you can almost visualize the tree if you look at it sideways.   The indentation level is also there as a backup.

Tree nodes are identified by their address in memory.  This is useful for debugging, since all tree nodes are created from the routine gtNewNode (in src\jit\il\gentree.cpp).  If you find a bad tree and wish to understand how it got corrupted, you can place a conditional breakpoint at the end of gtNewNode to see when it is created, and then a data breakpoint on the field that you believe is corrupted.  

Variable naming

The dump uses the index into the local variable table as its name.   The arguments to the function come first, then the local variables, then any compiler generated temps.   Thus in a function with 2 parameters (remember this is also a parameter), and one local variable, the first argument would be variable 0, the second argument variable 1, and the local variable would be variable 2.  

For data flow purposes we may not be able to track all the variables in the routine  (This allows use to use finite bit vectors in data flow algorithms) Because of this we segragate variables into ‘tracked’ and ‘untracked’ variables.  Tracked variables are given a tracked variable index which identifies the bit for that variable.     This can lead to confusion as to whether the variable number is its index into the local variable table, or its tracked index.   In the dumps when we refer to a variable by its local variable table index we use the ‘V’ prefix, and when we print the tracked index we prefix it by a ‘T’.   In raAssignVars we dump the local variable table which indicates the correspondence between the two names for the same variable.  

Debugging Resources 

During a normal install the binarys for the runtime, including the JIT compiler live in the directory %sysroot%\complus\<versionName>, where <versionName> depends on the exact version of the runtime you installed (The runtime supports multiple versions of the runtime to be run simultaneously).  Thus it can sometimes be hard to determine exactly which DLL is being actually being used.   The most foolproof way to find the correct DLL, is to run a program and query the debugger for the list of loaded dlls (in MSDEV it is the Debug -> Modules menu).    Look for the MSCORJIT.DLL.  

Once you have the correct DLL you can query it for its 4 digit build number (in an explorer window right click on MSCORJIT.DLL and select ‘properties’.  In the ‘version tab you will find a version number such as 

Product Version: 1.0.2205.0 Debug

In the example above 2205 is the build number.  It is also important to determine the ‘flavor’ of the build you are running.  It can be one of

1) checked (full debugging checks (asserts), non-optimized for good debugging)

2) fastchecked (full debugging checks (asserts), optimized, which means that local variables and possibly arguments are not available during debugging)

3) free (no debugging checks, optimized)

4) retail (no debugging checks, optimized), in addition infrequently used code has been separated from frequently used code to improve memory behavior.  This is what will ultimately be shipped to customers.   

The checked and fastchecked  build flavors can be distinguished from the free and retail because they product version is suffixed with ‘Debug’ as shown in the example above.  Unfortunately there is no easy way to distinguish between checked and fastchecked, and free and retail, you have to resort to checking DLL sizes.   

Once you know your build number you can find the source for the JIT from 

\\urtdist\builds\src\<buildNum>\lightning\src\jit\il
The binaries (and .pdb’s) can be found at 

\\urtdist\builds\bin\<buildNum>\<buildType>\Workstation
Where <buildType> is one of x86CHK, x86FSTCHK, x86FRE, x86RET depending on your build flavor.    If you are trying to find the correct PDB’s for a DLL, you should definitely confirm that the DLL in the binary directory matches in size with the one on your machine.  If they do you can be reasonably certain that you have found the correct build flavor and the PDB will work on your machine.  Alternatively, you can copy over both the DLL and the PDB, which guarantees that the PDB will be correct for the DLL.  

DataStructure

struct GenTree

{

    genTreeOps          gtOper;

    var_types           gtType;

    unsigned char       gtCostEx;     // estimate of expression execution cost

    unsigned char       gtCostSz;     // estimate of expression code size cost

    signed char       gtCSEnum;       // 0 or the CSE index (negated if def)

    union {

      unsigned char     gtAssertionNum; // 0 or Assertion table index

      unsigned char     gtStmtFPrvcOut; // FP regvar count on exit

    };

    regMaskSmall        gtRsvdRegs;     // set of fixed trashed  registers

    regMaskSmall        gtUsedRegs;     // set of used (trashed) registers

    unsigned char       gtFPlvl;        // x87 stack depth at this node

    union {

       regNumberSmall   gtRegNum;       // which register      the value is in

       regPairNoSmall   gtRegPair;      // which register pair the value is in

    };

    unsigned            gtFlags;        // see GTF_xxxx below

    union

    {

        VARSET_TP       gtLiveSet;      // set of variables live after op - not used for GT_STMT

        IL_OFFSETX      gtStmtILoffsx;  // instr offset (if available) - only for GT_STMT nodes

    };

    #define GTF_ASG             0x00000001  // sub-expression contains an assignment

    #define GTF_CALL            0x00000002  // sub-expression contains a  func. call

    #define GTF_EXCEPT          0x00000004  // sub-expression might throw an exception

    #define GTF_GLOB_REF        0x00000008  // sub-expression uses global variable(s)

    #define GTF_OTHER_SIDEEFF   0x00000010  // sub-expression has other side effects

    #define GTF_SIDE_EFFECT     (GTF_ASG|GTF_CALL|GTF_EXCEPT|GTF_OTHER_SIDEEFF)

    #define GTF_GLOB_EFFECT     (GTF_SIDE_EFFECT|GTF_GLOB_REF)

    #define GTF_REVERSE_OPS     0x00000020  // second operand should be eval'd first

    #define GTF_REG_VAL         0x00000040  // operand is sitting in a register (or part of a TYP_LONG operand)

   #define GTF_SPILLED         0x00000080  // the value   has been spilled
    #define GTF_SPILLED_OPER    0x00000100  // sub-operand has been spilled

    #define GTF_SPILLED_OP2     0x00000200  // both sub-operands have been spilled

    #define GTF_ZF_SET          0x00000400  // the zero/sign flag  set to the operand

    #define GTF_CC_SET          0x00000800  // all condition flags set to the operand

    #define GTF_DEAD            0x00001000  // this node won't be used any more

    #define GTF_MAKE_CSE        0x00002000  // try hard to make this into CSE

    #define GTF_DONT_CSE        0x00004000  // don't bother CSE'ing this expr

    #define GTF_COLON_COND      0x00008000  // this node is conditionally executed (part of ? :)

    #define GTF_NODE_LARGE      0x00010000

    #define GTF_NODE_SMALL      0x00020000

    #define GTF_BOOLEAN         0x00040000  // value is known to be 0/1

    #define GTF_SMALL_OK        0x00080000  // actual small int sufficient

    #define GTF_UNSIGNED        0x00100000  // with GT_CAST:   the source operand is an unsigned type

                                                                               // with operators: the specified node is an unsigned operator

    #define GTF_REG_ARG         0x00200000  // the specified node is a register argument

    #define GTF_CONTEXTFUL      0x00400000  // TYP_REF node with contextful class

}

enum _BBjumpKinds_enum

{

    BBJ_NONE,       // block flows into the next one (no jump)

    BBJ_ALWAYS,     // block always jumps to the target

    BBJ_COND,       // block conditionally jumps to the target

    BBJ_SWITCH,     // block ends with a switch statement

    BBJ_THROW,      // block ends with 'throw'

    BBJ_RETURN,     // block ends with 'ret'

    BBJ_LEAVE,      // block always jumps to the target, maybe out of guarded

    BBJ_CALL,       // block always calls the target finallys

    BBJ_RET,        // block ends with 'endfinally' or 'endfilter'

};

struct  BasicBlock

{

    BasicBlock  *       bbNext;     // next BB in ascending PC offset order

    unsigned short      bbNum;      // the block's number

    short               bbRefs;     // id of the block that jumps here
    unsigned short      bbRefs;     // number of blocks that can jump here

    unsigned            bbFlags;    // see BBF_xxxx below

    IL_OFFSET           bbCodeOffs; // starting PC offset

    IL_OFFSET           bbCodeSize; // # of bytes of code

    unsigned            bbCatchTyp; // catch type CP index if handler

    BBjumpKinds         bbJumpKind; // jump (if any) at the end

    GenTree *           bbTreeList; // the body of the block

    union {

        unsigned short  bbStkDepth; // stack depth on entry

        unsigned short  bbFPinVars; // number of inner enregistered FP vars };

    unsigned short      bbStkTemps; // base# for input stack temps

    unsigned short      bbTryIndex; // index, into the ebd table, of innermost try clause 
    unsigned short      bbHndIndex; // index, into the ebd table, of innermost handler

    unsigned short      bbWeight;   // to give refs inside loops more weight

    VARSET_TP           bbVarUse;   // variables used     by block (before an assignment)

    VARSET_TP           bbVarDef;   // variables assigned by block (before a use)

    VARSET_TP           bbVarTmp;   // TEMP: only used by FP enregistering code!

    VARSET_TP           bbLiveIn;   // variables live on entry

    VARSET_TP           bbLiveOut;  // variables live on exit

    union {

        VARSET_TP       bbFPoutVars;

        VARSET_TP       bbScope;    // variables in scope over the block };

    union {

        EXPSET_TP       bbExpGen;        // exprs computed by block

        EXPSET_TP       bbAssertionGen;  // value assignments computed by block };

    union {

        EXPSET_TP       bbExpKill;       // exprs killed   by block

        EXPSET_TP       bbAssertionKill; // value assignments killed   by block };

    union {

        EXPSET_TP       bbExpIn;         // exprs available on entry

        EXPSET_TP       bbAssertionIn;   // value assignments available on entry };

    union {

        EXPSET_TP       bbExpOut;        // exprs available on exit

        EXPSET_TP       bbAssertionOut;  // value assignments available on exit };

    RNGSET_TP           bbRngGen;        // range checks computed by block

    RNGSET_TP           bbRngKill;       // range checks killed   by block

    RNGSET_TP           bbRngIn;         // range checks available on entry

    RNGSET_TP           bbRngOut;        // range checks available on exit

    unsigned *          bbReach;         // blocks that can reach this one

    unsigned *          bbDom;           // blocks dominating this one

    flowList *          bbPreds;         // ptr to list of predecessors

    union {

        BasicBlock *    bbFilteredCatchHandler; // used in the importer

        void    *       bbEmitCookie; };

    unsigned char       bbLoopNum;   // set to 'n' for a loop #n header

    union {

        unsigned        bbJumpOffs;         // PC offset (temporary only)

        BasicBlock  *   bbJumpDest;         // basic block

        BBswtDesc   *   bbJumpSwt;          // switch descriptor };

};
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