Managed Code Exception Handling

In this document, funclets are any of the exception handling sub-routines viz. filter, catch, fault, and finally. Framelets are the regions on the stack (ESP-relative) specific to the funclet, as opposed to the method’s base stack frame (EBP-based). Framelets have the return address for the nesting level, localloced region for that nesting level, and pushed arguments. The base method frame has the shadow ESP slots (explained below), the method’s locals, callee-saved registers, etc. Nesting level of any IL offset is the number of framlets surrounding that offset. Nesting level of a funclet corresponds with the nesting level of the start offset. So the nesting level on entry to a method is 0, the nesting level at the start of the first funclet, say a catch, is 1, the nesting level of an inner funclet is 2, etc. Note that the try’s do not contribute to the nesting level at all as they are executed simply, and not as a sub-routines.

We have the following requirements for a managed method with exception handling:

· Handlers are invoked using the original EBP frame, but ESP will not be reset to the original as unwinding isnt guranteed to have been done.

· Support nested handlers. This implies mulitple framelets may be present on the stack.

· Be able to (virtually or actually) unwind/crawl the call-stack at any point. Note that the funclets will have their own framelet with their own return addresses, and multiple framelets of the same method invocation will exist at different points in the call-stack.

· Be able to determine the ESP for any of the nesting levels that are currently active. This is needed if an exception is thrown from an inner nesting level and is caught by a try at an outer nesting level.

· Support asynchronous exceptions. This means that for fully interruptible methods, an exception could be triggered at almost any point. Ian is considering allowing this for partially-interruptible methods too.
These requirements are more than that of today's traditional, unmanaged code because :

· Unmanaged code doesn’t need to do a virtual unwind (stack crawl).

· Unmanaged code doesn’t support nested EH.

If an exception is thrown from an inner nesting level and is caught by a try at an outer nesting level, the EE will need to reset the ESP to the value for that outer nesting level. The possible solutions are:

· Keep a list of ESP values for each nesting level.

· Keep on unwinding the call-stack until the method is question has been visited curNestingLevel-catchNestingLevel times. This is more involved. We also would need to visit a function for every active finally even though that finally may have been called locally by the corresponding try block. Determining if a finally has been locally called will again involve keeping some state, which will correspond with the above scheme.

We have chosen the first option.

Why do we need to have the start and end ranges of handlers?

When an exception thrown from a nested handler is caught by an outer try block, we need to know the ESP of the outer nesting level. For this, we need to be able to determine its exact nesting level. This is not possible with just the start offsets of handlers. The possible solutions are:

· The handlers specify the start and end offset. This lets us determine the nesting level of any offset within the code.

· The handlers specify their own nesting level. This information can be deduced from the above and hence has lesser power than the above.

· We would also have to have markers or special instructions in code to specify the end of the handlers so that the verifier could ensure that the nesting levels specified were accurate.

· It is possible to omit the nesting level and just have the start offset of handlers and end markers in code. This approach is equivalent but needs work to be done to calculate the nesting level, even for trusted code.

· Note that the markers may be lexical (all code lexically between the start offset and the corresponding marker is part of the funclet) or semantic (all paths starting from the start offset have to eventually reach a marker, and all such paths are part of the funclet).

· In either case, the code needs to be scanned to determine the extent of funclets. This is unreasonable for simple compilers. Determining the extent of funclets and the nesting level of a given offset in code is required while performing a leave to determine if the leave changes the nesting level or not.

Problems with fully interruptible code and asynchronous exceptions

The URT supports async exceptions. Also, fully interruptible code can be interrupted at any point. The combination of this leads to the case where a thread executing fully interruptible code could be exposed to an exception at any point. This would typically be a ThreadAbortException thrown by another thread. What this implies is that any mechanism for exception support has to keep itself in a consistent state at all points in managed code where it could be interrupted. Note that for fully interruptible methods, this is all code except the prolog and the epilog. It is conceivable to mark specific regions of the method as not fully interruptible, but we have currently not chosen to do so.

We have instead chosen to have the unmanaged part of the URT help out by storing the ESP into the method's frame before invoking the funclet

Problems with filters

It should be noted that when any funclet, except a filter called as part of the first pass, is executing (at the top of the stack), all frames between that funclet and the method which will handle the exception are dead. First-pass filters are therefore special as all the frames on the stack are potentially live as they could be activated during the second pass.

Problems with localloc in handlers

ESP is needed to get to the return address of the funclet. Executing a localloc adjusts ESP. Hence, we need to keep track of the original ESP on entry to the funclet (for every active nesting level). These are currently not supported but might be implemented during Beta 2.

[image: image1.emf]Localloc in funclets Implementation.msg

Implementation

· All methods with exception clauses have EBP-frames.

· The method reserves n+f+1 contiguous DWORDs in its frame for storing the ESPs for every active funclet. We will call them the shadow ESP slots.

· n is the max nesting level in the method

· f=1 if there are any filters in the method, and 0 otherwise.

· These slots are treated as 0-terminated list of ESPs for every active nesting level.

· The method has to zero out the first of these slots in the method's prolog.

There are essentially three scenarios:

· catch/fault/finally called by the EE. When these funclets are called, no inner nesting level can be active (though we may subsequently enter inner nesting levels).

· Filter called by the EE. During the first pass, inner funclets may already be active and any such finallys will be activated during the second pass.

· Finally called in the fall-through case at the end of the try.

The first case involves the all the basic concepts used and we will see how that works first. The other two scenarios use variations and refinements to this general approach.

catch/fault/finally called by the EE

· Before invoking the funclet, the EE calls ICodeManager::FixContext() which returns a pointer to the shadow ESP slot corresponding to the nesting level about to be invoked (and also zeroes out the next slot to maintain the 0-termination property).

· The EE writes the ESP that the funclet will be invoked with to the pointed slot. Hence, on entry to the funclet, the current ESP is already in the corresponding DWORD.

· If a stack-crawl happens at any point inside of the funclet, the CodeManager can examine the slots to determine the nesting level, and also the ESP for each nesting level.

· After the funclet terminates, the EE zeroes out the slot.

· In the case of a catch, the EE then unwinds the stack to the ESP of the outer nesting level, and resumes control in the managed code at that outer nesting level.

Filter called by the EE

Filters have to be handled specially as an outer filter may be executed in the first pass, and then any inner finally will get executed in the second pass.

· It is not possible for filters to use the slot corresponding to their nesting level. Instead, we make filters use the first available slot. We can do this as long as filters cannot have any exception clauses nested inside of them.

· We need to be able to determine if a nesting level corresponds to a filter as opposed to the other funclet types. Therefore, the EE writes (ESP | 0x01) to the slot. The stack crawler can then inspect the lower bit to see if the funclet is a filter or not.

Locally-called finallys

Locally-called finallys have to be handled differently as we are always in managed code, and a stack-unwind might happen at any time. The series of operations is as follows:

· Write a special marker (0xFC) instead of ESP to the slot corresponding to the nesting level of the finally about to be invoked.

· Push the address of the target of the leave.

· Jump to the start of the finally. The push+jmp combination is effectively like a call since it pushes a return address on the stack and transfers control to another location. The reason this is used instead of a call is that the finally can directly "return" to the leave target, which will be lexically outside the region protected by the "try" block. This is needed for the async exception + fully interruptible code combination.

· At the end of the finally, it just does a return (actually a "pop reg; jmp reg" to keep the # calls and # returns in sync).

· The leave target zeroes out the slot to which we had written the special marker (0xFC)

· Note that the in this case, there are places where the code may get interrupted where we would have written a value to the slot but not adjusted the stack and vice versa. However, due to the use of the special value, and the fact that a locally called finally pushes 1 DWORD on the stack, it is possible to correctly unwind the stack. Possible bug when leaving multiple finallys.
Notes

· A method invocation can have multiple framelets simultaneously active on the stack active. GC reporting specifies that a pointer may not be reported multiple times (though different pointers with the same value have to be reported individually). This issue is addressed by reporting the method’s GC locals only from the outermost nesting level during the stack-walk.

This does not affect the liveness encoding, as any pointer active at the resumption target in the outer level will be live across the funclet at the inner level. So the funclet at the innermost level will naturally report all live pointers of the outer levels.

Filters
Problems with the approach

· Supporting nesting levels with this approach (and any similar approaches) places restrictions on where the try and funclet code can be placed. Currently they have to be kept together at the same nesting level, and different try’s cannot share funclets.

· Longer code sequence while locally calling a finally. This will be the common non-exception path which needs to be as fast as possible.

Why filters cannot have exception clauses nested inside of them?

· We have chosen to not specify the end offsets of filters for reducing size. Hence determining nesting level would be difficult inside of filters.

· Since a filter uses the topmost shadow ESP slot available, if inner funclets were allowed, they would use the slot corresponding to their nesting level which might be the one being used by the filter.

_1047371554/Localloc in funclets Implementation.msg
Localloc in funclets Implementation

		From

		Shri Borde

		To

		COM+ Runtime JIT Dev

		Recipients

		corjit@microsoft.com

I was

just thinking about things we need to do support localloc in funclets. Here's

what I can think of.

 			Reserve an extra slot per nesting level for storing

 the localloced ESP or size. Need to update all the reference in the jit

 and EETwain to know the new layout. We already have a bit in the GC-encoding

 to indicate if the method uses localloc, so we only need to do this for those

 functions which actually use localloc, else we end up paying a cost of 2+

 instructions for locally invoking finallys from the end of a try. Its already

 quite expensive, so we wont want to make it more expensive. Easy, but

 need good testing coverage to verify that all places are

 found.

 			Zero

 out the n-th localloc slot before entering nesting level n - in FixContext and

 while locally invoking a finally from the end of the try block.

 			For

 most of the funclets, we dont need to worry about doing anything on exit

 (normal or via exception) as we do that with the shadow ESP slot. We can

 just check if the shadow ESP is zero (its a zero terminated list) and ignore

 the localloc slot if so.

 			However, on exit from a locally invoked finally, it

 takes one instruction to do the "ret" which makes ESP inconsistent with the

 shadow ESP stored on entry to the finally, and another instruction to zero

 out the shadow ESP, at which point the inconsistency does not matter.

 However, the inconsistency is always sizeof(int) and we handle that case.

 Conceivably, we can relax the inconsistency limit to any arbitrary

 size.

 			Update this slot after a localloc in a

 fully-interruptible-safe manner. I think this is easy because doing a localloc

 is just like pushing a lot of stuff on the stack, which is all fully

 interruptible. As long as the actual update of the slot is a single atomic mov

 (which I think it is), we are fine.

 			This does mean that all BasicBlock needs to know

 their nesting level as the code generated has to update the correct slot.

 Now that every blocks has hndIndex and TryIndex, I think we can get that

 information.

 			The

 funclet needs to pop the localloc'ed region (so that ESP points to the return

 address) before doing a "ret" in a fully-interruptible-safe manner. If we just

 zero out the localloc slot with a mov, we should be back to the same state as

 just before the localloc, and then we can unwind the stack and do the ret at

 leisure. So it seems easy

 			The

 SetIP code which simulates stepping out of a finally etc, needs to be

 correspondingly changed

 			GC reporting needs to use the adjusted

 ESP instead of the ESP on entry to the funclet. We have some factorization of

 such code in EETwain, but we still need good test

 coverage.

 			The stack

 walker has to use the ESP on entry to the funclet for gettig the return

 address, not the current ESP. Probably a

nop.

I

would guesstimate this to be around 4 dev days including chasing the obvious

bugs. But I would not bet that I have a comprehensive list here. And the whole

thing is likely to be destabilizing. So I would rather not do it if it could be

avoided.

Btw, I

think we have a GC reporting bug for functions with localloc and exceptions in

the same function, even if the localloc is not in a funclet. Will take a

look.

 -----Original Message-----
From: Shri Borde

Sent: Tuesday, March 27, 2001 3:45 PM
To: Jim Hogg; Peter

 Golde; Jim Miller (COM+); Anders Hejlsberg; CSharp Designers
Cc:

 Mark Hall (VC++); Kevin Frei; Dario Russi; Jayanth Rajan; COM+ Runtime JIT

 Dev; Ian Carmichael; Jennifer Hamilton; Kevin Frei
Subject: RE:

 LOCALLOC Instruction

 If we ever did

 support, we would *have* to

 support the semantics you mentioned below.

 Supporting even that

 is tricky in the face of stack-crawling (as needed by GC etc), fully

 interruptible code (a stack-crawl could kick in it *any* point), async exceptions (like

 ThreadAbort) etc. Its doable, but this is an area that has historically been

 very tricky to mess with. If we did implement it, it would entail a series of

 bugs to cover all the corner cases. And the pay-off is low. I like

 orthogonality too, but the cost is quite a bit in this case.

 -----Original

 Message-----
From: Jim Hogg

Sent: Tuesday,

 March 27, 2001 3:36

 PM
To: Peter Golde; Jim Miller (COM+);

 Anders Hejlsberg; CSharp Designers
Cc: Mark Hall (VC++); Kevin Frei; Dario

 Russi; Jayanth Rajan; COM+ Runtime JIT Dev; Ian Carmichael; Jennifer Hamilton;

 Kevin Frei
Subject: RE:

 LOCALLOC Instruction

 Cutting

 out ClrChg, but including Kevin and CLR folks

 -----Original

 Message-----
From: Peter

 Golde
Sent:

 Tuesday, March 27,

 2001 3:24

 PM
To: Jim Hogg; Jim Miller (COM+); Anders

 Hejlsberg; CLR Change Notification Alias; CSharp Designers
Cc: Mark Hall (VC++); Kevin Frei; Dario

 Russi; Jayanth Rajan
Subject:

 RE: LOCALLOC Instruction

 I wonder

 whether there is a compromise position here. I think it would be acceptable to

 C# to state that if stackalloc is used within a catch or finally block, then

 the memory so allocated may be freed when the catch or finally is exited

 (rather than when the containing function is exited).

 Would

 that simplify the implementation?

 -----Original

 Message-----
From: Jim Hogg

Sent: Tuesday, March 27,

 2001 10:18

 AM
To: Jim Miller (COM+); Anders

 Hejlsberg; Peter Golde; CLR Change Notification Alias; CSharp

 Designers
Cc: Mark Hall

 (VC++); Kevin Frei; Dario Russi; Jayanth Rajan
Subject: RE: LOCALLOC Instruction

 This

 looks like it’s going to be hard to converge in email

 I’ll

 set up a meeting to discuss with compilers & CLR, making sure we cover

 every item in the zoo of exception clauses.

 Thanks,

 Jim

 -----Original

 Message-----
From: Jim

 Miller (COM+)
Sent:

 Tuesday, March 27,

 2001 10:12

 AM
To: Anders Hejlsberg; Jim Hogg; Peter

 Golde; CLR Change Notification Alias; CSharp Designers
Cc: Mark Hall (VC++); Kevin Frei; Dario

 Russi; Jayanth Rajan
Subject: RE: LOCALLOC Instruction

 It's

 really tricky, because the stack frame on an x86 is created when the method

 is entered and these finally, catch, and try blocks aren't actually part of

 the same frames, but are elsewhere (so that we can do 2 pass exception

 handling). This affects things like GC encodings,

 etc.

 I

 don't think we can use ECMA as an excuse here -- I'm pretty sure they'll

 understand a "it's very difficult implementation" as an

 answer.

 I

 agree with your non-orthogonality issue, but I do believe we've really

 looked at this closely. We can meet to discuss details, but I think

 you'll find it's much harder than you might have

 thought.

 --Jim

 -----Original

 Message-----
From: Anders

 Hejlsberg
Sent:

 Tuesday, March 27,

 2001 10:06 AM
To: Jim Hogg; Peter Golde; CLR Change

 Notification Alias; CSharp Designers
Cc: Mark Hall (VC++); Kevin Frei;

 Dario Russi; Jayanth Rajan
Subject: RE: LOCALLOC Instruction

 It

 would be really problematic to disallow this in C#. First, as Peter

 points out, it would be a rather strange non-orthogonality. Second, the C#

 Language Reference as submitted to ECMA already permits it, and I can't

 see us persuading the standards group to take it out without a compelling

 reason.

 Wouldn't this be

 a problem in C++ as well? Or is MC++ going to disallow "alloca" within a

 finally clause? Just seems really odd...

 Anders

 -----Original

 Message-----
From: Jim

 Hogg
Sent:

 Monday, March 26,

 2001 6:50 PM
To: Peter Golde; CLR Change

 Notification Alias; CSharp Designers
Cc: Mark Hall (VC++); Kevin Frei;

 Dario Russi; Jayanth Rajan
Subject: RE: LOCALLOC Instruction

 Reason is

 schedule constraint – technically we could do the work to support

 it. But the fixes are tricky and time-consuming, with a likely

 follow-on trickle of bugs. (Localloc in Finally is currently

 broken – it accvio’s from IL or mc++)

 Jim

 -----Original

 Message-----
From:

 Peter Golde
Sent:

 Monday, March 26,

 2001 6:39 PM
To: Jim Hogg; CLR Change

 Notification Alias; CSharp Designers
Cc: Mark Hall (VC++); Kevin Frei;

 Dario Russi; Jayanth Rajan
Subject: RE: LOCALLOC Instruction

 Currently C#

 allows this within a catch or finally. We could add a language rule to

 prohibit it, but it's a non-orthoganility which I'd rather not

 have. I'd like to understand the

motivation.

 -----Original

 Message-----
From:

 Jim Hogg
Sent:

 Monday, March 26,

 2001 6:35

 PM
To: CLR Change Notification

 Alias
Cc: Mark Hall

 (VC++); Kevin Frei; Dario Russi; Jayanth Rajan
Subject: LOCALLOC Instruction

 We would like

 to limit use of the LOCALLOC instruction – specifically, cannot use

 within exception clauses –

 1.

 Filter

 expression

 2.

 Filter

 handler

 3.

 Catch

 4.

 Finally

 5.

 Fault

 (as before,

 when you do issue LOCALLOC, the IL evaluation stack must be

 empty)

 Please mail

 back if this will create a problem for your language. (we

 already checked with VC++)

 Thanks,

 Jim

�
