Windows Driver Model
Kernel Streaming Filter Shell

Functional Specification - Draft

Authors: Dale Sather

Revision 0.0.00, 27 October, 1998
11.
Introduction

1.1
Intended Audience
2
1.2
Document Organization
2
2.
Filter Shell Overview
3
2.1
Goals
3
2.2
Concepts
3
2.2.1
Transport: Pins, Queues and Pipes
3
2.2.2
Automation
6
2.3
Organization
6
2.3.1
Devices
8
2.3.2
Filter Factories
9
2.3.3
Filters
9
2.3.4
Pins
9
2.3.5
Nodes
9
2.3.6
Allocators
9
2.3.7
Clocks
9
2.3.8
Queues
9
2.3.9
Pipes
Error! Bookmark not defined.
2.4
Delivery
9
3.
Reference
9
3.1
Descriptors
9
3.1.1
Device Descriptor: KSSHELLDEVICE_DESCRIPTOR
10
3.1.2
Filter Descriptor: KSSHELLFILTER_DESCRIPTOR
12
3.1.3
Pin Descriptor: KSSHELLPIN_DESCRIPTOR
14
3.1.4
Node Descriptor: KSSHELLNODE_DESCRIPTOR
16
3.1.5
Allocator Descriptor: KSSHELLALLOCATOR_DESCRIPTOR
17
3.1.6
Clock Descriptor: KSSHELLCLOCK_DESCRIPTOR
18
3.1.7
Queue Descriptor: KSSHELLQUEUE_DESCRIPTOR
19
3.2
Dispatch Tables
20
3.2.1
Device Dispatch Table: KSSHELLDEVICE_DISPATCH
20
3.2.1.1
Device Pre-Create
20
3.2.1.2
Device Create
21
3.2.1.3
Device PnP Start
22
3.2.1.4
Device PnP Query Stop
23
3.2.1.5
Device PnP Cancel Stop
23
3.2.1.6
Device PnP Stop
24
3.2.1.7
Device PnP Query Remove
25
3.2.1.8
Device PnP Cancel Remove
25
3.2.1.9
Device PnP Remove
26
3.2.1.10
Device PnP Query Capabilities
27
3.2.2
Filter Dispatch Table: KSSHELLFILTER_DISPATCH
27
3.2.2.1
Filter Pre-Create
28
3.2.2.2
Filter Create
29
3.2.2.3
Filter Close
29
3.2.2.4
Filter Power
30
3.2.3
Pin Dispatch Table: KSSHELLPIN_DISPATCH
31
3.2.3.1
Pin Pre-Create
32
3.2.3.2
Pin Create
33
3.2.3.3
Pin Close
33
3.2.3.4
Pin Power
34
3.2.3.5
Pin Set Device State
35
3.2.3.6
Pin Set Reset State
36
3.2.3.7
Pin Handshake
36
3.2.4
Node Dispatch Table: KSSHELLNODE_DISPATCH
38
3.2.4.1
Node Pre-Create
38
3.2.4.2
Node Create
39
3.2.4.3
Node Close
39
3.2.4.4
Node Power
40
3.2.5
Allocator Dispatch Table: KSSHELLALLOCATOR_DISPATCH
41
3.2.5.1
Allocator Pre-Create
41
3.2.5.2
Allocator Create
42
3.2.5.3
Allocator Close
43
3.2.5.4
Allocator Power
44
3.2.6
Clock Dispatch Table: KSSHELLCLOCK_DISPATCH
44
3.2.6.1
Clock Pre-Create
45
3.2.6.2
Clock Create
45
3.2.6.3
Clock Close
46
3.2.6.4
Clock Power
47
3.2.7
Queue Dispatch Table: KSSHELLQUEUE_DISPATCH
48
3.2.7.1
Queue Construct
48
3.2.7.2
Queue Destruct
49
3.2.7.3
Queue Notify
49
3.2.7.4
Queue Cancel
50
3.3
Objects
51
3.3.1
Device Object: KSSHELLDEVICE
51
3.3.2
Filter Factory Object: KSSHELLFILTERFACTORY
52
3.3.3
Filter Object: KSSHELLFILTER
55
3.3.4
Pin Factory Object: KSSHELLPINFACTORY
56
3.3.5
Pin Object: KSSHELLPIN
56
3.3.6
Node Object: KSSHELLNODE
59
3.3.7
Allocator Object: KSSHELLALLOCATOR
60
3.3.8
Clock Object: KSSHELLCLOCK
60
3.3.9
Queue Object: KSSHELLQUEUE
61
3.3.10
Pipe Object: KSSHELLPIPE
65
3.4
Functions
66
3.4.1
KsShellAcquireControl
66
3.4.2
KsShellReleaseControl
67
3.4.3
KsShellAddEvent
67
3.4.4
KsShellGenerateEvents
68
3.4.5
KsMergeAutomationTables
69
3.4.6
KsHandleAutomationIoControl
69
3.4.7
KsReferenceAutomationTable
70
3.4.8
KsReleaseAutomationTable
70
3.4.9
KsShellInitializeDriver
71
3.4.10
KsShellAddDevice
71
3.4.11
KsShellCreateDevice
72
3.4.12
KsShellInitializeDevice
73
3.4.13
KsShellTerminateDevice
73
3.4.14
KsShellAcquireDevice
74
3.4.15
KsShellReleaseDevice
74
3.4.16
KsShellIncrementExistingObjectCount
75
3.4.17
KsShellDecrementExistingObjectCount
75
3.4.18
KsShellCreateFilterFactory
75
3.4.19
KsShellSetDeviceClassesState
76
3.4.20
KsShellStandardConnect
77
3.4.21
KsShellTransferKsIrp
77
3.4.22
KsShellAcquireLeadingEdge
78
3.4.23
KsShellAcquireTrailingEdge
78
3.4.24
KsShellAdvanceTrailingEdgeBytePosition
79
3.4.25
KsShellReleaseLeadingEdge
79
3.4.26
KsShellReleaseTrailingEdge
80
3.4.27
KsShellAdvanceBytePosition
80
3.4.28
KsShellAdvanceMappings
81
3.4.29
KsShellSetPacketIndex
81
3.4.30
KsShellQueueSetByteOffset
82
3.4.31
KsShellQueueSetMappingIndex
82
3.4.32
KsShellHandshake
83

1. Introduction

The Kernel Streaming Filter Shell extends the services offered by the Kernel Streaming class driver (KS.SYS), providing much of the code required to implement a filter driver compliant with the Windows Driver Model
 Connection and Streaming Architecture specification.

1.1 Intended Audience

This document describes the kernel streaming filter shell, which simplifies the development of drivers compliant with the Windows Driver Model
 Connection and Streaming Architecture. The reader should have a basic understanding of the NT driver model and its operation as well as the Connection and Streaming Architecture.

This document provides background regarding the organization of the filter shell and specific documentation of the functions, structures and interfaces shared between the filter shell and its clients.

1.2 Document Organization

· Section 2 of this document describes the organization of the filter shell and the conventions used in its construction.

· Section 3 provides reference information regarding the structures used to communicate between the filter shell and its clients.

2. Filter Shell Overview

Comprehensive filter implementation starting with a function call in DriverEntry.

Implementation hidden behind device headers and object headers leaving the rest of device extensions and file contexts free for use by other class drivers and clients.

2.1 Goals

<<filter ease-of-implementation>>

<<filter quality and interoperability>>

<<deployment of KS enhancements>>

<<first-class implementation: pipes, genderless pins, instrumentation>>

<<data flow optimization>>

2.2 Concepts

2.2.1 Transport: Pins, Queues and Pipes

The Kernel Streaming shell implements the latest improvements to the Kernel Streaming protocol. Specifically, recent changes involve the assignment of allocators to pins and the identification of portions of a graph that can be served by a single allocator (such a portion is called a pipe). Although the Kernel Streaming specification explains the notion of a pipe, the shell provides a specific implementation that requires some explanation here.

The simplest pipe is one consisting of a single connection. The source pin in the connection is an allocator requestor; that is, it is assigned an allocator and uses that allocator to get new frames and free unneeded frames. The sink pin in the connection processes frames sent to it (in a streaming IOCTL) by the source pin and returns them (by completing the IOCTL). The connection is like a conveyor belt. Frames travel in a circuit bearing payload in one direction and returning empty in the other direction.

When the source pin is sending write IOCTLs, payload travels in the part of the circuit moving frames from the source to the sink. When the source pin is sending read IOCTLs, payload travels in the part of the circuit moving frames from the sink to the source.

The shell implements this circuit using three components: a pin, a queue and a requestor. The pin component is responsible for the pin’s external behavior: sourcing and dispatching streaming IOCTL IRPs. The queue component supports access to the frames as they pass through a particular point in the circuit. The requestor, a component not explicitly exposed in the shell/client interface, implements the requestor behavior of a source pin, allocating and deallocating frames. For the purposes of this discussion, we will regard the requestor as part of the source pin.

Combining the requestor with the source pin, the components are connected as shown:

If data is travelling from the source pin to the sink pin, the queue associated with the source pin allows the filter on the left (the data source) to fill frames with payload. Filled frames are passed to the pin component to be sent to the sink pin. The queue associated with the sink pin allows the filter on the right (the data sink) to consume the payload in the frames after the frames arrive at the sink pin.

This example seems to indicate that there is a one-to-one correspondence between pins and queues. This is not true in general. When connections share allocators, frames can, for example, arrive at a sink pin and emerge from a source pin on the same filter. In this case, the two pins share a single queue. This figure shows a pipe that passes through a transform filter:

The filter on the left is the data source. The filter on the right is the data sink. Notice that in the transform filter (in the center), both the source and the sink pin share a single queue. The filter accesses frames once as they pass from the sink pin to the source pin through the queue. On the return trip, the empty frames bypass the queue because the filter has no need to access the frames.

In general, there is one queue per filter per pipe. When a pin is at the end of a pipe, it has its own queue. When multiple pins in the same filter are in a single pipe, they share one queue.

The shell acknowledges this relationship through the pipe object. The shell pipe object represents the section of a pipe that passes through a particular filter. It is bound explicitly to all the pins to which it is associated and to the queue that provides access to pipe’s frames in that filter.

Clients of the filter shell use the queue object to access frames: to fill frames with data, to read data from frames or to modify data in frames. Clients of the filter shell use the pipe object to determine the relationship between queues and pins. For examples, a one-in, one-out transform filter that can operate on data in-place, such as the one in the example above, needs to handle two queues when both pins are at the end of a pipe and one queue when a pipe passes through the filter. If the client has a dispatch function for queue construction, it can check the pin count on the pipe associated with the queue to determine if the queue is associated with both pins or just one:

void

QueueConstruct(

 IN PKSSHELLQUEUE Queue

)

{

 if (Queue->OwnerPipe->PinCount == 2) {

 // In-place: there is only one queue for two pins.

 } else if (Queue->OwnerPipe->MasterPin->Id == 0) {

 // Two queues. This is the queue for pin 0.

 } else {

 // Two queues. This is the queue for pin 1.

 }

}

2.2.2 Automation

Automation is the term given to the consolidation of Kernel Streaming properties, methods and events. The Kernel Streaming Shell enhances automation by defining a structure that combines tables for all three types of automation.

<<table merges>>

2.3 Organization

The filter shell implements a number of objects on behalf of its clients:

· Device – Corresponds to the WDM device object.
· Filter factory – Corresponds to one type of filter that the device can instantiate. There can be many filter factories associated with a single device. When a filter is created, the reference string appended to the device name indicates which filter factory is to generate the filter instance.
· Filter – An instance of a kernel streaming filter, generated by a filter factory. A filter factory can generate any number of filters.

· Pin factory – Corresponds to one type of pin that a filter can instantiate.

· Pin – An instance of a pin generated by a pin factory. Depending on the characteristics of the pin type, the number of instances of that pin type may or may not be limited. Some types of pins cannot be instantiated at all, while others can be instantiated any number of times.

· Node – An instance of a topology node. Node instances provides access to node properties, methods and events. Any number of instances of a node my be created. Nodes can be instantiated as child objects of a filter or of a pin.

· Allocator – An instance of an allocator, which exposes a filter’s capability to manage the allocation of frames.

· Clock – An instance of a clock, which supplies timing information regarding the operation of a filter.

· Queue – A container for streaming IRPs providing access to the packet headers and frames in an IRP. Queues provide a client’s principle ‘view’ of the data stream.

To implement and expose these objects, the filter shell defines a number of structures. These structures fall into three main categories:

· Descriptors – Static structures supplied by the client to indicate the specific characteristics of a type of object. There are descriptors for devices, filters, pins, nodes, allocators, clocks and queues. Descriptors are linked by pointers in a hierarchical fashion so that a single device descriptor can reference, directly or indirectly, every descriptor associated with a device.

· Dispatch tables – Static structures attached to descriptors that provide a table of callbacks to refine object behavior. Dispatch tables and individual fields in a dispatch table are always optional. Typical clients implement very few callbacks. All descriptor structures reference corresponding dispatch tables.

· Objects – Dynamic structures that reflect the characteristics and state of an object. Object structures contain a pointer to corresponding descriptors for the convenience of the client.

Devices

The KS shell implements device behavior on behalf of its clients. The implementation addresses PnP and power management for both hardware and software as well as filter creation. As with all shell objects, device behavior is specified statically with a descriptor and may be refined dynamically through callbacks to client dispatch functions.

The client has a number of options regarding the way in which the shell device is created and initialized. The easiest approach is to call KsShellInitializeDriver in the driver’s DriverEntry routine:

NTSTATUS

DriverEntry(

 IN PDRIVER_OBJECT DriverObject,

 IN PUNICODE_STRING RegistryPathName

)

{

 return KsShellInitializeDriver(DriverObject,RegistryPathName,&DeviceDescriptor);

}

KsShellInitializeDriver associates a device descriptor with the driver object and installs the shell’s IRP and AddDevice dispatch functions. The shell handles AddDevice and all PnP IRPs, giving the client the opportunity to refine PnP behavior through dispatch functions supplied by the device descriptor. If the device descriptor supplies filter descriptors, filter factories are created for each filter descriptor. This single call, along with the static descriptor, is all the code required for generic filter behavior.

Client drivers that need to dispatch AddDevice or IRPs themselves may replace shell dispatch functions by installing replacements after KsShellInitializeDriver is called and before DriverEntry returns. A client may also decline to call KsShellInitializeDriver at all, installing dispatch functions as required. The function KsShellSetMajorFunctionHandler installs IRP dispatch routines for any IRP, and KsShellDispatchIrp dispatches any IRP. KsShellAddDevice normally handles AddDevice, but this function simply finds the device descriptor associated with the driver object and calls KsShellCreateDevice. If the client supplies its own AddDevice function, it may call KsShellCreateDevice to create the device using the supplied descriptor:

status = KsShellCreateDevice(DriverObject,PhysicalDeviceObject,&DeviceDescriptor);

KsShellCreateDevice calls IoCreateDevice to create the functional device object. Client drivers may create their own functional device objects and simply initialize the FDO using KsShellInitializeDevice. KsShellInitializeDevice assumes the device extension has a valid KS device header or has the value NULL where the device header would normally be (offset 0 in the extension). KsShellTerminateDevice is the matching termination function for KsShellInitializeDevice. If the shell dispatches the PnP remove IRP, this function will be called automatically.

The shell device maintains a mutual exclusion mechanism to synchronize filter creation and closure with code that requires that the filter population remain stable for that device. The device is acquired and released in this sense using KsShellAcquireDevice and KsShellReleaseDevice. Most clients will not require the synchronization provided by these functions.

The shell device also maintains a count of existing objects for use in implementing power management behavior. This count is altered by calling KsShellIncrementExistingObjectCount and KsShellDecrementExistingObjectCount.

2.3.1 Filter Factories

2.3.2 Filters

2.3.3 Pins

2.3.4 Nodes

2.3.5 Allocators

2.3.6 Clocks

2.3.7 Queues

2.4 Delivery

The filter shell is part of KS.SYS. Client source files should include KSSHELL.H, and client drivers must be linked with the import library KS.LIB. Client code may be written in C or C++.

3. Reference

3.1 Descriptors

3.1.1 Device Descriptor: KSSHELLDEVICE_DESCRIPTOR

typedef struct {

 const KSSHELLDEVICE_DISPATCH* Dispatch;

 ULONG FilterDescriptorsCount;

 const KSSHELLFILTER_DESCRIPTOR* FilterDescriptors;

 ULONG ExtensionSize;

 ULONG Flags;

} KSSHELLDEVICE_DESCRIPTOR;

Member
Description

Dispatch
An optional pointer to the client dispatch table for the device. A dispatch table must be attached to the descriptor if any client callbacks are to called by the device implementation.

FilterDescriptorsCount
The number of filter descriptors in the array of filter descriptors. Zero is a legal value for this field. Filter descriptors may be dynamically associated with the device using the function KsShellCreateFilterFactory.

FilterDescriptors
Points to the array of filter descriptors. May be null. Filter descriptors may be dynamically associated with the device using the function KsShellCreateFilterFactory.

ExtensionSize
Optionally indicates the size in bytes of the device extension. A value of zero indicates the client does not require any space of its own in the extension. Any other value must include the space required for the KS device header.

Flags
Flags specifying the behavior of the device, as described in the following table.

Flags
Description

KSSHELLDEVICE_FLAG_START_IN_WORKER
Indicates that PnP start IRP processing should be performed in a work queue item. If this flag is specified, the device responds to the PnP start IRP by queuing a work queue item and returning STATUS_PENDING. The worker processes and completes the IRP when it runs. This option is provided for clients that need to load other drivers while starting. KoCreateInstance is an example of a function that will cause a driver to be loaded.

KSSHELLDEVICE_FLAG_REGISTER_INTERFACES
Indicates that filter categories supplied in filter descriptors should be registered as PnP device interfaces. Most hardware drivers should supply this flag. Software filters enumerated by SWENUM do not require it.

3.1.2 Filter Descriptor: KSSHELLFILTER_DESCRIPTOR

typedef struct {

 const KSSHELLFILTER_DISPATCH* Dispatch;

 const KSAUTOMATION_TABLE* AutomationTable;

 const GUID* ReferenceGuid;

 ULONG PinDescriptorsCount;

 ULONG PinDescriptorSize;

 const KSSHELLPIN_DESCRIPTOR* PinDescriptors;

 ULONG CategoriesCount;

 const GUID* Categories;

 ULONG NodeDescriptorsCount;

 ULONG NodeDescriptorSize;

 const KSSHELLNODE_DESCRIPTOR* NodeDescriptors;

 ULONG ConnectionsCount;

 const KSTOPOLOGY_CONNECTION* Connections;

} KSSHELLFILTER_DESCRIPTOR;

Member
Description

Dispatch
An optional pointer to the client dispatch table for the filter. A dispatch table must be attached to the descriptor if any client callbacks are to called by the filter implementation.

AutomationTable
Optional pointer to an automation table indicating the properties, methods and events implemented by the client for this filter type. This automation is merged with the automation table supplied by the filter shell for all filters. If this table lists any properties, methods or events already implemented by the filter shell, the client’s implementation supersedes the shell’s implementation.

ReferenceGuid
An optional pointer to a GUID which is the binary representation of the Unicode reference string identifying this filter type. Other methods of supplying a reference string require that the filter descriptor be registered using KsShellCreateFilterFactory.

PinDescriptorsCount
The number of pin descriptors in the pin descriptors array. All filters expose at least two pins, so values smaller than two are illegal.

PinDescriptorSize
The size in bytes of the structures in the pin descriptor array. This value must be a multiple of eight and at least sizeof(KSSHELLPIN_DESCRIPTOR). Larger values allow client-specific descriptor information to be appended to the pin descriptors.

PinDescriptors
The array of pin descriptors. All filters have pins, so this field is not optional.

CategoriesCount
The number of categories in the categories array. Zero is a legal value for this field.

Categories
The array of categories. The shell registers a device interface for each category. This field may be null.

NodeDescriptorsCount
The number of node descriptors in the node descriptors array. Because it is possible for a filter to contain no nodes, zero is a legal value for this field.

NodeDescriptorSize
The size in bytes of the structures in the node descriptor array. This value must be a multiple of eight and at least sizeof(KSSHELLNODE_DESCRIPTOR). Larger values allow client-specific descriptor information to be appended to the pin descriptors. If there are no nodes in the array, this value is ignored.

NodeDescriptors
The array of node descriptors. This field may be null.

ConnectionsCount
The number of connections in connections array. All filters have connections, so this field may not be zero.

Connections
The array of connections. This field is not optional.

3.1.3 Pin Descriptor: KSSHELLPIN_DESCRIPTOR

typedef struct {

 const KSSHELLPIN_DISPATCH* Dispatch;

 PKSAUTOMATION_TABLE AutomationTable;

 KSPIN_DESCRIPTOR PinDescriptor;

 ULONG InstancesPossible;

 ULONG InstancesNecessary;

 ULONG InstancesGlobal;

 PFNKSINTERSECTHANDLEREX IntersectHandler;

 PKSALLOCATOR_FRAMING_EX AllocatorFraming;

 const KSSHELLQUEUE_DESCRIPTOR* QueueDescriptor;

 const KSSHELLALLOCATOR_DESCRIPTOR* AllocatorDescriptor;

 const KSSHELLCLOCK_DESCRIPTOR* ClockDescriptor;

} KSSHELLPIN_DESCRIPTOR;

Member
Description

Dispatch
An optional pointer to the client dispatch table for the pin. A dispatch table must be attached to the descriptor if any client callbacks are to called by the pin implementation.

AutomationTable
Optional pointer to an automation table indicating the properties, methods and events implemented by the client for this pin type. This automation is merged with the automation table supplied by the filter shell for all pins. If this table lists any properties, methods or events already implemented by the filter shell, the client’s implementation supersedes the shell’s implementation.

PinDescriptor
The pin descriptor defined in KS.SYS.

InstancesPossible
The number of instances of this pin that may exist on any given filter. A value of KSINSTANCE_INDETERMINATE indicates that any number of instances may created. This value will be zero for any pin with communication type KSPIN_COMMUNICATION_NONE.

InstancesNecessary
The number of instances of this pin that must exist on any given filter in order for the filter to function.

InstancesGlobal
The number of instances of this pin that may exist on all filters generated by the filter factory. This is useful primarily for filters representing hardware resources. All other filters should use the value KSINSTANCE_INDETERMINATE for all pins.

IntersectHandler
The data intersection handler function for the pin. If this field is null, the pin will only handle data intersection queries for data ranges with the specifier KSDATAFORMAT_SPECIFIER_NONE. The intersect handler function receives a single data range from the query and a single data range from the pins list of data ranges. The type, subtype and specifier GUIDs of these ranges are guaranteed to match, though some may be wildcards. The function either indicates the data ranges do not match, or it produces the best data format in the intersection of the two data ranges.

AllocatorFraming
The allocator framing for the pin. If this field is null, the pin will report that it does not support the allocator framing property.

QueueDescriptor
A pointer to the descriptor for the queue associated with this pin. Pins that support streaming have a queue descriptor unless the client supplies its own implementation of the queue.

AllocatorDescriptor
A pointer to the descriptor for the allocator that the pin will implement. If the pin has no allocator descriptor, it will not implement an allocator.

ClockDescriptor
A pointer to the descriptor for the clock that the pin will implement. If the pin has no clock descriptor, it will not implement a clock.

3.1.4 Node Descriptor: KSSHELLNODE_DESCRIPTOR

typedef struct {

 const KSSHELLNODE_DISPATCH* Dispatch;

 PKSAUTOMATION_TABLE AutomationTable;

 const GUID * Type;

 const GUID * Name;

} KSSHELLNODE_DESCRIPTOR;

Member
Description

Dispatch
An optional pointer to the client dispatch table for the node. A dispatch table must be attached to the descriptor if any client callbacks are to called by the node implementation.

AutomationTable
Optional pointer to an automation table indicating the properties, methods and events implemented by the client for this node.

Type
The type GUID for the node. This is not an optional field.

Name
The name GUID for the node. If this optional field is zero, the name will be the generic one assigned based on the node type.

3.1.5 Allocator Descriptor: KSSHELLALLOCATOR_DESCRIPTOR

typedef struct {

 const KSSHELLALLOCATOR_DISPATCH* Dispatch;

 PKSAUTOMATION_TABLE AutomationTable;

} KSSHELLALLOCATOR_DESCRIPTOR;

Member
Description

Dispatch
An optional pointer to the client dispatch table for the allocator. A dispatch table must be attached to the descriptor if any client callbacks are to called by the allocator implementation.

AutomationTable
Optional pointer to an automation table indicating the properties, methods and events implemented by the client for this allocator type. This automation is merged with the automation table supplied by the filter shell for all allocators. If this table lists any properties, methods or events already implemented by the filter shell, the client’s implementation supersedes the shell’s implementation.

3.1.6 Clock Descriptor: KSSHELLCLOCK_DESCRIPTOR

typedef struct {

 const KSSHELLCLOCK_DISPATCH* Dispatch;

 PKSAUTOMATION_TABLE AutomationTable;

} KSSHELLCLOCK_DESCRIPTOR;

Member
Description

Dispatch
An optional pointer to the client dispatch table for the clock. A dispatch table must be attached to the descriptor if any client callbacks are to called by the clock implementation.

AutomationTable
Optional pointer to an automation table indicating the properties, methods and events implemented by the client for this clock type. This automation is merged with the automation table supplied by the filter shell for all clocks. If this table lists any properties, methods or events already implemented by the filter shell, the client’s implementation supersedes the shell’s implementation.

3.1.7 Queue Descriptor: KSSHELLQUEUE_DESCRIPTOR

<<explain leading/trailing edge>>

<<indicate (enforce?) flag dependencies>>

typedef struct {

 const KSSHELLQUEUE_DISPATCH* Dispatch;

 ULONG Flags;

#define KSSHELLQUEUE_FLAG_GENERATE_MAPPINGS 0x00000001

#define KSSHELLQUEUE_FLAG_DISTINCT_TRAILING_EDGE 0x00000002

#define KSSHELLQUEUE_FLAG_DISPATCH_LEVEL_NOTIFY 0x00000004

#define KSSHELLQUEUE_FLAG_USE_SPIN_LOCK 0x00000008

 ULONG MaxMappingByteCount;

} KSSHELLQUEUE_DESCRIPTOR;

Member
Description

Dispatch
An optional pointer to the client dispatch table for the queue. A dispatch table must be attached to the descriptor if any client callbacks are to called by the queue implementation.

Flags
Flags specifying the queue’s behavior.

MaxMappingByteCount
The maximum size in bytes of a mapping. This value is ignored unless the flag field specifies KSSHELLQUEUE_FLAG_GENERATE_MAPPINGS.

Flags
Description

KSSHELLQUEUE_FLAG_GENERATE_MAPPINGS
Indicates that the queue should generate mappings for scatter/gather bus mastering.

KSSHELLQUEUE_FLAG_DISTINCT_TRAILING_EDGE
Indicates that the queue trailing edge should not be automatically updated to match the position of the leading edge.

KSSHELLQUEUE_FLAG_DISPATCH_LEVEL_NOTIFY
Indicates that the callback function notifying the client that an IRP has arrived may be called at dispatch level. If this flag is not present, the notification callback will be called at passive level even if the IRP arrives at dispatch level.

KSSHELLQUEUE_FLAG_USE_SPIN_LOCK
Indicates that access to the queue should be synchronized with a spin lock. This flag should be present if either edge is to be acquired by the client at dispatch level. IRP arrival at dispatch level does not require the use of a synchronization spin lock.

3.2 Dispatch Tables

3.2.1 Device Dispatch Table: KSSHELLDEVICE_DISPATCH

The device dispatch table allows the client supply handling functions for device-related processing. All handling functions are optional as is the dispatch table itself. Clients that do not need to supply any device dispatch functions may provide a null dispatch table pointer in the device descriptor.

Most functions in the device dispatch table concern the processing of PnP IRPs. The two create functions are the exceptions. These are called during the AddDevice phase of device initialization.

typedef struct {

 PFNKSSHELLDEVICECREATE PreCreate;

 PFNKSSHELLDEVICECREATE Create;

 PFNKSSHELLDEVICEPNPSTART PnpStart;

 PFNKSSHELLDEVICEIRP PnpQueryStop;

 PFNKSSHELLDEVICEIRPVOID PnpCancelStop;

 PFNKSSHELLDEVICEIRPVOID PnpStop;

 PFNKSSHELLDEVICEIRP PnpQueryRemove;

 PFNKSSHELLDEVICEIRPVOID PnpCancelRemove;

 PFNKSSHELLDEVICEIRPVOID PnpRemove;

 PFNKSSHELLDEVICEIRP PnpQueryCapabilities;

} KSSHELLDEVICE_DISPATCH;

3.2.1.1 Device Pre-Create

This dispatch function is called during the initialization of the shell’s device implementation at the AddDevice phase of device startup. At the point where this function is called, the WDM device object has been created, the shell device object has been instantiated and initialized, but the KS device header has not been allocated. If the client has a reason to create its own device header (for example, it wants to supply its own IRP dispatch table), it may do so in this function. This is also an opportunity for the client to associate context information with the shell device object or initialize the device extension, though both of these things can be done during device create.

As with all KS devices, the first pointer in the extension is reserved for the KS device header. If the client does not supply a device header, the shell will do so after this function returns successfully. Unless there is some clear motivation for the client to create the header, this should be left up to the shell. This callback is defined primarily for clients that want to create the header. Other clients should use the device create callback for device initialization.

If this function returns an unsuccessful status, the AddDevice will fail. Pending status is not legal because no IRP is involved.

This function is called at passive level only.

NTSTATUS
MyDevicePreCreate(

IN PKSSHELLDEVICE ShellDevice

);

Parameters:
ShellDevice – Contains a pointer to the device being created.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.1.2 Device Create

This dispatch function is called during the initialization of the shell’s device implementation at the AddDevice phase of device startup. At the point at which this function is called, the WDM device object has been created, the shell device object has been instantiated and initialized, and the KS device header has been allocated, possibly by the client in the device pre-create. This is an opportunity for the client to associate context information with the shell device object or initialize the device extension.

If this function returns an unsuccessful status, the AddDevice will fail. Pending status is not legal because no IRP is involved.

This function is called at passive level only.

NTSTATUS
MyDeviceCreate(

IN PKSSHELLDEVICE ShellDevice

);

Parameters:
ShellDevice – Contains a pointer to the device being created.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.1.3 Device PnP Start

This dispatch function is called when a PnP start IRP (IRP_MN_START_DEVICE) is dispatched by the device. This function is optional and will typically be provided by clients that need to evaluate assigned resources. The start is guaranteed to succeed if this function succeeds.

Some clients require that processing of the start IRP occur in a worker thread rather than the thread that dispatches the IRP. This is the case if the client wishes to load drivers (via KoCreateInstance, for example). Such clients KSSHELLDEVICE_FLAG_START_IN_WORKER in the device descriptor flags field. This flag causes the shell to return STATUS_PENDING in response to the start IRP and complete the processing of the IRP in a worker thread.

Resource lists are extracted from the IRP for the convenience of the client.

The device is acquired by the shell before this function is called and released after this function returns. This function should not return STATUS_PENDING.

This function is called at passive level only.

NTSTATUS

MyDevicePnpStart(

 IN PKSSHELLDEVICE ShellDevice,

 IN PIRP Irp,

 IN PCM_RESOURCE_LIST TranslatedResourceList OPTIONAL,

 IN PCM_RESOURCE_LIST UntranslatedResourceList OPTIONAL

);

Parameters:
ShellDevice – Contains a pointer to the device being started.

Irp – Contains a pointer to the start IRP.

TranslatedResourceList – Contains a pointer to the list of translated resources as obtained from the IRP. If there are no resources assigned to the device, this parameter will be null.

UntranslatedResourceList – Contains a pointer to the list of untranslated resources as obtained from the IRP. If there are no resources assigned to the device, this parameter will be null.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.1.4 Device PnP Query Stop

This dispatch function is called when a PnP query stop IRP (IRP_MN_QUERY_STOP_DEVICE) is dispatched by the device. This function is optional and will be provided by clients that wish to prevent the stopping of the device for some reason and by clients that need to disallow activity that would otherwise prevent them from committing to a stop operation. If this function is not provided, the shell will indicate that the stop operation may proceed.

The device mutex is acquired by the shell before this function is called and released after this function returns. This function should not return STATUS_PENDING.

This function is called at passive level only.

NTSTATUS

MyDevicePnpQueryStop(

 IN PKSSHELLDEVICE ShellDevice,

 IN PIRP Irp

);

Parameters:
ShellDevice – Contains a pointer to the device receiving the IRP.

Irp – Contains a pointer to the query stop IRP.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.1.5 Device PnP Cancel Stop

This dispatch function is called when a PnP cancel stop IRP (IRP_MN_CANCEL_STOP_DEVICE) is dispatched by the device. This function is optional and will typically be provided by clients that, on query stop, need to disallow activity that would otherwise prevent them from committing to a stop operation. A call to this function would indicate to such clients that such activity may be allowed.

This function is called at passive level only.

void

MyDevicePnpCancelStop(

 IN PKSSHELLDEVICE ShellDevice,

 IN PIRP Irp

);

Parameters:
ShellDevice – Contains a pointer to the device receiving the IRP.

Irp – Contains a pointer to the cancel stop IRP.

Return Values:

None.

3.2.1.6 Device PnP Stop

This dispatch function is called when a PnP stop IRP (IRP_MN_STOP_DEVICE) is dispatched by the device. This function is optional and will typically be provided by clients that need to detach from resources previously assigned by the PnP start IRP.

This function is called at passive level only.

void

MyDevicePnpStop(

 IN PKSSHELLDEVICE ShellDevice,

 IN PIRP Irp

);

Parameters:
ShellDevice – Contains a pointer to the device being stopped.

Irp – Contains a pointer to the stop IRP.

Return Values:

None.

3.2.1.7 Device PnP Query Remove

This dispatch function is called when a PnP query remove IRP (IRP_MN_QUERY_REMOVE_DEVICE) is dispatched by the device. This function is optional and will be provided by clients that wish to prevent the removal of the device for some reason and by clients that need to disallow activity that would otherwise prevent them from committing to a remove operation. If this function is not provided, the shell will indicate that the remove operation may proceed.

The device mutex is acquired by the shell before this function is called and released after this function returns. This function should not return STATUS_PENDING.

This function is called at passive level only.

NTSTATUS

MyDevicePnpQueryRemove(

 IN PKSSHELLDEVICE ShellDevice,

 IN PIRP Irp

);

Parameters:
ShellDevice – Contains a pointer to the device receiving the IRP.

Irp – Contains a pointer to the query remove IRP.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.1.8 Device PnP Cancel Remove

This dispatch function is called when a PnP cancel remove IRP (IRP_MN_CANCEL_REMOVE_DEVICE) is dispatched by the device. This function is optional and will typically be provided by clients that, on query remove, need to disallow activity that would otherwise prevent them from committing to a remove operation. A call to this function would indicate to such clients that such activity may be allowed.

This function is called at passive level only.

void

MyDevicePnpCancelRemove(

 IN PKSSHELLDEVICE ShellDevice,

 IN PIRP Irp

);

Parameters:
ShellDevice – Contains a pointer to the device receiving the IRP.

Irp – Contains a pointer to the cancel remove IRP.

Return Values:

None.

3.2.1.9 Device PnP Remove

This dispatch function is called when a PnP remove IRP (IRP_MN_REMOVE_DEVICE) is dispatched by the device. This function is optional and will typically be provided by clients that need to free device-associated resources.

This function is called at passive level only.

void

MyDevicePnpRemove(

 IN PKSSHELLDEVICE ShellDevice,

 IN PIRP Irp

);

Parameters:
ShellDevice – Contains a pointer to the device receiving the IRP.

Irp – Contains a pointer to the remove IRP.

Return Values:

None.

3.2.1.10 Device PnP Query Capabilities

This dispatch function is called when a PnP query capabilities IRP (IRP_MN_QUERY_CAPABILITIES) is dispatched by the device. This function is optional and will typically be provided by clients that need to supply information regarding power management capabilities.

This function should not return STATUS_PENDING.

<<more here as power management matures>>

This function is called at passive level only.

NTSTATUS

MyDevicePnpQueryCapabilities(

 IN PKSSHELLDEVICE ShellDevice,

 IN PIRP Irp

);

Parameters:
ShellDevice – Contains a pointer to the device receiving the IRP.

Irp – Contains a pointer to the query capabilities IRP.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.2 Filter Dispatch Table: KSSHELLFILTER_DISPATCH

Filter dispatch tables allow the client supply handling functions for filter-related processing. All handling functions are optional as is the dispatch table itself. Clients that do not need to supply any filter dispatch functions may provide a null dispatch table pointer in the filter descriptor.

Functions in this table deal with the lifespan of a filter (create and close), power management and the processing of frames.

typedef struct {

 PFNKSSHELLFILTERIRP PreCreate;

 PFNKSSHELLFILTERIRP Create;

 PFNKSSHELLFILTERIRP Close;

 PFNKSSHELLFILTERIRP Power;

 PFNKSSHELLFILTERPROCESS Process;

} KSSHELLFILTER_DISPATCH;

3.2.2.1 Filter Pre-Create

This dispatch function is called when a filter is created. At the point at which this function is called, no context has been associated with the file object and no KS object header has been allocated. This function is optional and will typically be provided by clients that want to create their own file object context or KS file header. A file object context or file header allocated by this function can be freed in the close dispatch function for the filter, otherwise the shell will free them using ExFreePool and KsFreeObjectHeader, respectively.

If this function is not supplied, the shell will allocate the file object context and KS file header itself.

The device mutex is acquired before this function is called and is released after this function returns. This function should not return STATUS_PENDING.

This function is called at passive level only.

NTSTATUS

MyFilterPreCreate(

 IN PKSSHELLFILTER ShellFilter,

 IN PIRP Irp

);

Parameters:
ShellFilter – Contains a pointer to the filter being created.

Irp – Contains a pointer to the create IRP which requested the creation of the filter.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.2.2 Filter Create

This dispatch function is called when a filter is created. At the point at which this function is called, the file object has an associated context, and the KS file header has been allocated. This function is optional and will typically be provided by clients that want to initialize context and resources associated with the filter.

If this function succeeds, the create operation is guaranteed to succeed.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The device mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyFilterCreate(

 IN PKSSHELLFILTER ShellFilter,

 IN PIRP Irp

);

Parameters:
ShellFilter – Contains a pointer to the filter being created.

Irp – Contains a pointer to the create IRP which requested the creation of the filter.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.2.3 Filter Close

This dispatch function is called when a filter is closed. At the point at which this function is called, any registered events on the filter have been freed, but the object is otherwise intact. This function is optional and will typically be provided by clients that want to free context and resources associated with the filter. Clients that provide a file object context or KS object header in the PreCreate dispatch function for the filter may free those items in this function.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The device mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyFilterClose(

 IN PKSSHELLFILTER ShellFilter,

 IN PIRP Irp

);

Parameters:
ShellFilter – Contains a pointer to the filter being closed.

Irp – Contains a pointer to the create IRP which requested the closure of the filter.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.2.4 Filter Power

This dispatch function is called when the device receives a power management IRP which device-associated objects have determined should be forwarded to other objects. This function is optional, and will typically be provided by clients that must save or restore hardware context in response to power state changes.

This function should not return STATUS_PENDING.

<<more here as power management matures>>

This function is called at passive level only.

NTSTATUS

MyFilterPower

 IN PKSSHELLFILTER ShellFilter,

 IN PIRP Irp

);

Parameters:
ShellFilter – Contains a pointer to the filter receiving the power management request.

Irp – Contains a pointer to the power management IRP.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.2.5 Filter Process

This dispatch function is called when the filter is to process frames. This function is optional, and will typically be provided by clients that implement a software transform. The arguments to this function supply information on available frames on a per-pin basis, allowing some transforms to operate without regard to pipe configurations.

This function may be called at passive level or dispatch level depending on the preference expressed in the filter descriptor <<how?>>.

BOOLEAN

MyFilterProcess

 IN PKSSHELLFILTER ShellFilter,

 IN PKSSHELLPROCESSPIN ProcessPins,

 IN PKSSHELLPROCESSPIN_INDEXENTRY ProcessPinsIndex

);

Parameters:
ShellFilter – Contains a pointer to the filter for which processing is to be performed.

ProcessPins – Contains a pointer to an array of KSSHELLPROCESSPIN structures, one structure for each pin instance on the filter. The structures are in pin ID order.

ProcessPinsIndex – Contains a pinter to an array of KSSHELLPROCESSPIN_INDEX structures indexed by pin ID providing an index into the ProcessPins array.

Return Values:

Returns FALSE if no further processing is required even if there are frames left to process or another value if the function should be called again immediately if more frames are available.

3.2.3 Pin Dispatch Table: KSSHELLPIN_DISPATCH

Pin dispatch tables allow the client supply handling functions for pin-related processing. All handling functions are optional as is the dispatch table itself. Clients that do not need to supply any pin dispatch functions may provide a null dispatch table pointer in the pin descriptor.

Functions in this table deal with the lifespan of a pin (create and close), power management and pin state. In addition, there is a dispatch function (Handshake) used in the negotiation of private interfaces.

typedef struct {

 PFNKSSHELLPINIRP PreCreate;

 PFNKSSHELLPINIRP Create;

 PFNKSSHELLPINIRP Close;

 PFNKSSHELLPINIRP Power;

 PFNKSSHELLPINSETDEVICESTATE SetDeviceState;

 PFNKSSHELLPINSETRESETSTATE SetResetState;

 PFNKSSHELLPINHANDSHAKE Handshake;

} KSSHELLPIN_DISPATCH;

3.2.3.1 Pin Pre-Create

This dispatch function is called when a pin is created. At the point at which this function is called, no context has been associated with the file object and no KS object header has been allocated. This function is optional and will typically be provided by clients that want to create their own file object context or KS file header. A file object context or file header allocated by this function can be freed in the close dispatch function for the pin, otherwise the shell will free them using ExFreePool and KsFreeObjectHeader, respectively.

If this function is not supplied, the shell will allocate the file object context and KS file header itself.

The filter’s control mutex is acquired before this function is called and is released after this function returns. This function should not return STATUS_PENDING.

NTSTATUS

MyPinPreCreate(

 IN PKSSHELLPIN ShellPin,

 IN PIRP Irp

);

Parameters:
ShellPin – Contains a pointer to the pin being created.

Irp – Contains a pointer to the create IRP which requested the creation of the pin.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.3.2 Pin Create

This dispatch function is called when a pin is created. At the point at which this function is called, the file object has an associated context, and the KS file header has been allocated. This function is optional and will typically be provided by clients that want to initialize context and resources associated with the pin.

If this function succeeds, the create operation is guaranteed to succeed.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyPinCreate(

 IN PKSSHELLPIN ShellPin,

 IN PIRP Irp

);

Parameters:
ShellPin – Contains a pointer to the pin being created.

Irp – Contains a pointer to the create IRP which requested the creation of the pin.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.3.3 Pin Close

This dispatch function is called when a pin is closed. At the point at which this function is called, any registered events on the pin have been freed, but the object is otherwise intact. This function is optional and will typically be provided by clients that want to free context and resources associated with the pin. Clients that provide a file object context or KS object header in the PreCreate dispatch function for the pin may free those items in this function.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyPinClose(

 IN PKSSHELLPIN ShellPin,

 IN PIRP Irp

);

Parameters:
ShellPin – Contains a pointer to the pin being closed.

Irp – Contains a pointer to the create IRP which requested the closure of the pin.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.3.4 Pin Power

This dispatch function is called when the device receives a power management IRP which device-associated objects have determined should be forwarded to other objects. This function is optional, and will typically be provided by clients that must save or restore hardware context in response to power state changes.

This function should not return STATUS_PENDING.

<<more here as power management matures>>

This function is called at passive level only.

NTSTATUS

MyPinPower(

 IN PKSSHELLPIN ShellPin,

 IN PIRP Irp

);

Parameters:
ShellPin – Contains a pointer to the pin receiving the power management request.

Irp – Contains a pointer to the power management IRP.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.3.5 Pin Set Device State

This dispatch function is called when the pin’s state is changed due to the arrival of a connection state property ‘set’ IOCTL. This function is optional, and will typically be provided by clients that must change the state of hardware. Because this function receives unfiltered state change requests, indicated state changes may be null (from and to states are the same) or non-contiguous (to state is not an immediate predecessor or successor of the from state).

The filter’s control mutex is acquired before this function is called and is released after this function returns. This function should not return STATUS_PENDING.

NTSTATUS

MyPinSetDeviceState(

 IN PKSSHELLPIN ShellPin,

 IN KSSTATE ToState,

 IN KSSTATE FromState

);

Parameters:
ShellPin – Contains a pointer to the pin. The DeviceState member of this structure will be equal to the FromState parameter. This function should not direction change the DeviceState member under any circumstances.

ToState – The device state to which the pin is changing. This may be the same as FromState and may not be the immediate successor or predecessor of FromState.

FromState – The reset device state from which the pin is changing.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.3.6 Pin Set Reset State

This dispatch function is called when the pin’s reset state is changed due to the arrival of a IOCTL_KS_RESET_STATE device control. This function is optional, and will typically be provided by clients that must flush hardware buffers. Because this function receives unfiltered reset state change requests, indicated state changes may be null (from and to states are the same).

The filter’s control mutex is acquired before this function is called and is released after this function returns.

void

MyPinSetResetState(

 IN PKSSHELLPIN ShellPin,

 IN KSRESET ToState,

 IN KSRESET FromState

);

Parameters:
ShellPin – Contains a pointer to the pin. The ResetState member of this structure will be equal to the FromState parameter. This function should not direction change the ResetState member under any circumstances.

ToState – The reset state to which the pin is changing. This may be the same as FromState.

FromState – The reset state from which the pin is changing.

Return Values:

None.

3.2.3.7 Pin Handshake

This dispatch function is called when the pin object receives a handshake request from the connected pin. Shell clients initiate such requests by calling KsShellHandshake. This function is optional, and will typically be provided by clients that implement private transport interfaces for the pin in question. The function must validate the incoming handshake structure and either return an error or supply the appropriate output handshake structure and a successful status.

This function should not return STATUS_PENDING.

NTSTATUS

MyPinHandshake(

 IN PKSSHELLPIN ShellPin,

 IN PKSHANDSHAKE In,

 OUT PKSHANDSHAKE Out

);

Parameters:
ShellPin – Contains a pointer to the pin.

In – Contains a pointer to the handshake information supplied by the connected pin.

Out – Contains a pointer to the handshake structure that the function should fill if the handshake is to succeed.

Return Values:

Returns STATUS_SUCCESS, else some error.

typedef struct {

 GUID ProtocolId;

 PVOID Argument1;

 PVOID Argument2;

} KSHANDSHAKE, *PKSHANDSHAKE;

Member
Description

ProtocolId
A GUID identifying the protocol to be established between the pins. Parties defining protocols will generate a unique GUID for each protocol and specify the semantics of the arguments passed in the initiation and response handshake structures. There is no requirement that the GUID be the same in both directions, and a unique GUID is only required for initiation.

Argument1
Semantics of this member are protocol-dependent.

Argument2
Semantics of this member are protocol-dependent.

3.2.4 Node Dispatch Table: KSSHELLNODE_DISPATCH

Node dispatch tables allow the client supply handling functions for node-related processing. All handling functions are optional as is the dispatch table itself. Clients that do not need to supply any node dispatch functions may provide a null dispatch table pointer in the node descriptor.

Functions in this table deal with the lifespan of a node (create and close) and power management.

typedef struct {

 PFNKSSHELLNODEIRP PreCreate;

 PFNKSSHELLNODEIRP Create;

 PFNKSSHELLNODEIRP Close;

 PFNKSSHELLNODEIRP Power;

} KSSHELLNODE_DISPATCH;

3.2.4.1 Node Pre-Create

This dispatch function is called when a node is created. At the point at which this function is called, no context has been associated with the file object and no KS object header has been allocated. This function is optional and will typically be provided by clients that want to create their own file object context or KS file header. A file object context or file header allocated by this function can be freed in the close dispatch function for the node, otherwise the shell will free them using ExFreePool and KsFreeObjectHeader, respectively.

If this function is not supplied, the shell will allocate the file object context and KS file header itself.

The filter’s control mutex is acquired before this function is called and is released after this function returns. This function should not return STATUS_PENDING.

This function is called at passive level only.

NTSTATUS

MyNodePreCreate(

 IN PKSSHELLNODE ShellNode,

 IN PIRP Irp

);

Parameters:
ShellNode – Contains a pointer to the node being created.

Irp – Contains a pointer to the create IRP which requested the creation of the node.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.4.2 Node Create

This dispatch function is called when a node is created. At the point at which this function is called, the file object has an associated context, and the KS file header has been allocated. This function is optional and will typically be provided by clients that want to initialize context and resources associated with the node.

If this function succeeds, the create operation is guaranteed to succeed.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyNodeCreate(

 IN PKSSHELLNODE ShellNode,

 IN PIRP Irp

);

Parameters:
ShellNode – Contains a pointer to the node being created.

Irp – Contains a pointer to the create IRP which requested the creation of the node.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.4.3 Node Close

This dispatch function is called when a node is closed. At the point at which this function is called, any registered events on the pin have been freed, but the object is otherwise intact. This function is optional and will typically be provided by clients that want to free context and resources associated with the node. Clients that provide a file object context or KS object header in the PreCreate dispatch function for the node may free those items in this function.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyNodeClose(

 IN PKSSHELLNODE ShellNode,

 IN PIRP Irp

);

Parameters:
ShellNode – Contains a pointer to the node being closed.

Irp – Contains a pointer to the create IRP which requested the closure of the node.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.4.4 Node Power

This dispatch function is called when the device receives a power management IRP which device-associated objects have determined should be forwarded to other objects. This function is optional, and will typically be provided by clients that must save or restore hardware context in response to power state changes.

This function should not return STATUS_PENDING.

<<more here as power management matures>>

This function is called at passive level only.

NTSTATUS

MyNodePower(

 IN PKSSHELLNODE ShellNode,

 IN PIRP Irp

);

Parameters:
ShellNode – Contains a pointer to the node receiving the power management request.

Irp – Contains a pointer to the power management IRP.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.5 Allocator Dispatch Table: KSSHELLALLOCATOR_DISPATCH

Allocator dispatch tables allow the client supply handling functions for allocator-related processing. All handling functions are optional as is the dispatch table itself. Clients that do not need to supply any allocator dispatch functions may provide a null dispatch table pointer in the allocator descriptor.

Functions in this table deal with the lifespan of an allocator (create and close) and power management.

typedef struct {

 PFNKSSHELLALLOCATORIRP PreCreate;

 PFNKSSHELLALLOCATORIRP Create;

 PFNKSSHELLALLOCATORIRP Close;

 PFNKSSHELLALLOCATORIRP Power;

} KSSHELLALLOCATOR_DISPATCH;

3.2.5.1 Allocator Pre-Create

This dispatch function is called when an allocator is created. At the point at which this function is called, no context has been associated with the file object and no KS object header has been allocated. This function is optional and will typically be provided by clients that want to create their own file object context or KS file header. A file object context or file header allocated by this function can be freed in the close dispatch function for the allocator, otherwise the shell will free them using ExFreePool and KsFreeObjectHeader, respectively.

If this function is not supplied, the shell will allocate the file object context and KS file header itself.

The filter’s control mutex is acquired before this function is called and is released after this function returns. This function should not return STATUS_PENDING.

This function is called at passive level only.

NTSTATUS

MyAllocatorPreCreate(

 IN PKSSHELLALLOCATOR ShellAllocator,

 IN PIRP Irp

);

Parameters:
ShellAllocator – Contains a pointer to the allocator being created.

Irp – Contains a pointer to the create IRP which requested the creation of the allocator.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.5.2 Allocator Create

This dispatch function is called when an allocator is created. At the point at which this function is called, the file object has an associated context, and the KS file header has been allocated. This function is optional and will typically be provided by clients that want to initialize context and resources associated with the allocator.

If this function succeeds, the create operation is guaranteed to succeed.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyAllocatorCreate(

 IN PKSSHELLALLOCATOR ShellAllocator,

 IN PIRP Irp

);

Parameters:
ShellAllocator – Contains a pointer to the allocator being created.

Irp – Contains a pointer to the create IRP which requested the creation of the allocator.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.5.3 Allocator Close

This dispatch function is called when an allocator is closed. At the point at which this function is called, any registered events on the pin have been freed, but the object is otherwise intact. This function is optional and will typically be provided by clients that want to free context and resources associated with the allocator. Clients that provide a file object context or KS object header in the PreCreate dispatch function for the allocator may free those items in this function.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyAllocatorClose(

 IN PKSSHELLALLOCATOR ShellAllocator,

 IN PIRP Irp

);

Parameters:
ShellAllocator – Contains a pointer to the allocator being closed.

Irp – Contains a pointer to the create IRP which requested the closure of the allocator.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.5.4 Allocator Power

This dispatch function is called when the device receives a power management IRP which device-associated objects have determined should be forwarded to other objects. This function is optional, and will typically be provided by clients that must save or restore hardware context in response to power state changes.

This function should not return STATUS_PENDING.

<<more here as power management matures>>

This function is called at passive level only.

NTSTATUS

MyAllocatorPower(

 IN PKSSHELLALLOCATOR ShellAllocator,

 IN PIRP Irp

);

Parameters:
ShellAllocator – Contains a pointer to the allocator receiving the power management request.

Irp – Contains a pointer to the power management IRP.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.6 Clock Dispatch Table: KSSHELLCLOCK_DISPATCH

Clock dispatch tables allow the client supply handling functions for clock-related processing. All handling functions are optional as is the dispatch table itself. Clients that do not need to supply any clock dispatch functions may provide a null dispatch table pointer in the clock descriptor.

Functions in this table deal with the lifespan of a clock (create and close) and power management.

typedef struct {

 PFNKSSHELLCLOCKIRP PreCreate;

 PFNKSSHELLCLOCKIRP Create;

 PFNKSSHELLCLOCKIRP Close;

 PFNKSSHELLCLOCKIRP Power;

} KSSHELLCLOCK_DISPATCH;

3.2.6.1 Clock Pre-Create

This dispatch function is called when a clock is created. At the point at which this function is called, no context has been associated with the file object and no KS object header has been allocated. This function is optional and will typically be provided by clients that want to create their own file object context or KS file header. A file object context or file header allocated by this function can be freed in the close dispatch function for the clock, otherwise the shell will free them using ExFreePool and KsFreeObjectHeader, respectively.

If this function is not supplied, the shell will allocate the file object context and KS file header itself.

The filter’s control mutex is acquired before this function is called and is released after this function returns. This function should not return STATUS_PENDING.

This function is called at passive level only.

NTSTATUS

MyClockPreCreate(

 IN PKSSHELLCLOCK ShellClock,

 IN PIRP Irp

);

Parameters:
ShellClock – Contains a pointer to the clock being created.

Irp – Contains a pointer to the create IRP which requested the creation of the clock.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.6.2 Clock Create

This dispatch function is called when a clock is created. At the point at which this function is called, the file object has an associated context, and the KS file header has been allocated. This function is optional and will typically be provided by clients that want to initialize context and resources associated with the clock.

If this function succeeds, the create operation is guaranteed to succeed.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyClockCreate(

 IN PKSSHELLCLOCK ShellClock,

 IN PIRP Irp

);

Parameters:
ShellClock – Contains a pointer to the clock being created.

Irp – Contains a pointer to the create IRP which requested the creation of the clock.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.6.3 Clock Close

This dispatch function is called when a clock is closed. At the point at which this function is called, any registered events on the pin have been freed, but the object is otherwise intact. This function is optional and will typically be provided by clients that want to free context and resources associated with the clock. Clients that provide a file object context or KS object header in the PreCreate dispatch function for the clock may free those items in this function.

This function may return STATUS_PENDING, in which case the shell will not complete the IRP immediately. Prior to returning STATUS_PENDING, the function must mark the IRP pending by calling IoMarkIrpPending. Once processing of the IRP is complete, the client must complete the IRP by calling KsShellCompletePendingRequest after having set the IRP’s status.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

NTSTATUS

MyClockClose(

 IN PKSSHELLCLOCK ShellClock,

 IN PIRP Irp

);

Parameters:
ShellClock – Contains a pointer to the clock being closed.

Irp – Contains a pointer to the create IRP which requested the closure of the clock.

Return Values:

Returns STATUS_SUCCESS, STATUS_PENDING, else some error.

3.2.6.4 Clock Power

This dispatch function is called when the device receives a power management IRP which device-associated objects have determined should be forwarded to other objects. This function is optional, and will typically be provided by clients that must save or restore hardware context in response to power state changes.

This function should not return STATUS_PENDING.

<<more here as power management matures>>

This function is called at passive level only.

NTSTATUS

MyClockPower(

 IN PKSSHELLCLOCK ShellClock,

 IN PIRP Irp

);

Parameters:
ShellClock – Contains a pointer to the clock receiving the power management request.

Irp – Contains a pointer to the power management IRP.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.7 Queue Dispatch Table: KSSHELLQUEUE_DISPATCH

Queue dispatch tables allow the client supply handling functions for queue-related processing. All handling functions are optional as is the dispatch table itself, though all clients will probably need to supply at least one handling function. Clients that do not need to supply any queue dispatch functions may provide a null dispatch table pointer in the queue descriptor.

Functions in this table deal with the lifespan of a queue (construct and destruct), notification of arriving frames (in streaming IRPs), and the cancellation of queued IRPs.

typedef struct {

 PFNKSSHELLQUEUE Construct;

 PFNKSSHELLQUEUE Destruct;

 PFNKSSHELLQUEUE Notify;

 PFNKSSHELLQUEUECANCEL Cancel;

} KSSHELLQUEUE_DISPATCH;

3.2.7.1 Queue Construct

This dispatch function is called when a queue is created. This happens on a transition from KSSTATE_STOP to KSSTATE_ACQUIRE. At the point at which this function is called, the queue has been fully initialized from the shell’s perspective. This function is optional and will typically be provided by clients that want to initialize context and resources associated with the queue.

If this function returns an error status, the state transition (to KSSTATE_ACQUIRE) will fail. If this function returns a successful status, the transition may fail for some other reason. In this case, the client’s queue destruct function will be called, if one is provided.

The filter’s control mutex is acquired before this function is called and is released after this function returns. This function should not return STATUS_PENDING.

This function is called at passive level only.

NTSTATUS

MyQueueConstruct(

 IN PKSSHELLQUEUE ShellQueue

);

Parameters:
ShellQueue – Contains a pointer to the queue being constructed.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.2.7.2 Queue Destruct

This dispatch function is called when a queue is destroyed. This happens on a transition from KSSTATE_ACQUIRE to KSSTATE_STOP. At the point at which this function is called, the queue is still intact (including the OwnerPipe and OwnerPin references), but no frames (IRPs) are queued and no new frames (IRPs) will arrive. This function is optional and will typically be provided by clients that want to free context and resources associated with the queue.

The filter’s control mutex is acquired before this function is called and is released after this function returns.

This function is called at passive level only.

void

MyQueueDestruct(

 IN PKSSHELLQUEUE ShellQueue

);

Parameters:
ShellQueue – Contains a pointer to the queue being destructed.

Return Values:

None.

3.2.7.3 Queue Notify

This dispatch function is called when a queue receives one or more new frames in the form of a streaming IRP. This function is optional but will be provided by most clients. With respect to queues that receive load-bearing frames, this function reflects the data-driven aspect of a filter. With respect to queues that receive empty frames to be filled, this function reflects the demand-driven aspect of the filter. Because almost all filters are in some sense both data- and demand-driven, almost all clients will need to supply this function.

A typical implementation will examine the queue supplied in the ShellQueue argument and other queues involved in the transform to determine if the filter has work to perform on frames supplied by the queues. In some cases, this determination or the work itself may be delegated to a DPC or work item.

This function will be called at passive level unless the queue descriptor specifies the flag KSSHELLQUEUE_FLAG_DISPATCH_LEVEL_NOTIFY, in which case the function may be called at dispatch or passive level.

void

MyQueueNotify(

 IN PKSSHELLQUEUE ShellQueue

);

Parameters:
ShellQueue – Contains a pointer to the queue which has received a new frame.

Return Values:

None.

3.2.7.4 Queue Cancel

This dispatch function is called when an IRP waiting in a queue is cancelled. This function is optional but will typically be provided by clients doing scatter/gather bus mastering. Such clients need to avoid accessing frames associated with IRPs that have been cancelled. This function is called once for each frame in each IRP that is cancelled. Generally speaking, the client’s response to this function will be to examine the list of mappings for the frame and remove them from the hardware’s queue of mappings.

This function may be called at dispatch or passive level. The cancel spin lock will is not acquired when the function is called, and there is no reason, in general, for the function to take the cancel spin lock.

void

MyQueueCancel(

 IN PKSSHELLQUEUE ShellQueue,

 IN PKSSHELLQUEUEEDGE Edge

);

Parameters:
ShellQueue – Contains a pointer to the queue for which an IRP has been cancelled.

Edge – Contains a pointer to an edge structure which describes the frame being cancelled.

Return Values:

None.

3.3 Objects

3.3.1 Device Object: KSSHELLDEVICE

The KS shell device object structure describes a WDM functional device that is managed by the shell. Members of the structure include descriptor and client context members, device object pointers for the functional device object and its PnP relatives, and a few fields reflecting the current status of the device.

Clients typically use this structure if they must implement specific PnP or power management behavior that is not provided by the shell device implementation. A pointer to the device object structure is the first parameter to all device dispatch functions, and the client is free to use the context member to attach its own context for these functions. In addition, clients may obtain a pointer to the shell device object structure from a WDM device object pointer using the function KsShellGetDeviceForDeviceObject.

For the purposes of synchronization, the lifetime of this object is defined as the interval between the time the client’s device PreCreate dispatch function is (or would be) called and the time the client’s device PnpRemove dispatch function is (or would be) called.

typedef struct {

 const KSSHELLDEVICE_DESCRIPTOR* Descriptor;

 PVOID Context;

 PDEVICE_OBJECT FunctionalDeviceObject;

 PDEVICE_OBJECT PhysicalDeviceObject;

 PDEVICE_OBJECT NextDeviceObject;

 BOOLEAN Started;

 BOOLEAN CreatesMayProceed;

 ULONG ExistingObjectCount;

} KSSHELLDEVICE;

Member
Description

Descriptor
A pointer to the descriptor for this object. This member is stable throughout the lifetime of the device.

Context
A client-defined context pointer. This member is null at the start of the device’s lifetime, and the shell will not change its value throughout the lifetime of the device.

FunctionalDeviceObject
A pointer to the WDM functional device object for the device. This member is stable throughout the lifetime of the device.

PhysicalDeviceObject
A pointer to the WDM physical device object for the device. This member is stable throughout the lifetime of the device.

NextDeviceObject
A pointer to the next device in the PnP chain as determined by IoAttachDeviceToDeviceStack. This member is stable throughout the lifetime of the device.

Started
A flag indicating whether the device has been started. This flag is set during the processing of the PnP start IRP and reset during the processing of the PnP stop IRP. A device that is not started will return STATUS_DEVICE_NOT_READY in response to all requests to create a filter. The shell sets this member to TRUE having first acquired the device mutex. The transition to FALSE is not synchronized in this way. Instead, the member CreatesMayProceed will be FALSE when this transition occurs, and creates that are queued due to a pending PnP stop are failed after the transition.

CreatesMayProceed
A flag indicating whether creates may proceed. This flag is asserted when the device is started and creates are not blocked by a pending stop or remove.

ExistingObjectCount
A count of objects, including filters, pins, nodes, allocators and clocks, that currently exist on this device. There is no general synchronization for this member, but changes due to the creation and closure of filters are synchronized by the device mutex. This means that clients can be assured that this member will not change to or from the value zero as long as the client holds the device mutex.

3.3.2 Filter Factory Object: KSSHELLFILTERFACTORY

The KS shell filter factory object structure describes a filter factory. A filter factory explicitly represents a device’s ability to instantiate a given type of filter as described by a filter descriptor. Filter factory structure members include a pointer to a filter descriptor and a client context.

Clients implementing drivers for hardware typically use this structure to manage a particular function of the hardware that is exposed as a type of filter. Clients implementing software filters generally do not need to manage the device at this level.

Filter factory objects are created in two ways. They can be created during the shell device’s AddDevice processing as indicated by the device descriptor’s list of filter descriptors. They may also be created explicitly by the client in a call to KsShellCreateFilterFactory. The client may create filter factories at any time, but this is typically done during the processing of the PnP start IRP when an evaluation of assigned resources indicates what types of filters must be exposed by the device.

For the purposes of synchronization, the lifetime of filter factories created implicitly is defined as the interval starting when the client’s device create dispatch function is (or would be) called and ending after the client’s device PnP remove dispatch function is (or would be) called. The lifetime of filter factories created explicitly by calling KsShellCreateFilterFactory starts immediately after that call returns.

typedef struct {

 const KSSHELLFILTER_DESCRIPTOR* FilterDescriptor;

 PVOID Context;

} KSSHELLFILTERFACTORY;

Member
Description

FilterDescriptor
A pointer to the descriptor for filters generated by this object. This member is stable throughout the lifetime of the object.

Context
A client-defined context pointer. This member is null at the start of the object’s lifetime, and the shell will not change its value throughout the lifetime of the object.

3.3.3 Filter Object: KSSHELLFILTER

The KS shell filter object structure describes an instantiated filter. Filter structure members include a pointer to a filter descriptor and a client context.

Clients implementing software filters typically associate filter state with this structure. Processing for software filters is usually done in the filter’s Process dispatch function. Clients implementing hardware filters typically do not use this structure because the focus of the hardware driver is the platform transition: the movement of data between the host and the external hardware. This transition is typically handled with code associated with a shell queue object.

For the purposes of synchronization, the lifetime of this object is the interval starting when the client’s PreCreate dispatch function is called (or would be called) and ending when the client’s Close dispatch function returns, assuming the function does not return STATUS_PENDING. If it does return STATUS_PENDING, the object’s lifetime ends when the client indicates completion of the close request by calling KsShellCompletePendingRequest.

typedef struct {

 const KSSHELLFILTER_DESCRIPTOR* Descriptor;

 PVOID Context;

} KSSHELLFILTER;

Member
Description

Descriptor
A pointer to the descriptor for this object. This member is stable throughout the lifetime of the object.

Context
A client-defined context pointer. This member is null at the start of the object’s lifetime, and the shell will not change its value throughout the lifetime of the object.

3.3.4 Pin Object: KSSHELLPIN

The KS shell pin object describes an instantiated pin. Filter structure members include a pointer to a pin descriptor, a client context, connection parameters, assigned master clock and allocator, current state and pipe assignment.

In many ways, pins are the focus of filter behavior. This is reflected in the fact that the shell pin structure has a large number of members. Many clients need to refine pin behavior and maintain additional pin-associated context. For filters with fairly conventional pin behavior, no additional refinement or context will be required. In many cases, default shell pin behavior is sufficient, but the pins are accessed as part of filter- or queue-associated processing.

For the purposes of synchronization, the lifetime of this object is the interval starting when the client’s PreCreate dispatch function is called (or would be called) and ending when the client’s Close dispatch function returns, assuming the function does not return STATUS_PENDING. If it does return STATUS_PENDING, the object’s lifetime ends when the client indicates completion of the close request by calling KsShellCompletePendingRequest.

typedef struct {

 const KSSHELLPIN_DESCRIPTOR* Descriptor;

 PVOID Context;

 ULONG Id;

 KSPIN_INTERFACE ConnectionInterface;

 KSPIN_MEDIUM ConnectionMedium;

 HANDLE ConnectionHandle;

 PFILE_OBJECT ConnectionFileObject;

 PDEVICE_OBJECT ConnectionDeviceObject;

 PKSSHELLPIN ConnectionPin;

 KSPRIORITY ConnectionPriority;

 PKSDATAFORMAT ConnectionFormat;

 KSPIN_DATAFLOW DataFlow;

 PKSALLOCATOR_FRAMING_EX AllocatorFramingGet;

 PKSALLOCATOR_FRAMING_EX AllocatorFramingSet;

 PFILE_OBJECT AllocatorFileObject;

 PFILE_OBJECT MasterClockFileObject;

 KSSTATE DeviceState;

 KSRESET ResetState;

 HANDLE PipeId;

} KSSHELLPIN;

Member
Description

Descriptor
A pointer to the descriptor for this object. This member is stable throughout the lifetime of the object.

Context
A client-defined context pointer. This member is null at the start of the object’s lifetime, and the shell will not change its value throughout the lifetime of the object.

Id
The pin type identifier, an index into the array of pin descriptors for the filter. This member is stable throughout the lifetime of the object.

ConnectionInterface
The identifier for the connection interface. This information is supplied by the graph builder when the pin is created. This member is stable throughout the lifetime of the object.

ConnectionMedium
The identifier for the connection medium. This information is supplied by the graph builder when the pin is created. This member is stable throughout the lifetime of the object.

ConnectionHandle
For source pins, the handle of the connected sink pin. For sink pins, this member is NULL. This handle is supplied by the graph builder when the pin is created. This member is stable throughout the lifetime of the object.

ConnectionFileObject
For source pins, a pointer to the file object of the connected sink pin. For sink pins, this member is NULL. This information is based on the connection handle supplied by the graph builder when the pin is created. This member is stable throughout the lifetime of the object

ConnectionDeviceObject
For source pins, a pointer to the device object corresponding to the connected sink pin. For sink pins, this member is NULL. This information is based on the connection handle supplied by the graph builder when the pin is created. This member is stable throughout the lifetime of the object.

ConnectionPin
For pins that are connected to pins also implemented by the KS shell, a pointer to the connected pin. For pins that are not connected to other shell pins, this member is NULL This information is based on the connection handle supplied by the graph builder when the pin is created. This member is stable throughout the lifetime of the object.

ConnectionPriority
The priority of the connection. This information is supplied by the graph builder when the pin is created. This member is stable throughout the lifetime of the object.

ConnectionFormat
The format of the connection. This information is initially supplied by the graph builder when the pin is created and may be changed through property access or by format change messages inserted in the stream. Access to this member is synchronized by the control mutex for the filter. The client should not change this member.

DataFlow
The direction of data flow for this pin (KSPIN_DATAFLOW_IN or KSPIN_DATAFLOW_OUT). This information is a static attribute of the pin and appears in the pin descriptor. It is cached here for access at >PASSIVE_LEVEL. This member is stable throughout the lifetime of the object.

AllocatorFramingGet

AllocatorFramingSet

AllocatorFileObject
A pointer to the file object of the allocator assigned to this pin. If no allocator is assigned to the pin, this member is NULL. This member is changed through property access. Access to this member is synchronized by the control mutex for the filter. The client should not change this member.

MasterClockFileObject
A pointer to the file object of the master clock assigned to this pin. If no master clock is assigned to the pin, this member is NULL. This member is changed through property access. Access to this member is synchronized by the control mutex for the filter. The client should not change this member.

DeviceState
The current device state of the pin. This member is initially KSSTATE_STOP and is changed through property access. Access to this member is synchronized by the control mutex for the filter. The client should not change this member.

ResetState
The current reset state of the pin. This member is initially KSRESET_END and is changed through property access. Access to this member is synchronized by the control mutex for the filter. The client should not change this member.

PipeId
The pipe identifier of the pipe assigned to this pin. This member is initially set to NULL and is changed through property access according to pipe assignment decisions made by the graph builder. Access to this member is synchronized by the control mutex for the filter. The client should not change this member.

3.3.5 Node Object: KSSHELLNODE

<<description>>

typedef struct {

 const KSSHELLNODE_DESCRIPTOR* Descriptor;

 PVOID Context;

 ULONG Id;

 ULONG CreateFlags;

} KSSHELLNODE;

Member
Description

Descriptor
A pointer to the descriptor for this object. This member is stable throughout the lifetime of the object.

Context
A client-defined context pointer. This member is null at the start of the object’s lifetime, and the shell will not change its value throughout the lifetime of the object.

Id

CreateFlags

3.3.6 Allocator Object: KSSHELLALLOCATOR

<<description>>

typedef struct {

 const KSSHELLALLOCATOR_DESCRIPTOR* Descriptor;

 PVOID Context;

} KSSHELLALLOCATOR;

Member
Description

Descriptor
A pointer to the descriptor for this object. This member is stable throughout the lifetime of the object.

Context
A client-defined context pointer. This member is null at the start of the object’s lifetime, and the shell will not change its value throughout the lifetime of the object.

3.3.7 Clock Object: KSSHELLCLOCK

<<description>>

typedef struct {

 const KSSHELLCLOCK_DESCRIPTOR* Descriptor;

 PVOID Context;

 ULONG CreateFlags;

} KSSHELLCLOCK;

Member
Description

Descriptor
A pointer to the descriptor for this object. This member is stable throughout the lifetime of the object.

Context
A client-defined context pointer. This member is null at the start of the object’s lifetime, and the shell will not change its value throughout the lifetime of the object.

CreateFlags
The create flags specified in the create request the produced the clock. This member is stable throughout the lifetime of the object.

3.3.8 Queue Object: KSSHELLQUEUE

<<description>>

typedef struct {

 const KSSHELLQUEUE_DESCRIPTOR* Descriptor;

 PVOID Context;

 PADAPTER_OBJECT AdapterObject;

 ULONG HeaderSize;

 ULONG IrpsReceived;

 ULONG IrpsWaiting;

 ULONG IrpsCancelled;

} KSSHELLQUEUE;

Member
Description

Descriptor
A pointer to the descriptor for this object. This member is stable throughout the lifetime of the object.

Context
A client-defined context pointer. This member is null at the start of the object’s lifetime, and the shell will not change its value throughout the lifetime of the object.

AdapterObject

HeaderSize

IrpsReceived

IrpsWaiting

IrpsCancelled

<<description>>

typedef struct {

 PHYSICAL_ADDRESS PhysicalAddress;

 PVOID VirtualAddress;

 ULONG ByteCount;

 PVOID Context;

} KSSHELLMAPPING;

Member
Description

PhysicalAddress

VirtualAddress

ByteCount

Context

<<description>>

typedef struct {

 PKSSHELLQUEUE ParentQueue;

 PIRP Irp;

 ULONG IrpPacketCount;

 PKSSTREAM_HEADER IrpPacketHeaders;

 ULONG PacketIndex;

 PKSSTREAM_HEADER PacketHeader;

 PMDL Mdl;

 ULONG FrameExtent;

 ULONG FrameDataUsed;

 ULONG FrameByteCount;

 PBYTE FrameVirtualAddress;

 ULONG ByteOffset;

 ULONG BytesRemaining;

 PBYTE BytePosition;

 ULONG FrameMappingsCount;

 PKSSHELLMAPPING FrameMappings;

 ULONG MappingIndex;

 ULONG MappingsRemaining;

 PKSSHELLMAPPING Mapping;

 BOOLEAN EndOfIrp;

} KSSHELLQUEUEEDGE;

Member
Description

ParentQueue

Irp

IrpPacketCount

IrpPacketHeaders

PacketIndex

PacketHeader

Mdl

FrameExtent

FrameDataUsed

FrameByteCount

FrameVirtualAddress

ByteOffset

BytesRemaining

BytePosition

FrameMappingsCount

FrameMappings

MappingIndex

MappingsRemaining

Mapping

EndOfIrp

3.4 Functions

3.4.1 KsShellAcquireControl

<<description>>

KSDDKAPI

void

NTAPI

KsShellAcquireControl(

 IN KSSHELLXXX ShellXxx

);

Parameters:
ShellXxx – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.2 KsShellReleaseControl

<<description>>

KSDDKAPI

void

NTAPI

KsShellReleaseControl(

 IN KSSHELLXXX ShellXxx

);

Parameters:
ShellXxx – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.3 KsShellAddEvent

<<description>>

KSDDKAPI

void

NTAPI

KsShellAddEvent(

 IN KSSHELLXXX ShellXxx,

 IN KSEVENT_ENTRY EventEntry

);

Parameters:
ShellXxx – <<description>>.

EventEntry – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.4 KsShellGenerateEvents

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellGenerateEvents (

 IN KSSHELLXXX ShellXxx,

 IN const GUID* EventSet OPTIONAL,

 IN ULONG EventId,

 IN ULONG DataSize,

 IN PVOID Data OPTIONAL,

 IN PFNKSGENERATEEVENTCALLBACK CallBack OPTIONAL,

 IN PVOID CallBackContext OPTIONAL

);

Parameters:
ShellXxx – <<description>>.

EventSet – <<description>>.

EventId – <<description>>.

DataSize – <<description>>.

Data – <<description>>.

CallBack – <<description>>.

CallBackContext – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.5 KsMergeAutomationTables

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsMergeAutomationTables(

 OUT PKSAUTOMATION_TABLE* AutomationTableAB,

 IN const KSAUTOMATION_TABLE* AutomationTableA,

 IN const KSAUTOMATION_TABLE* AutomationTableB

);

Parameters:
AutomationTableAB – <<description>>.

AutomationTableA – <<description>>.

AutomationTableB – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.6 KsHandleAutomationIoControl

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsHandleAutomationIoControl(

 IN PIRP Irp,

 IN const KSAUTOMATION_TABLE* AutomationTable OPTIONAL,

 IN PINTERLOCKEDLIST_HEAD EventList OPTIONAL

);

Parameters:
Irp – <<description>>.

AutomationTable – <<description>>.

EventList – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.7 KsReferenceAutomationTable

<<description>>

KSDDKAPI

void

NTAPI

KsReferenceAutomationTable(

 IN PKSAUTOMATION_TABLE AutomationTable

);

Parameters:
AutomationTable – <<description>>.

Return Values:

None.

3.4.8 KsReleaseAutomationTable

<<description>>

KSDDKAPI

void

NTAPI

KsReleaseAutomationTable(

 IN PKSAUTOMATION_TABLE AutomationTable

);

Parameters:
AutomationTable – <<description>>.

Return Values:

None.

3.4.9 KsShellInitializeDriver

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellInitializeDriver(

 IN PDRIVER_OBJECT DriverObject,

 IN PUNICODE_STRING RegistryPathName,

 IN const KSSHELLDEVICE_DESCRIPTOR* Descriptor OPTIONAL

);

Parameters:
DriverObject – <<description>>.

RegistryPathName – <<description>>.

Descriptor – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.10 KsShellAddDevice

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellAddDevice(

 IN PDRIVER_OBJECT DriverObject,

 IN PDEVICE_OBJECT PhysicalDeviceObject

);

Parameters:
DriverObject – <<description>>.

PhysicalDeviceObject – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.11 KsShellCreateDevice

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellCreateDevice(

 IN PDRIVER_OBJECT DriverObject,

 IN PDEVICE_OBJECT PhysicalDeviceObject,

 IN const KSSHELLDEVICE_DESCRIPTOR* Descriptor OPTIONAL

);

Parameters:
DriverObject – <<description>>.

PhysicalDeviceObject – <<description>>.

Descriptor – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.12 KsShellInitializeDevice

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellInitializeDevice(

 IN PDEVICE_OBJECT FunctionalDeviceObject,

 IN PDEVICE_OBJECT PhysicalDeviceObject,

 IN PDEVICE_OBJECT NextDeviceObject,

 IN const KSSHELLDEVICE_DESCRIPTOR* Descriptor OPTIONAL

);

Parameters:
FunctionalDeviceObject – <<description>>.

PhysicalDeviceObject – <<description>>.

NextDeviceObject – <<description>>.

Descriptor – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.13 KsShellTerminateDevice

<<description>>

KSDDKAPI

void

NTAPI

KsShellTerminateDevice(

 IN PDEVICE_OBJECT DeviceObject

);

Parameters:
DeviceObject – <<description>>.

Return Values:

None.

3.4.14 KsShellAcquireDevice

<<description>>

KSDDKAPI

void

NTAPI

KsShellAcquireDevice(

 IN PKSSHELLDEVICE ShellDevice

);

Parameters:
ShellDevice – <<description>>.

Return Values:

None.

3.4.15 KsShellReleaseDevice

<<description>>

KSDDKAPI

void

NTAPI

KsShellReleaseDevice(

 IN PKSSHELLDEVICE ShellDevice

);

Parameters:
ShellDevice – <<description>>.

Return Values:

None.

3.4.16 KsShellIncrementExistingObjectCount

<<description>>

KSDDKAPI

void

NTAPI

KsShellIncrementExistingObjectCount(

 IN PKSSHELLDEVICE ShellDevice

);

Parameters:
ShellDevice – <<description>>.

Return Values:

None.

3.4.17 KsShellDecrementExistingObjectCount

<<description>>

KSDDKAPI

void

NTAPI

KsShellDecrementExistingObjectCount(

 IN PKSSHELLDEVICE ShellDevice

);

Parameters:
ShellDevice – <<description>>.

Return Values:

None.

3.4.18 KsShellCreateFilterFactory

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellCreateFilterFactory(

 IN PDEVICE_OBJECT DeviceObject,

 IN const KSSHELLFILTER_DESCRIPTOR* Descriptor,

 IN PWCHAR RefString OPTIONAL,

 IN PSECURITY_DESCRIPTOR SecurityDescriptor OPTIONAL,

 IN ULONG CreateItemFlags,

 OUT PKSSHELLFILTERFACTORY* FilterFactory OPTIONAL

);

Parameters:
DeviceObject – <<description>>.

Descriptor – <<description>>.

RefString – <<description>>.

SecurityDescriptor – <<description>>.

CreateItemFlags – <<description>>.

FilterFactory – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.19 KsShellSetDeviceClassesState

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellSetDeviceClassesState(

 IN PKSSHELLFILTERFACTORY FilterFactory,

 IN BOOLEAN NewState

);

Parameters:
FilterFactory – <<description>>.

NewState – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.20 KsShellStandardConnect

<<description>>

KSDDKAPI

void

NTAPI

KsShellStandardConnect(

 IN PIKSSHELLTRANSPORT NewTransport OPTIONAL,

 IN KSPIN_DATAFLOW DataFlow,

 IN PIKSSHELLTRANSPORT ThisTransport,

 IN PIKSSHELLTRANSPORT* SourceTransport,

 IN PIKSSHELLTRANSPORT* SinkTransport

);

Parameters:
NewTransport – <<description>>.

DataFlow – <<description>>.

ThisTransport – <<description>>.

SourceTransport – <<description>>.

SinkTransport – <<description>>.

Return Values:

None.

3.4.21 KsShellTransferKsIrp

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellTransferKsIrp(

 IN PIKSSHELLTRANSPORT NewTransport,

 IN PIRP Irp

);

Parameters:
NewTransport – <<description>>.

Irp – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.22 KsShellAcquireLeadingEdge

<<description>>

KSDDKAPI

PKSSHELLQUEUEEDGE

NTAPI

KsShellAcquireLeadingEdge(

 IN PKSSHELLQUEUE Queue

);

Parameters:
Queue – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.23 KsShellAcquireTrailingEdge

<<description>>

KSDDKAPI

PKSSHELLQUEUEEDGE

NTAPI

KsShellAcquireTrailingEdge(

 IN PKSSHELLQUEUE Queue

);

Parameters:
Queue – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

3.4.24 KsShellAdvanceTrailingEdgeBytePosition

<<description>>

KSDDKAPI

void

NTAPI

KsShellAdvanceTrailingEdgeBytePosition(

 IN PKSSHELLQUEUE Queue,

 IN ULONG ByteCount

);

Parameters:

Queue – <<description>>.

ByteCount – <<description>>.

Return Values:

None.

3.4.25 KsShellReleaseLeadingEdge

<<description>>

KSDDKAPI

void

NTAPI

KsShellReleaseLeadingEdge(

 IN PKSSHELLQUEUEEDGE Edge

);

Parameters:
Edge – <<description>>.

Return Values:

None.

3.4.26 KsShellReleaseTrailingEdge

<<description>>

KSDDKAPI

void

NTAPI

KsShellReleaseTrailingEdge(

 IN PKSSHELLQUEUEEDGE Edge

);

Parameters:
Edge – <<description>>.

Return Values:

None.

3.4.27 KsShellAdvanceBytePosition

<<description>>

KSDDKAPI

void

NTAPI

KsShellAdvanceBytePosition(

 IN PKSSHELLQUEUEEDGE Edge,

 IN ULONG ByteCount

);

Parameters:
Edge – <<description>>.

ByteCount – <<description>>.

Return Values:

None.

3.4.28 KsShellAdvanceMappings

<<description>>

KSDDKAPI

void

NTAPI

KsShellAdvanceMappings(

 IN PKSSHELLQUEUEEDGE Edge,

 IN ULONG MappingCount

);

Parameters:
Edge – <<description>>.

MappingCount – <<description>>.

Return Values:

None.

3.4.29 KsShellSetPacketIndex

<<description>>

KSDDKAPI

void

NTAPI

KsShellSetPacketIndex(

 IN PKSSHELLQUEUEEDGE Edge,

 IN ULONG PacketIndex

);

Parameters:
Edge – <<description>>.

PacketIndex – <<description>>.

Return Values:

None.

3.4.30 KsShellQueueSetByteOffset

<<description>>

KSDDKAPI

void

NTAPI

KsShellQueueSetByteOffset(

 IN PKSSHELLQUEUEEDGE Edge,

 IN ULONG ByteOffset

);

Parameters:
Edge – <<description>>.

ByteOffset – <<description>>.

Return Values:

None.

3.4.31 KsShellQueueSetMappingIndex

<<description>>

KSDDKAPI

void

NTAPI

KsShellQueueSetMappingIndex(

 IN PKSSHELLQUEUEEDGE Edge,

 IN ULONG MappingIndex

);

Parameters:
Edge – <<description>>.

MappingIndex – <<description>>.

Return Values:

None.

3.4.32 KsShellHandshake

<<description>>

KSDDKAPI

NTSTATUS

NTAPI

KsShellHandshake(

 IN PKSSHELLPIN ShellPin,

 IN PKSHANDSHAKE In,

 OUT PKSHANDSHAKE Out

);

Parameters:

ShellDevice – <<description>>.

In – <<description>>.

Out – <<description>>.

Return Values:

Returns STATUS_SUCCESS, else some error.

F. Factory Object

Allocator

Source Pin

Sink Pin

KS Object Header

File Context

File Object

KS Object Header

File Context

File Object

Filter Descriptor

Pin Descriptor

KS Pin

Pin Factory Object

KS Pin

Pin

Object

Filter Object

Device Object

KS Device Header

Device Context

Device Object

Allocator

Pin

Queue

Pin

Queue

Queue

Pin

eue

Sink Pin

Pin

Queue

Source Pin

Pin

Allocator

Pin

�PAGE \# "'Page: '#'�'" �Page: 2���

�PAGE \# "'Page: '#'�'" �Page: 2���

Microsoft Corporation Company Confidential

10/27/98 Draft - Microsoft Corporation Company Confidential 2:51 PM

