Blackcomb Storage
Class Architecture

Blackcomb

Storage Class Architecture
Proposal

ervinp

Version 0.22
5/16/2001

Background

Our current class-layer driver model is confusing and not well exposed to the vendor community. ClassPnP implements PnP, power, configuration, and I/O; and it exposes interfaces by which class drivers (e.g. disk, cdrom, 4mmdat, sfloppy, third party) can tie in to all of the above. Almost everyone agrees that the current model does not make a class driver’s responsibilities clear. Because it shares an exposed context with the class drivers and exposes so many interfaces, ClassPnP’s maintenance and evolution is heavily stifled by legacy issues.

We have not made any attempt to clear up the confusion in the DDK. We have simply dropped in the source code for ClassPnP and our class drivers. There is almost no documentation available.

Goals

This proposal attempts to deal with these problems so as to simplify the class layer generally, isolate our future class driver from legacy issues, and have a clear message for third party developers. The goals are as follows:

· Two tier solution

· Simple minidriver model for most

· Full class driver for the rest

· (lower filter drivers still ok)

· Desynchronized, full duplex by default
· Optionally serializable

· Clean interfaces

· Small, simple set of interfaces

· No shared contexts

· Clear responsibilities for each component

· No “looping” calls

· Good samples and documentation

· Pausable I/O
· I/O pausable by either StorCls or minidriver

· Fully stateful

· Class layer maintains contextualized state for all outstanding I/O

· Debugability

· Cancelability

· No memory thrashing at runtime
· Perf

· Helps to isolate storage from memory corruptions

· Isochronous capability

· Includes exclusive use of LUN by a process

· TBD: How is this exposed?

· Portable storage stack

· Can mount storage stack on other driver stacks without undue perf hit

· Support for value-add

Storage Class Minidriver Model
· Allow for a diverse set of simple solutions
· Simple prepass/postpass model for configuration, I/O, and query/control
· minidriver can also originate I/O independently
· Not a miniport model

· retain power/portability of IRPs

· Simple start/stop interface

· no PnP/Power complexity
· no wake capability (e.g. on media insertion)

· Minidriver can expose device interface on class FDO

· optional “shingle” for exposing value-add to user level
· Minimal boilerplate

· simplest minidriver < 50 lines of code

· Publish clear interface document

There are many storage devices with simple special needs that can be encapsulated in a minidriver. Many vendors only need to override one or two requests to support their value-add. However, those simple needs are quite varied. Therefore, there will be no attempt to anticipate the classes of special needs of storage minidrivers and capture them in the interface. We will simply allow the minidriver a prepass and postpass on all configuration and I/O requests. The only restriction is that the device can have no special PnP or Power needs; if it does, the vendor must implement either a full blown class-layer driver or a filter driver.
Other special needs (e.g. serialization, caching, hot-unplug) will be communicated via initialization parameters.
For the purposes of this document, the new class layer minidriver wrapper will be called StorCls. StorCls is a wrapper for class-layer storage minidrivers, roughly equivalent to the NDIS wrapper for network miniports. However, it incorporates some lessons learned from the evolution of Remote NDIS, which was negatively impacted by NDIS’ non-portable packet model. So StorCls will not invent a new format for configuration data or I/O requests. A minidriver will receive configuration data and override requests using the same prepass/postpass mechanism. The minidriver will have to process the IRPs and SRBs for the requests that it overrides.

StorCls’ high-level behavior will be as follows:
· For configuration and I/O requests:

· implement default behavior and allow override by the minidriver
· allow minidriver configuration of that default behavior via initialization parameters (e.g. for serialization)

· For query/control IOCTLs (WMI, etc) and other requests that complete at the class layer

· Implement default behavior and allow override by the minidriver

· For PnP and Power requests:

· implement exclusively with no override possible by minidriver

· default handling may be configurable via initialization parameters

· expose only start/stop paradigm to minidriver

When a minidriver receives a request, it does not know whether the IRP originated within StorCls or in a higher level driver. Therefore, the minidriver does not complete IRPs. It must have a completion routine for all downward IRPs and call StorCls’ ClassRequestComplete interface to complete them from its level. This should not be a significant perf hit because in reality it is only a few extra instructions per request. (TBD: something will be done to keep SL_PENDING from getting set unnecessarily).
Although the minidriver does not see StorCls’ FDO, it may create a device interface (‘shingle’) on StorCls’ FDO for exposing value-add features to the user level. All it has to do is return a non-zero DeviceInterfaceGuid in its CLASS_MINIDRIVER_CONFIG_PARAMS. The minidriver will then receive any IOCTLs sent to the shingle via the prepass filter.

Partitioning

Partitioning logic from disk.sys will be implemented within StorCls.

StoreCls interfaces

NTSTATUS ClassRegisterMinidriver(
IN PDRIVER_OBJECT DriverObject,

IN PCLASS_MINIDRIVER_INTERFACE MinidriverInterface

);

Called from minidriver’s DriverEntry.
Minidriver hooks no functions in DriverObject.

VOID ClassRequestComplete(

IN PVOID ClassDeviceContext,

IN PIRP Irp,

IN PVOID ClassRequestContext,

IN STORCLS_STATUS StorClsStatus

);

Called by minidriver to complete a request for which it previously returned STORCLS_STATUS_PENDING in the ClassRequestPrepass call (see ClassRequestPrepass).
ClassDeviceContext - StorCls’ context for the device instance

Irp – completed request

ClassRequestContext – StorCls’ context for the request
StorClsStatus –

· One of the following (see ClassRequestPrepass for explanation):

· STORCLS_STATUS_COMPLETE

· STORCLS_STATUS_MODIFIED

· STORCLS_STATUS_NOT_HANDLED

Minidriver interfaces

NTSTATUS ClassStartDevice(

IN PDEVICE_OBJECT TargetDevice,

IN OUT PCLASS_MINIDRIVER_CONFIG_PARAMS ConfigParams,

IN PVOID ClassDeviceContext ,

OUT PVOID *MinidriverDeviceContext
);

Called from StorCls’ IRP_MJ_START_DEVICE handler after the Start IRP has been sent down the stack and synchronized (so that minidriver can send requests to the started device stack within this call). The minidriver never sees StorCls’ FDO. It also does not get a region of the FDO’s device extension, like some other minidriver models (e.g. HID); the minidriver must allocate its own context.

StorCls and the minidriver exchange contexts for the device instance. They then use the other component’s context in all subsequent calls.

TargetDevice – top of stack to which the FDO was attached

ConfigParams – minidriver returns initialization parameters (e.g. serialization)

ClassDeviceContext – StorCls’ context for the device instance

MinidriverDeviceContext – returns the minidriver’s context for the device instance

VOID ClassStopDevice(IN PVOID MinidriverDeviceContext);

Called by StorCls on a stop or remove. The minidriver synchronously completes any outstanding minidriver-initiated requests and frees all resources.
Called only at passive IRQL.

VOID ClassPauseDevice(IN PVOID MinidriverDeviceContext);

Called by StorCls to pause the minidriver.
While paused, the minidriver must queue or complete all outstanding requests. It does not have to free resources.
Called only at passive IRQL.

VOID ClassResumeDevice(IN PVOID MinidriverDeviceContext);

Called by StorCls to resume a paused device instance.

STORCLS_STATUS ClassRequestPrepass(

IN PVOID MinidriverDeviceContext,

IN PIRP Irp,

IN PVOID ClassRequestContext,

OUT PVOID *MinidriverRequestContext

);

MinidriverDeviceContext – minidriver’s context for the device instance

Irp – the prepared configuration or I/O request

ClassRequestContext – StorCls’ context for the request
MinidriverRequestContext – returns the minidriver’s context for this request
Return values:
· STORCLS_STATUS_COMPLETE
· minidriver has synchronously handled the request and set the result
· (may be used to block a downward request)

· STORCLS_ STATUS_MODIFIED

· The minidriver has modified the request

· StorCls will send or service the request

· StorCls will call ClassRequestPostpass when the request completes

· STORCLS_ STATUS_NOT_HANDLED

· The minidriver has not modified the request

· StorCls will send or service the request

· StorCls will call ClassRequestPostpass when the request completes

· STORCLS_ STATUS_PENDING
· minidriver will handle the request and then call ClassRequestComplete
· minidriver will not allow the IRP to complete above the class layer

· can also be used to pause I/O; the minidriver queues the request and later calls ClassRequestComplete with one of the preceding status values

VOID ClassRequestPostpass(

IN PVOID MinidriverDeviceContext,

IN PIRP Irp,

IN PVOID MinidriverRequestContext

);

Called by StorCls to allow minidriver a postpass on a request for which it previously returned STATUS_NOT_IMPLEMENTED. StorCls calls this interface before it uses the results within the request – this allows the minidriver to modify the results.

MinidriverDeviceContext – minidriver’s context for the device instance

Irp – the request IRP. Minidriver may modify the results
MinidriverRequestContext – minidriver’s context for the request

(returned in ClassRequestPrepass)

Header shared by StorCls and minidrivers
typedef struct _CLASS_MINIDRIVER_CONFIG_PARAMS {

ULONG ClassDriverVersion;

// highest version supported by StorCls

GUID WrapperInterfaceGuid;

ULONG MaxOverlappedRequests;

// set to 1 to serialize requests

ULONG TestUnitReadyFrequency;

// TUR frequency in millisec (or zero for none)

GUID DeviceInterfaceGuid;

// optional guid for device interface “shingle”

// TBD: caching info; hot-unplug info, other

} CLASS_MINIDRIVER_CONFIG_PARAMS, *PCLASS_MINIDRIVER_CONFIG_PARAMS;

typedef struct _CLASS_MINIDRIVER_INTERFACE {

ULONG MinidriverVersion;
// highest version supported by minidriver

GUID MinidriverInterfaceGuid;

NTSTATUS (* ClassStartDevice)(

IN PDEVICE_OBJECT TargetDevice,

IN OUT PCLASS_MINIDRIVER_CONFIG_PARAMS ConfigParams,

IN PVOID ClassDeviceContext ,

OUT PVOID *MinidriverDeviceContext

);

VOID (* ClassStopDevice)(IN PVOID MinidriverDeviceContext);

VOID (*ClassPauseDevice)(IN PVOID MinidriverDeviceContext);

VOID (*ClassResumeDevice)(IN PVOID MinidriverDeviceContext);

NTSTATUS (*ClassRequestPrepass)(

IN PVOID MinidriverDeviceContext,

IN PIRP Irp,

IN PVOID ClassRequestContext,

OUT PVOID *MinidriverRequestContext

);

VOID (*ClassRequestPostpass)(

IN PVOID MinidriverDeviceContext,

IN PIRP Irp,

IN PVOID MinidriverRequestContext

);

} CLASS_MINIDRIVER_INTERFACE, *PCLASS_MINIDRIVER_INTERFACE;

typedef enum _STORCLS_STATUS {

STORCLS_STATUS_NONE = 0,

STORCLS_STATUS_COMPLETE,
// minidriver has handled the request

STORCLS_STATUS_MODIFIED,

// minidriver has modified the request; StorCls handles

STORCLS_STATUS_NOT_HANDLED,
// StorCls will handle the request

STORCLS_STATUS_PENDING,

// request is pending
} STORCLS_STATUS;

Storage Class Driver Model (Full)
· Based on boilerplate code plus samples
· Boilerplate is starting point for all

· Samples are working drivers derived from boilerplate

· Developers must compile WDM, but usually avoid writing much WDM

Lower Filter Drivers

· No change

Backward Compatibility

· Keep ClassPnP in the build as legacy for third party class drivers
· Reimplement cdrom,4mmdat,sfloppy,scsiprnt as StorCls minidrivers

· much of disk.sys will be within StorCls; rest as minidriver

· Remove current classpnp,disk,cdrom,etc from the DDK samples

5/16/2001
Microsoft Confidential
6

