Microsoft

Base Video Group
Watchdog

Specification

Version 1.04
April 26, 2001
Revision History

	Revision
	Description of Changes
	Date
	Authors

	
	
	
	

	1.04
	Added watchdogType to enable monitoring of Kernel, User, or Both time.
	4/26/01
	Mike Maciesowicz

	1.03
	Comments on WdStartWatch and WdEnterMonitoredSection updated.
	7/25/00
	Mike Maciesowicz

	1.02
	Only Allocate with Tag exported.

More details on DPC handling.

More details on suspend handling.
	7/24/00
	Mike Maciesowicz

	1.01
	Added Allocate / Free of watchdog objects.

Dropped Initialize (embedded in Allocate).

Dropped thread argument from Start / Enter (current thread always assumed).
	7/23/00
	Mike Maciesowicz

	1.00
	Initial revision.
	7/21/00
	Mike Maciesowicz

Part 1

Introduction

We had a need to monitor third party display drivers, which sometimes have a tendency of getting stuck spinning in tight loops waiting for the hardware to become idle. If for any reason (hardware bug or hardware programmed incorrectly by the driver) video chip stays in "busy" condition for ever then to the end users it looks like NT itself hangs - they have no clue this is the third party video display driver spinning, and of course, they blame it on NT.

We wanted to trap this condition and blue screen the machine indicating that this is a third party display driver causing a system failure, asking user to get updated drivers from video IHV.

We created a stand alone DLL which exports watchdog services, we instrumented GDI to monitor the time spent by the thread inside display driver, and we blue screen the machine if this time exceeds 15 seconds (timeout is measured on per-thread bases).

We are exporting two sets of watchdog services: watchdog services, which require less initial setup, are well suited for monitoring sections of the code which are called relatively infrequently; deferred watchdog services are very suitable for sections of code called extremely frequently – they require a bit of initial setup, but they are very fast (in case of GDI a performance hit on business graphics benchmark is not measurable - it is within error margin of the test).

Watchdog services can be used by kernel components to monitor any potentially spinning code running at IRQL < DISPATCH_LEVEL.

Part 2

Watchdog Files Location

Header file watchdog.h: %sdxroot%\public\internal\drivers\inc

Library files watchdog.lib: %sdxroot%\public\internal\drivers\lib*

Watchdog source code: %sdxroot%\drivers\watchdog

Sample usage of deferred watchdog: %sdxroot%\windows\core\ntgdi\gre

Part 3

Watchdog Services Interface

Two sets of watchdog services are implemented: watchdog services and deferred watchdog services.

3.1 Watchdog Services Interface

Watchdog services are well suited for monitoring sections of the code, which are called relatively infrequently. They require less initial setup but they are relatively slow.

Summary of watchdog services:

WdAllocateWatchdog
WdFreeWatchdog
WdResetWatch

WdResumeWatch

WdStartWatch

WdStopWatch

WdSuspendWatch

WdAllocateWatchdog
PWATCHDOG

WdAllocateWatchdog(

IN WATCHDOG_TYPE watchdogType,
IN ULONG Tag
);
WdAllocateWatchdog allocates and initializes a watchdog object.

Parameters
watchdogType

Specifies a type time to be monitored by the watchdog. Valid values are: KernelWatchdog, UserWatchdog, and FullWatchdog.

Tag

Specifies a string, delimited by single quote marks, with up to four characters. The string is usually specified in reversed order. The tag string identifies allocated pool owner.

Return Value

Pointer to allocated and initialized watchdog object. NULL if the watchdog object cannot be allocated.

Include

watchdog.h

Comments

Watchdog objects should be created on per-thread bases, since they measure timeouts in per-thread time. Swapping threads in nested call to WdStartWatch for the same watchdog object will cause checked version of watchdog.sys to assert.

Callers of WdAllocateWatchdog must be running at IRQL = PASSIVE_LEVEL.

WdFreeWatchdog
VOID

WdFreeWatchdog(

 IN PWATCHDOG pWatch
);

WdFreeWatchdog frees a block of memory allocated for watchdog object with WdAllocateWatchdog.
Parameters
pWatch

Pointer to a watchdog object that was allocated with WdAllocateWatchdog.

Include

watchdog.h

Comments

Callers of WdFreeWatchdog must be running at IRQL <= DISPATCH_LEVEL.

WdResetWatch
VOID

WdResetWatch(

 IN PWATCHDOG pWatch
);

WdResetWatch resets a started watchdog, i.e. it restarts remaining time to expire to the initial value.

Parameters
pWatch

Pointer to a watchdog object that was allocated with WdAllocateWatchdog.

Include

watchdog.h

Comments

Callers of WdResetWatch must be running at IRQL <= DISPATCH_LEVEL.

WdResumeWatch
VOID

WdResumeWatch(

 IN PWATCHDOG pWatch,
 IN BOOLEAN bIncremental
);

WdResumeWatch resumes previously suspended watchdog. If the watchdog is not currently suspended, then no operation is performed.
Parameters
pWatch

Pointer to a watchdog object that was allocated with WdAllocateWatchdog.

bIncremental

If TRUE the watchdog will be resumed only when WdResumeWatch is called the same number of times that WdSuspendWatch was called for given watchdog object. If FALSE watchdog is resumed immediately and its suspend counter is forced to 0.

Include

watchdog.h

Comments

Watchdog remains suspended until it is explicitly resumed with a call to WdResumeWatch. Calls to WdStartWatch, WdStopWatch, WdResetWatch have no effect on suspended status.

A checked version of watchdog.sys will send a warning message to a kernel debugger if WdStartWatch, or WdStopWatch is executed for a suspended watchdog object.

Nested calls to WdResumeWatch are allowed.

Callers of WdResumeWatch must be running at IRQL <= DISPATCH_LEVEL.

WdStartWatch
VOID

WdStartWatch(

 IN PWATCHDOG pWatch,
 IN LARGE_INTEGER liDueTime,

 IN PKDPC pDpc
);

WdStartWatch sets a watchdog to expire at a specified time. If the watchdog expires before it is cancelled with WdStopWatch the DPC object pointed by pDpc will be inserted into a DPC queue.
Parameters
pWatch

Pointer to a watchdog object that was allocated with WdAllocateWatchdog.

liDueTime

Specifies a relative time at which the watchdog is to expire. The expiration time is expressed in system time units (100-nanosecond intervals).
pDpc

Pointer to a DPC object that was initialized by KeInitializeDpc. If the watchdog expires before it is cancelled with WdStopWatch the DPC object pointed by pDpc will be inserted into a DPC queue.

Include

watchdog.h

Comments

Nested calls to WdStartWatch are allowed.

Timeout indicated by liDueTime is measured on per-thread bases for the current thread.

Watchdog objects should be created on per-thread bases, since they measure timeouts in per-thread time. Swapping threads in nested call to WdStartWatch for the same watchdog object will cause checked version of watchdog.sys to assert.

Only one instance of given DPC object can exist in a DPC queue at the time, thus it may be required to use multiple DPC objects for multiple watchdog objects and / or nested calls to WdStartWatch.
WdStopWatch will de-queue a client DPC object if it has been already inserted into a DPC queue but it has not been delivered yet (the last call in case of nesting).

Swapping DPC objects for a given watchdog object is not allowed without stopping the watch. The checked version of watchdog.sys will assert in case of nested call to WdStartWatch with a pointer to a different client DPC object than the one used in previous call for the same watchdog object. If there is a need to use different DPC objects with nested calls to WdStartWatch then multiple watchdog objects must be used.

Callers of WdStartWatch must be running at IRQL <= DISPATCH_LEVEL.

WdStopWatch
VOID

WdStopWatch(

 IN PWATCHDOG pWatch,
 IN BOOLEAN bIncremental
);

WdStopWatch cancels a watchdog that was previously set to expire at a specified time. If the watchdog is not currently started, then no operation is performed.
Parameters
pWatch

Pointer to a watchdog object that was allocated with WdAllocateWatchdog.

bIncremental

If TRUE the watchdog will be cancelled only when WdStopWatch is called the same number of times that WdStartWatch was called for given watchdog object. If FALSE watchdog is cancelled immediately and its start counter is forced to 0.

Include

watchdog.h

Comments

If a client DPC object has been inserted into a DPC queue and has not been delivered yet then WdStopWatch will remove it (the last call in case of nesting).
Nested calls to WdStopWatch are allowed.

Callers of WdStopWatch must be running at IRQL <= DISPATCH_LEVEL.

WdSuspendWatch
VOID

WdSuspendWatch(

 IN PWATCHDOG pWatch
);

WdSuspendWatch suspends a watchdog.

Parameters
pWatch

Pointer to a watchdog object that was allocated with WdAllocateWatchdog.

Include

watchdog.h

Comments

Watchdog remains suspended until it is explicitly resumed with a call to WdResumeWatch. Calls to WdStartWatch, WdStopWatch, WdResetWatch have no effect on suspended status.

A checked version of watchdog.sys will send a warning message to a kernel debugger if WdStartWatch, or WdStopWatch is executed for a suspended watchdog object.

Nested calls to WdSuspendWatch are allowed.

Callers of WdSuspendWatch must be running at IRQL <= DISPATCH_LEVEL.

3.2 Deferred Watchdog Services Interface

Deferred watchdog services are very suitable for sections of code called extremely frequently. They require a bit more of initial setup, but they are very fast.

Summary of deferred watchdog services:

WdAllocateDeferredWatchdog
WdEnterMonitoredSection
WdExitMonitoredSection

WdFreeDeferredWatchdog
WdResetDeferredWatch

WdResumeDeferredWatch

WdStartDeferredWatch

WdStopDeferredWatch

WdSuspendDeferredWatch

WdAllocateDeferredWatchdog
PDEFERRED_WATCHDOG

WdAllocateDeferredWatchdog(

IN WATCHDOG_TYPE watchdogType,
IN ULONG Tag
);
WdAllocateDeferredWatchdog allocates and initializes a deferred watchdog object.

Parameters
watchdogType

Specifies a type time to be monitored by the watchdog. Valid values are: KernelWatchdog, UserWatchdog, and FullWatchdog.

Tag

Specifies a string, delimited by single quote marks, with up to four characters. The string is usually specified in reversed order. The tag string identifies allocated pool owner.

Return Value

Pointer to allocated and initialized deferred watchdog object. NULL if the deferred watchdog object cannot be allocated.

Include

watchdog.h

Comments

Deferred watchdog objects should be created on per-thread bases, since they measure timeouts in per-thread time. Swapping threads in nested call to WdEnterMonitoredSection for the same deferred watchdog object will cause checked version of watchdog.sys to assert.

Callers of WdAllocateDeferredWatchdog must be running at IRQL = PASSIVE_LEVEL.

WdEnterMonitoredSection
VOID

WdEnterMonitoredSection(

 IN PDEFERRED_WATCHDOG pWatch
);

WdEnterMonitoredSection starts monitoring of the code section for a timeout condition. If the deferred watchdog expires before it is cancelled with WdExitMonitoredSection a DPC object specified by most recent call to WdStartDeferredWatch for given deferred watchdog object will be inserted into a DPC queue.
Parameters
pWatch

Pointer to a deferred watchdog object that was allocated with WdAllocateDeferredWatchdog and started with WdStartDeferredWatch.

Include

watchdog.h

Comments

Nested calls to WdEnterMonitoredSection are allowed.

Timeout is measured on per-thread bases for the current thread.

Deferred watchdog objects should be created on per-thread bases, since they measure timeouts in per-thread time. Swapping threads in nested call to WdEnterMonitoredSection for the same deferred watchdog object will cause checked version of watchdog.sys to assert.

Callers of WdEnterMonitoredSection must be running at IRQL <= DISPATCH_LEVEL.

WdExitMonitoredSection
VOID

WdExitMonitoredSection(

 IN PDEFERRED_WATCHDOG pWatch
);

WdExitMonitoredSection stops monitoring of the code section for a timeout condition.

Parameters
pWatch

Pointer to a deferred watchdog object that was allocated with WdAllocateDeferredWatchdog and started with WdStartDeferredWatch.

Include

watchdog.h

Comments

Nested calls to WdExitMonitoredSection are allowed.

Callers of WdExitMonitoredSection must be running at IRQL <= DISPATCH_LEVEL.

WdFreeDeferredWatchdog
VOID

WdFreeDeferredWatchdog(

 IN PDEFERRED_WATCHDOG pWatch
);

WdFreeDeferredWatchdog frees a block of memory allocated for deferred watchdog object with WdAllocateDeferredWatchdog.
Parameters
pWatch

Pointer to a deferred watchdog object that was allocated with WdAllocateDeferredWatchdog.

Include

watchdog.h

Comments

Callers of WdFreeDeferredWatchdog must be running at IRQL <= DISPATCH_LEVEL.

WdResetDeferredWatch
VOID

WdResetDeferredWatch(

 IN PDEFERRED_WATCHDOG pWatch
);

WdResetDeferredWatch resets a started deferred watchdog, i.e. it restarts remaining time to expire to the initial value in case when the code executes in the monitored section.

Parameters
pWatch

Pointer to a deferred watchdog object that was allocated with WdAllocateDeferredWatchdog and started with WdStartDeferredWatch.

Include

watchdog.h

Comments

Callers of WdResetDeferredWatch must be running at IRQL <= DISPATCH_LEVEL.

WdResumeDeferredWatch
VOID

WdResumeDeferredWatch(

 IN PDEFERRED_WATCHDOG pWatch,
 IN BOOLEAN bIncremental
);

WdResumeDeferredWatch resumes previously suspended deferred watchdog. If the deferred watchdog is not currently suspended, then no operation is performed.
Parameters
pWatch

Pointer to a deferred watchdog object that was allocated with WdAllocateDeferredWatchdog and started with WdStartDeferredWatch.

bIncremental

If TRUE the deferred watchdog monitoring will be resumed only when WdResumeDeferredWatch is called the same number of times that WdSuspendDeferredWatch was called for given watchdog object. If FALSE deferred watchdog monitoring is resumed immediately and its suspend counter is forced to 0.

Include

watchdog.h

Comments

Deferred watchdog remains suspended until it is explicitly resumed with a call to WdResumeDeferredWatch. Calls to WdStartDeferredWatch, WdStopDeferredWatch, WdResetDeferredWatch, WdEnterMonitoredSection, WdExitMonitoredSection have no effect on suspended status.

A checked version of watchdog.sys will send a warning message to a kernel debugger if WdStartDeferredWatch, WdStopDeferredWatch, WdEnterMonitoredSection, or WdExitMonitoredSection is executed for a suspended deferred watchdog object.

Nested calls to WdResumeDeferredWatch are allowed.

Callers of WdResumeDeferredWatch must be running at IRQL <= DISPATCH_LEVEL.

WdStartDeferredWatch
VOID

WdStartDeferredWatch(

 IN PDEFERRED_WATCHDOG pWatch,
 IN PKDPC pDpc,
 IN LONG lPeriod
);

WdStartDeferredWatch starts deferred watchdog polling.

Parameters
pWatch

Pointer to a watchdog object that was allocated with WdAllocateDeferredWatchdog.

pDpc

Pointer to a DPC object that was initialized by KeInitializeDpc. If the deferred watchdog expires in the monitored section before it is cancelled with WdExitMonitoredSection a DPC object pointed by pDpc will be inserted into a DPC queue.
lPeriod

Supplies maximum time in milliseconds that thread can spend in the monitored section. If this time expires before monitoring is cancelled with WdExitMonitoredSection a DPC object pointed by pDpc will be inserted into a DPC queue.
Include

watchdog.h

Comments

Nested calls to WdStartDeferredWatch are allowed.

Only one instance of given DPC object can exist in a DPC queue at the time, thus it may be required to use multiple DPC objects for multiple deferred watchdog objects and / or nested calls to WdStartDeferredWatch or WdEnterMonitoredSection.

WdStopDeferredWatch will de-queue a client DPC object if it has been already inserted into a DPC queue but it has not been delivered yet.

Swapping DPC objects for a given deferred watchdog object is not allowed without stopping the watch. The checked version of watchdog.sys will assert in case of nested call to WdStartDeferredWatch with a pointer to a different client DPC object than the one used in previous call for the same deferred watchdog object. If there is a need to use different DPC objects with nested calls to WdStartDeferredWatch then multiple deferred watchdog objects must be used.

Callers of WdStartDeferredWatch must be running at IRQL <= DISPATCH_LEVEL.

WdStopDeferredWatch
VOID

WdStopDeferredWatch(

 IN PDEFERRED_WATCHDOG pWatch
);

WdStopDeferredWatch stops a deferred watchdog polling. If the deferred watchdog is not currently started, then no operation is performed.
Parameters
pWatch

Pointer to a deferred watchdog object that was allocated with WdAllocateDeferredWatchdog and started with WdStartDeferredWatch.

Include

watchdog.h

Comments

A single call to WdStopDeferredWatch stops deferred watchdog polling, even if multiple WdStartDeferredWatch calls were executed.

If a client DPC object has been inserted into a DPC queue and has not been delivered yet then WdStopDeferredWatch will remove it.

Callers of WdStopDeferredWatch must be running at IRQL <= DISPATCH_LEVEL.

WdSuspendDeferredWatch
VOID

WdSuspendDeferredWatch(

 IN PDEFERRED_WATCHDOG pWatch
);

WdSuspendDeferredWatch suspends a deferred watchdog.

Parameters
pWatch

Pointer to a deferred watchdog object that was allocated with WdAllocateDeferredWatchdog and started with WdStartDeferredWatch.

Include

watchdog.h

Comments

Watchdog remains suspended until it is explicitly resumed with a call to WdResumeDeferredWatch. Calls to WdStartDeferredWatch, WdStopDeferredWatch, WdResetDeferredWatch, WdEnterMonitoredSection, WdExitMonitoredSection have no effect on suspended status.

A checked version of watchdog.sys will send a warning message to a kernel debugger if WdStartDeferredWatch, WdStopDeferredWatch, WdEnterMonitoredSection, or WdExitMonitoredSection is executed for a suspended deferred watchdog object.

Nested calls to WdSuspendDeferredWatch are allowed.

Callers of WdSuspendDeferredWatch must be running at IRQL <= DISPATCH_LEVEL.

