
WDM Streaming 

Miniport Driver Model Specification
Draft version 0.10 – 4/25/97

MICROSOFT CONFIDENTIAL

WARNING:  THIS SPECIFICATION IS FOR REVIEW ONLY, AND MAY CHANGE COMPLETELY. 

The information contained in this document represents the current view of Microsoft Corporation of the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property rights except as expressly provided in any written license agreement from Microsoft Corporation.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you. 

Microsoft, MS-DOS, Visual Basic, Win32, Windows, and Windows NT are registered trademarks and ActiveMovie, ActiveX, DirectDraw, Direct3D, DirectSound, and DirectX are trademarks of Microsoft Corporation in the United States and other countries. 

© 1997 Microsoft Corporation. All rights reserved.

This document is provided under a Non-Disclosure Agreement (NDA). Do not redistribute.

11.
WDM Streaming Audio Miniport Drivers in Context

2.
Driver Classification:  Audio Miniports in Perspective
3
3.
COM in the Kernel
4
4.
Adapter Driver Construction
6
4.1
Startup Sequence
6
4.2
Subdevice Creation
7
5.
The Specific Miniport Interfaces
8
6.
Helper Objects
9
7.
Generic Interfaces
10
7.1
Miniport Generic Interfaces
10
7.2
Port Generic Interface
13
8.
Cyclic DMA Wave Input and Output
15
8.1
Miniport Interfaces
15
8.2
Port Driver Lower-Edge Interface
21
9.
PCI Scatter/Gather Wave Input and Output
26
9.1
Miniport Interfaces
26
9.2
Port Driver Lower-Edge Interface
32
10.
Static Wave Table Output
38
11.
Topology
39
11.1
Miniport Interface
40
11.2
Port Driver Lower-Edge Interface
47
12.
MIDI Input and Output
48
12.1
Miniport Interface
48
12.2
Port Driver Lower-Edge Interface
52



1. WDM Streaming Audio Miniport Drivers in Context

This specification defines how audio hardware drivers for WDM Streaming systems are to be constructed.  WDM, the Windows Driver Model, is a robust model for driver implementation that will be supported by both Windows and Windows NT operating systems.  WDM Streaming is a media streaming architecture based on WDM.  This document concerns WDM Streaming drivers that communicate directly with audio adapter hardware.

In an effort to broaden the applicability of the model presented in this document, steps have been taken to insure that drivers written to meet this specification can potentially be used in the absence of WDM Streaming.  In spite of this, the specification retains its WDM Streaming orientation.

WDM Streaming presents drivers as filters through which media streams pass.  Filters have pins which can be connected together to form systems of filters.  Input pins consume media streams and output pins produce media streams.  In keeping with this model, audio adapters are manifested as filters.  Input pins on these filters consume audio streams and route them to the audio hardware.  Output pins on these filters produce audio streams from data produced by the hardware.

In order to make audio hardware drivers easier to write, the audio driver model isolates hardware interface issues from WDM Streaming filter implementation issues.  It accomplishes this by organizing the driver code into components that address these issues separately and by precisely defining the interfaces between these components.  All the components are referred to as ‘drivers’, although not all are recognized as such by the operating system:

· Miniport Driver  A miniport driver implements a function-specific interface for a specific function on a specific adapter (audio card).  For example, a particular miniport might implement a MIDI streaming interface for an FM synthesizer on a particular audio adapter.  Miniport drivers are actually part of an adapter driver, and are not recognized as drivers by the operating system.
· Adapter Driver  An adapter driver is essentially a container for all the miniports drivers associated with a given adapter.  It is recognized as a driver by the operating system, and is contained in its own .SYS file.  Adapter drivers consist of a set of miniport drivers and some additional code that addresses initialization issues.
· Port Driver  A port driver implements a WDM Streaming filter on behalf of a miniport.  It is responsible for the adapter-independent code that allows a miniport’s function-specific interface to be exposed to the system as a WDM Streaming filter.  Port drivers operate in the context of the port class driver.
· Port Class Driver  The port class driver is essentially a container for a set of port drivers.  At the request of the adapter driver, it binds together port drivers, miniport drivers and hardware resources to form complete subdevices.  It coordinates the operation of these subdevices to form a complete device corresponding to the audio adapter hardware.  It also provides a set of helper functions to adapter drivers and miniport drivers.  Although it exists as a .SYS file, it is not loaded like a driver.  Instead, it is loaded by the system because the adapter driver imports functions that the port class driver exports.
Audio miniport drivers control physical audio devices, providing a hardware-specific implementation of function-specific interfaces.  Each audio miniport driver interface specified in this document addresses a particular type of function on an audio adapter.  Typically, any given adapter will support multiple functions.  The adapter driver for a particular audio adapter will therefore expose multiple miniport interfaces.  In many cases, a given driver will expose more than one instance of a particular interface.

The following figure illustrates the relationships between these components:


[image: image1.wmf]Port Class

Driver

Adapter Driver

Port Driver

Port Driver

Port Driver

Miniport

Miniport

Miniport

WDM

Streaming

Clients

Adapter

Hardware


This layered approach allows for the support of physical devices with a minimum of software development effort.  A hardware manufacturer that wants WDM Streaming support for a sound card goes through the following steps for each function the card supports:

1. Determine if the function is hardware-compatible with hardware for which a miniport driver already exists.  If so, use the existing miniport driver to support the function.  If no such compatible hardware is found…

2. Determine if the function is sufficiently similar to functions supported by existing port drivers.  If so, write a miniport driver to support that function, complying with the miniport interface specification associated with the identified port driver.  If no such port driver is found…

3. Write a minidriver to support the function, complying with the interface specifications for the streaming class driver.

The focus of this document is on miniport driver interfaces and the development of adapter drivers.  This document does not address in detail the manner in which audio adapter functionality will be exposed in the form of WDM Streaming filters and pins.

This document includes drivers for all audio hardware whose registers are directly accessible to the system processor.  This includes all ISA/DMA, PCMCIA and PCI adapters.  Specifically excluded from the scope of this document are devices on external busses such as SCSI, USB and 1394.  In addition, this specification is not intended to address software emulation of audio devices.  Emulation should be accomplished at the WDM Streaming filter level.

2. Driver Classification:  Audio Miniports in Perspective

In some ways, the configuration of audio driver components described above is peculiar when viewed in the context of ‘classic’ NT drivers.  Terms such as ‘miniport’, ‘port’ and ‘class’ have been borrowed from the NT driver nomenclature without necessarily being faithful to the models they represent.

There are five ‘classic’ terms of interest here:

· Miniport Driver  Traditionally, a miniport driver is a hardware-specific driver for an adapter that resides on a system bus (e. g, PCI or ISA).  A miniport has a single entry point, namely DriverEntry, and registers a table of functions with a port driver.  This table of functions serves as the upper-edge interface of the miniport.  A miniport is completely surrounded by a port driver in the sense that all calls to the miniport are made from the port driver and all calls out of the minidriver are to the port driver lower-edge interface.  Because of this, miniports a platform independent.

· Port Driver  A port driver surrounds a miniport, handling all system interface issues.  It handles requests from the system which is recasts as calls into the miniport’s function table.  It provides a library of support functions (the port’s lower-edge interface) to the miniport.

· Minidriver  A minidriver represents a piece of hardware on a bus.  It binds together the bus driver and one or more class drivers.  It uses the bus driver to communicate to the physical device over the bus, and the class drivers help the minidriver present the physical device to clients as a type of logical device.  In the NT and WDM environments, a minidriver typically receives requests in IRP form from class drivers and sends requests in IRP form to a bus driver.  An example of a minidriver that might bind to multiple class drivers is a minidriver for a CD-ROM drive on a 1394 bus.  The minidriver might bind to a file system class driver so the drive can be accessed as a file system and a Redbook audio class driver so that audio can be streamed from CDs.

· Bus Driver  A bus driver provides minidrivers with access to a physical bus.  The NT HAL is sometimes referred to as the ‘system bus driver’, meaning that it provides minidrivers with access to the system bus.

· Class Driver  A class driver implements behavior expected of a class of devices.  This eliminates the need for the duplication of functionality in hardware-specific drivers.  Class drivers are not bus-specific in any way, and so are not aware of resource issues (such as DMA and interrupts).

The audio miniports described here are similar to classic miniports with some exceptions.  Because multiple miniports addressing multiple functions can all be linked into a single adapter driver (and associated with a single device object), they do not implement DriverEntry and are not registered in the traditional miniport fashion.  Miniports do not rely entirely on their respective port drivers for support.  The port class driver provides some function-generic support on its lower edge.  Also, audio miniport developers that are willing to be WDM-dependent are free to call WDM functions.

The port drivers that support audio miniports fit the classic model fairly well except that they share the device object and are consequently instantiated somewhat differently.  Port drivers also have some characteristics of class drivers in that they implement behavior expected of a class of devices.  Unlike class drivers, they are not bus-independent.

The port class driver does not fit the class driver model particularly well.  Its job is to allow multiple port/miniport bindings to share a single device object.  The port class driver is also provides helper functionality to port and miniport drivers.

3. COM in the Kernel

Miniport upper edge interfaces consist of function tables.  In traditional miniports, the function table is supplied to the port driver during registration.  Also during registration, the miniport tells the port driver the size of the context structure the miniport will required.  The port driver copies the function table to some private location, allocates the context structure and calls an initialization function in the function table, passing a pointer to the context structure.

Audio miniports use a similar approach with the added formalism of COM.  A function table is still used, but it is statically allocated and does not need to be copied by the port driver.  The port driver is also relieved of its context allocation responsibilities.  The miniport code provides a creation function, which allocates the context (‘object’) memory from a specified pool and installs a pointer to the function table into the context.  Because the function table pointer is always the first field in the context, the port driver needs only a context pointer and can access the function table through the context.

This approach was taken because COM supplies a solid, efficient, widely-understood formalism for creating abstracted objects.  The audio miniport model leverages industry experience with COM and the body of COM literature.  In addition, COM enhances code safety by isolating unsafe casts to a few functions.  Objects can be implemented and used in C or C++.  Assembly can also be used, but this hampers portability.

In user mode, COM objects are created using the function CoCreateInstance() or a similar function.  The use of such a function implies that the memory required for the object is allocated in a way that is unknown to the client.  In kernel mode, it is desirable to tightly control the allocation of memory.  Because of this, a different method of object creation is used.

The aspects of COM that are used in the audio driver model are the concept of the interface and the definition of the IUnknown interface.  Although there is a mechanism analogous to an in-process server, driver developers don’t need to deal with building such servers or accessing the registry.  Miniports are also officially excused from supporting aggregation, although the sample code demonstrates an easy way to support this.

By convention, the create function for a particular class of objects always takes the same form:

NTSTATUS

CreateMyObject

(

    OUT PUNKNOWN *  Unknown,

    IN  REFGUID     ClassId,

    IN  PUNKNOWN    OuterUnknown  OPTIONAL,

    IN  POOL_TYPE   PoolType

);

The first three parameters are identical to the parameters of COM’s CoCreateInstance().  A pointer to an IUnknown interface for the object is passed back through Unknown, the class GUID is passed as ClassId (only used if the create function creates objects of multiple classes), and OuterUnknown supplies the unknown interface for the object aggregating the new object (this is generally NULL).  The last parameter specifies the type of pool from which the object is to be allocated.

Another convention is to supply a New function for a class, which creates an object, initializes it, and passes back a pointer to the interface that the caller is likely to want.  Because the initialization parameters are class-specific, so is the prototype of the New function.

NTSTATUS

NewMyObject

(

    OUT PMYINTERFACE *  FavoredInterfacePointer,

    IN  PUNKNOWN        OuterUnknown    OPTIONAL,

    IN  POOL_TYPE       PoolType,

//  more parameters

);

Such functions provide an easy way to instantiate (create and initialize) an object.

The sample code eases COM object implementation by providing a class that supports reference counting and aggregation.  The author of an object provides the function required to obtain interfaces on the object.  The helper class (CUnknown) is written in C++.  Objects implemented in C cannot use the helper class.

4. Adapter Driver Construction

Driver support for a particular audio adapter takes the form of an adapter driver.  An adapter driver consists of some function-generic code (primarily for initialization) and a set of miniports that address specific functions on the adapter.  The hardware vendor supplies the function-generic code and those miniports that are not supplied by the system.

4.1 Startup Sequence

Because the adapter driver is installed as a kernel mode driver service, the operating system loads the adapter driver and calls its DriverEntry routine.  The DriverEntry routine receives two parameters, both pointers, which it must not use directly.  DriverEntry calls the class driver function InitializeAdapterDriver passing the DriverEntry parameters and a pointer to the adapter driver’s add device function (MyAddDevice in this example).

NTSTATUS 

DriverEntry

(

    IN PVOID Context1,

    IN PVOID Context2

)

{

    return InitializeAdapterDriver(Context1,Context2,MyAddDevice);

}

InitializeAdaptorDriver installs the supplied add device function in the driver object’s driver extension, installs the class driver’s IRP handlers in the driver object itself, and returns control to DriverEntry.  DriverEntry returns control to the operating system.

In the process of enumerating the system busses, the operating system, encounters the adapter device, which is associated with the driver object.  It finds the pointer to MyAddDevice in the driver object’s driver extension and calls the function.  Two parameters are supplied, both pointers, which MyAddDevice must not use directly.  MyAddDevice calls the class driver function AddAdapterDevice passing the pointers it received and a pointer to the adapter driver’s start device function (MyStartDevice in this example).

NTSTATUS 

MyAddDevice

(

    IN PVOID Context1,

    IN PVOID Context2

)

{

    return AddAdapterDevice(Context1,Context2,MyStartDevice);

}

AddAdapterDevice creates a functional device object and associates it with the physical device object supplied by the system.  The new functional device object is created with an extension that the class driver uses to store the start device function pointer supplied by MyAddDevice. AddAdapterDevice then returns control to MyAddDevice, which returns control to the operating system.

The operating system determines what resources (interrupts, DMA channels and port addresses) will be assigned to the device and requests that the device be started.  The request handler in the class driver calls the adapter driver’s start device function, MyStartDevice.  It supplies MyStartDevice with the resource list and two void pointers that that establish context for calls back into the class driver.

MyStartDevice separates the resource list into the resources required for each miniport that must be started.  It then starts each miniport and returns control to the class driver, which completes the IRP and returns control to the operating system.

4.2 Subdevice Creation

The term ‘subdevice’ is used to describe the binding of four things: a miniport, a port, a list of resources and a reference string.  The miniport and port are objects that expose the miniport interface and port interface respectively.  The list of resources is a list of those resources that the adapter driver has attributed to the subdevice.  The reference string is a name that is added to the device path name to specify a subdevice during filter creation.  

The port class driver is not aware of the distinction between the port driver and the miniport driver.  It wants an object with an interface that will handle the requests generated by the system.  The port driver is such an object.  The port class driver is also unconcerned about resources, wanting only to bind the request handler (the port driver) to a reference string.  It is up to the adapter driver to bind the port, miniport and resources together and then call the port class driver to bind the port driver to the reference string.

The following code shows how this might be done:

    // Instantiate the port using a function supplied by port class.

    PPORT port = NewPort(PortClassId);

    if (port)

    {

        // Create the miniport using its create function.

        PUNKNOWN miniport;

        ntStatus =

            CreateMyMiniport

            (

                &miniport,

                GUID_NULL,    // Class GUID not used.

                NULL,         // No outer unknown.

                NonPagedPool

            );

        if (NT_SUCCESS(ntStatus))

        {

            // Bind the port, miniport and resources.

            ntStatus =

                port->Init(Context1,miniport,ResourceList);

            miniport->Release();

            if (NT_SUCCESS(ntStatus))

            {

                // Hand the port driver and the reference string to the port class.

                ntStatus =

                    RegisterSubdevice

                    (

                        Context1,

                        Context2,

                        Name,

                        port

                    );

            }

        }

        port->Release();

    }

5. The Specific Miniport Interfaces

This document defines the following miniport driver interfaces:

· Cyclic DMA wave input and output.  This class of miniport drivers supports access to DMA-based wave I/O functions of ISA and other audio cards.  The interface addresses cyclic (autoinit) DMA buffers specifically, leaving streaming issues to be solved by the port driver.

· Scatter/gather wave input and output.  This class of miniport drivers supports access to wave audio functions such as the wave I/O function of a PCI audio card.  In this model, lists of wave audio buffers are logically appended to create a stream of wave audio.

· Static wave table output.  This class of miniport drivers supports access to wave table synthesizer voices such as the ones supplied by the Creative Labs SoundBlaster AWE32 adapter.  The interface allows for the transfer of static wave data to the adapter and for the manipulation of the voice parameters.

· Topology.  This class of miniport drivers supports access to the various controls (volume, equalization, hardware reverb) that audio adapters typically offer.  The interface concerns itself with the enumeration of components (known as nodes) in the topology, the discovery of their interconnections and the reading and writing of control parameters.

· MIDI input and output.  This class of miniport drivers supports access to MIDI-based functions like FM synthesizers and UART-based hardware MIDI interfaces.  Timing is handled by the port driver or some other component higher in the driver stack, allowing the miniport to concentrate on the immediate implementation or delivery of MIDI messages.  MIDI devices, such as MPU-401 coprocessors, which handle their own timing require a specialized port driver are not within the scope of this interface.

6. Helper Objects

Helper Interface

Interface
IDmaChannel


Inheritance
IUnknown


Description
This interface provides an abstraction of DMA channels and associated information.


Functions
NTSTATUS AllocateBuffer()

((? ULONG BufferSize
((? PPHYSICAL_ADDRESS PhysicalAddressConstraint




void FreeBuffer()





NTSTATUS Start()

((? ULONG MapSize,

((? BOOLEAN WriteToDevice





NTSTATUS Stop()





ULONG ReadCounter()





NTSTATUS MapPhysicalToUserSpace()





void UnmapUserSpace()





ULONG TransferCount()





ULONG MaximumBufferSize()





ULONG AllocatedBufferSize()





ULONG BufferSize()





void SetBufferSize()

((? ULONG   BufferSize





PVOID SystemAddress()





PHYSICAL_ADDRESS PhysicalAddress()





PVOID UserAddress()





PADAPTER_OBJECT GetAdapterObject()




IDmaChannel

Function
AllocateBuffer()
( Passive

( DPC

( IRQ

Description
This function allocates a buffer associated with the DMA object.


Parameters
ULONG BufferSize

The size in bytes of the buffer to be allocated.
( In

( Out

( Optional


PPHYSICAL_ADDRESS PhysicalAddressConstraint

An optional constraint to be placed on the physical address of the buffer.  If supplied, only the bits that are set in the constraint address may vary from the beginning to the end of the buffer.  For example, if the desired buffer may not cross a 64k boundary, the physical address constraint 0x000000000000ffff should be specified.
( In

( Out

( Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IDmaChannel

Function
FreeBuffer()
( Passive

( DPC

( IRQ

Description
This function frees the buffer allocated by AllocateBuffer().  Because the buffer is automatically freed when the DMA object is deleted, this function is not normally used.


Parameters
None.


Return
None.


IDmaChannel

Function
Start()
( Passive

( DPC

( IRQ

Description
This function starts a slave DMA object.


Parameters
ULONG MapSize

The number of bytes of the allocated buffer to be mapped.
( In

( Out

( Optional


BOOLEAN WriteToDevice

TRUE if data is to be moved from the buffer to the device, FALSE if it is to be moved from the device to the buffer.
( In

( Out

( Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IDmaChannel

Function
Stop()
( Passive

( DPC

( IRQ

Description
This function stops a slave DMA object.


Parameters
None.


Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IDmaChannel

Function
ReadCounter()
( Passive

( DPC

( IRQ

Description
This function reads the counter of a slave DMA object.


Parameters
None.


Return
ULONG

The DMA object’s counter value.  When the object is started, this value is set to the map size.  The value decrements until it reaches zero, at which time it is reset to the map size.  This process repeats until the object is stopped.


IDmaChannel

Function
MapPhysicalToUserSpace()
( Passive

( DPC

( IRQ

Description
This function maps the DMA object’s buffer into user space.


Parameters
None.


Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IDmaChannel

Function
UnmapUserSpace()
( Passive

( DPC

( IRQ

Description
This function unmaps the DMA object’s buffer from user space.


Parameters
None.


Return
None.


IDmaChannel

Function
TransferCount()
( Passive

( DPC

( IRQ

Description
This function returns the size in bytes of the buffer currently being transferred by a slave DMA object.


Parameters
None.


Return
ULONG

The size in bytes of the buffer currently being transferred.


IDmaChannel

Function
MaximumBufferSize()
( Passive

( DPC

( IRQ

Description
This function returns the size in bytes of the largest buffer this DMA object is configured to support.


Parameters
None.


Return
ULONG

The size in bytes of the largest buffer this DMA object is configured to support.


IDmaChannel

Function
AllocatedBufferSize()
( Passive

( DPC

( IRQ

Description
This function returns the size of the allocated buffer.


Parameters
None.


Return
ULONG

The size of the allocated buffer.


IDmaChannel

Function
BufferSize()
( Passive

( DPC

( IRQ

Description
This function returns the size set by SetBufferSize() or the allocated buffer size if the buffer size has not been set. The DMA object does not actually use this value internally.  This value is maintained by the object to allow its various clients to communicate the intended size of the buffer.  This call is often used to obtain the map size parameter to the Start() member function.


Parameters
None.


Return
ULONG

The size set by SetBufferSize() or the allocated buffer size if the buffer size has not been set.


IDmaChannel

Function
SetBufferSize()
( Passive

( DPC

( IRQ

Description
This function sets the current buffer size.  This value is set to the allocated buffer size when AllocateBuffer() is called.  The DMA object does not actually use this value internally.  This value is maintained by the object to allow its various clients to communicate the intended size of the buffer.


Parameters
ULONG BufferSize

The current size in bytes.
( In

( Out

( Optional

Return
None.


IDmaChannel

Function
SystemAddress()
( Passive

( DPC

( IRQ

Description
This function returns the virtual system address of the allocated buffer.


Parameters
None.


Return
PVOID

The virtual system address of the allocated buffer.


IDmaChannel

Function
PhysicalAddress()
( Passive

( DPC

( IRQ

Description
This function returns the physical address of the allocated buffer.


Parameters
None.


Return
PHYSICAL_ADDRESS

The physical address of the allocated buffer.


IDmaChannel

Function
UserAddress()
( Passive

( DPC

( IRQ

Description
This function returns the virtual user address of the allocated buffer.


Parameters
None.


Return
PVOID

The virtual user address of the allocated buffer.


IDmaChannel

Function
GetAdapterObject()
( Passive

( DPC

( IRQ

Description
This function returns the DMA object’s internal adapter object.


Parameters
None.


Return
PADAPTER_OBJECT

The object’s internal adapter object.


Helper Interface

Interface
IResourceList


Inheritance
IUnknown


Description
This interface provides an abstraction of configuration resource lists.


Functions
ULONG NumberOfEntries()





ULONG NumberOfEntriesOfType()

((? CM_RESOURCE_TYPE Type





PCM_PARTIAL_RESOURCE_DESCRIPTOR FindTranslatedEntry()

((? CM_RESOURCE_TYPE Type

((? ULONG Index





PCM_PARTIAL_RESOURCE_DESCRIPTOR FindUntranslatedEntry()

((? CM_RESOURCE_TYPE Type

((? ULONG Index





NTSTATUS AddEntry()

((? PCM_PARTIAL_RESOURCE_DESCRIPTOR Translated

((? PCM_PARTIAL_RESOURCE_DESCRIPTOR Untranslated





NTSTATUS AddEntryFromParent()

((? PRESOURCELIST Parent

((? CM_RESOURCE_TYPE Type

((? ULONG Index





PCM_RESOURCE_LIST TranslatedList()





PCM_RESOURCE_LIST UntranslatedList()




To supplement the functions shown above, a set of macros is provided that makes resource list objects easier to use.  For each type of resource, four macros are defined as shown in the following table.  The singular name of the type is represented by <s>, and the plural name is represented by <p>.


ULONG NumberOf<p>()

 



PCM_PARTIAL_RESOURCE_DESCRIPTOR FindTranslated<s>()

((? ULONG Index





PCM_PARTIAL_RESOURCE_DESCRIPTOR FindUntranslated<s> ()

((? ULONG Index





NTSTATUS Add<s>FromParent()

((? PRESOURCELIST Parent

((? ULONG Index




The following table shows the resource types for which these macros are defined:

Resource Type Name
Singular Form
Plural Form

CmResourceTypePort
Port
Ports

CmResourceTypeInterrupt
Interrupt
Interrupts

CmResourceTypeMemory
Memory
Memories

CmResourceTypeDma
Dma
Dmas

CmResourceTypeDeviceSpecific
DeviceSpecific
DeviceSpecifics

CmResourceTypeBusNumber
BusNumber
BusNumbers

CmResourceTypePrivate
Private
Privates

CmResourceTypeAssignedResource
AssignedResource
AssignedResources

CmResourceTypeSubAllocateFrom
SubAllocateFrom
SubAllocateFroms

IResourceList

Function
NumberOfEntries()
( Passive

( DPC

( IRQ

Description
This function returns the number of resource items in the resource list.


Parameters
None.


Return
ULONG

The number of items in the resource list.


IResourceList

Function
NumberOfEntriesOfType()
( Passive

( DPC

( IRQ

Description
This function returns the number of resource items of a given type in the resource list.  

For each resource type, a macro is defined to call this member function, as described above.


Parameters
CM_RESOURCE_TYPE Type

The type of entries to be counted.
( In

( Out

( Optional

Return
ULONG

The number of items of the indicated type in the resource list.


IResourceList

Function
FindTranslatedEntry()
( Passive

( DPC

( IRQ

Description
This function returns a pointer to a translated entry of the specified type or NULL if no such entry is found.  The Index parameter indicates which occurrence of that type of entry to find.  The first occurrence has an index of 0.

For each resource type, a macro is defined to call this member function, as described above.


Parameters
CM_RESOURCE_TYPE Type

The type of entries to be counted.
( In

( Out

( Optional


ULONG Index

The index of the entry to find.  A value of 0 for this parameter will cause the function to return a pointer to the first occurrence of an entry of the specified type.
( In

( Out

( Optional

Return
PCM_PARTIAL_RESOURCE_DESCRIPTOR

A pointer to the specified entry or NULL if it does not exist.  This pointer is valid until the resource list object is deleted.


IResourceList

Function
FindUntranslatedEntry()
( Passive

( DPC

( IRQ

Description
This function returns a pointer to an untranslated entry of the specified type or NULL if no such entry is found.  The Index parameter indicates which occurrence of that type of entry to find.  The first occurrence has an index of 0.

For each resource type, a macro is defined to call this member function, as described above.


Parameters
CM_RESOURCE_TYPE Type

The type of entries to be counted.
( In

( Out

( Optional


ULONG Index

The index of the entry to find.  A value of 0 for this parameter will cause the function to return a pointer to the first occurrence of an entry of the specified type.
( In

( Out

( Optional

Return
PCM_PARTIAL_RESOURCE_DESCRIPTOR

A pointer to the specified entry or NULL if it does not exist.  This pointer is valid until the resource list object is deleted.


IResourceList

Function
AddEntry()
( Passive

( DPC

( IRQ

Description
This function adds an entry to a resource list.


Parameters
PCM_PARTIAL_RESOURCE_DESCRIPTOR Translated

The translated version of the entry to be added.
( In

( Out

( Optional


PCM_PARTIAL_RESOURCE_DESCRIPTOR Untranslated

The untranslated version of the entry to be added.
( In

( Out

( Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

STATUS_INSUFFICIENT_RESOURCES indicates there are not free entries in the list.


IResourceList

Function
AddEntryFromParent()
( Passive

( DPC

( IRQ

Description
This function adds to a resource list an entry found in the resource list’s parent list.

For each resource type, a macro is defined to call this member function, as described above.


Parameters
PRESOURCELIST Parent

The list from which the entry is to be added.
( In

( Out

( Optional


CM_RESOURCE_TYPE Type

The type of entries to be added.
( In

( Out

( Optional


ULONG Index

The index in the parent list of the entry to add.  A value of 0 for this parameter will cause the function to add the first occurrence of an entry of the specified type.
( In

( Out

( Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

STATUS_INSUFFICIENT_RESOURCES indicates there are not free entries in the list.

STATUS_INVALID_PARAMETER indicates the entry was not found in the parent list.


IResourceList

Function
TranslatedList()
( Passive

( DPC

( IRQ

Description
This function returns the raw list of translated resources.


Parameters
None.


Return
PCM_RESOURCE_LIST

The list of translated resources.  This pointer is valid until the resource list object is deleted.


IResourceList

Function
UntranslatedList()
( Passive

( DPC

( IRQ

Description
This function returns the raw list of untranslated resources.


Parameters
None.


Return
PCM_RESOURCE_LIST

The list of untranslated resources.  This pointer is valid until the resource list object is deleted.


7. Generic Interfaces

By definition, the audio miniport interfaces are specific to the functions they are intended to support.  In order to provide some degree of standardization, a generic interface is defined which, while not constituting a complete miniport interface, serves as a base from which other audio miniport interfaces are derived.  The generic miniport interface is called IMiniport.  IMiniport inherits from IPropertyTarget, which exposes support for properties that can be queried and set.

Port driver interfaces are standardized only in that they share a common initialization interface.  This interface is known as IPort.  All port drivers expose this interface, and all port driver lower-edge interfaces are derived from it.  Miniports do not call a port driver’s initialization function, but it is included in the lower edge to simplify the use and implementation of the port driver.

7.1 Miniport Generic Interfaces

All miniport interfaces supply a property access function.  Some miniport interfaces defined in this document use the property function to manage aspects of the interface that are very complex or are likely to require future enhancements.  Using properties, vendors can extend miniport interfaces without conflicting with new standards or non-standard extensions.  Because WDM Streaming filters and pins expose properties that are much like miniport properties, miniport properties unknown to the port driver can be exposed to WDM Streaming clients.  This means that vendor-specific functionality can be exposed at the WDM Streaming level without the need for custom port drivers.

PnP and power management functions are supplied to control the state of the miniport during PnP driver stoppages and power transitions.

Miniport Interface

Interface
IPropertyTarget


Inheritance
IUnknown


Description
This interface allows an object to support properties.  A single function allows properties to be queried and set.


Functions
NTSTATUS Property()

((? PKSIDENTIFIER Property

((? ULONG InstanceSize

((? PVOID Instance

((? ULONG ValueSize

((? PVOID Value




IPropertyTarget

Function
Property()
( Passive

( DPC

( IRQ

Description
This function accesses a property.


Parameters
PKSIDENTIFIER Property

The property identifier, consisting of a GUID, which identifies the property set, a ULONG, which identifies the specific property within the set, and another ULONG which specifies the operation to be performed (e.g. get or set).
( In

( Out

( Optional


ULONG InstanceSize  

Size of the instance structure in bytes.
( In

( Out

( Optional


PVOID Instance

A property-specific structure indicating the instance to which the requested property value applies.  For example, if a property defines the volume associated with a channel in a mixer, the instance information might specify the channel for which volume information is being requested.
( In

( Out

( Optional


ULONG ValueSize  

The size in bytes of the buffer supplied by the caller to hold the property value.  For property ‘get’ operations, the size must be at least the size of the property value.  For property ‘set’ operations, the size must be exactly the size of the property value.  The property function adjusts the value size if it is not exact.
( In

( Out

( Optional


PVOID Value  

The value of the property or a description of the property in the case of support queries.  TODO:  Explain this some more.
( In

( Out

( Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


Miniport Interface

Interface
IMiniport


Inheritance
IPropertyTarget


Description
This is the generic interface supported by all miniports.  By inheriting IPropertyTarget, it supports property access.  In addition, two functions support PnP stop operations and power management.


Functions
NTSTATUS SetStopState()

((? ULONG StopState





NTSTATUS SetPowerState()

((? ULONG PowerState




IMiniport

Function
SetStopState()
( Passive

 DPC

 IRQ

Description
This function changes the miniport’s stop state.


Parameters
ULONG StopState  

The new stop state to be assumed by the miniport:

· StopStateNormal  The normal state in which the miniport is not stopped and is not preparing to stop.
· StopStateQuery  A tentative state used to determine whether the miniport is prepared to stop operation.  The function succeeds if operation can cease without ill effect.  Between a successful transition to this state and the transition to the StopStateStop or StopStateCancel states, the miniport cannot initiate any operation that would compromise its ability to stop.

· StopStateStop The stopped state.  The miniport should shut down the hardware and free any system resources it has allocated.  The miniport will not be called again without first being initialized.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniport

Function
SetPowerState()
( Passive

 DPC

 IRQ

Description
This function changes the power state of the device supported by the miniport.  When a transition occurs from the normal state to the power down state, the miniport must save the state of the hardware in system memory.  When a transition occurs from the power down state to the normal state, the miniport must restore the state of the hardware.


Parameters
ULONG PowerState  

The power state that the miniport is to change to.  A state value of 0 indicates that the device is to operate normally.  A non-zero value indicates the device must save its hardware state information in preparation for power down.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


7.2 Port Generic Interface

All port drivers expose the generic port interface as part of their lower edge.  The adapter driver calls the initialization function on this interface.

Port Interface

Interface
IPort


Inheritance
IUnknown


Description
This interface allows for the initialization of port drivers.  Its single function is called by the adapter driver during the starting of the device.


Functions
NTSTATUS Init()

((? PVOID Context1

((? PUNKNOWN UnknownMiniport

((? PRESOURCELIST ResourceList




IPort

Function
Init()
( Passive

 DPC

 IRQ

Description
This function initializes the port driver.  The miniport supplied by the second parameter must expose the miniport interface supported by the port driver, or the call will fail.  The miniport is initialized by the port driver during this call.


Parameters
PVOID Context1  

The first context parameter passed to the adapter driver’s start device function.
( In

 Out

 Optional


PUNKNOWN UnknownMiniport  

The IUnknown interface of the uninitialized miniport.  This interface is queried for the specific miniport interface supported by the port driver, and the initialization function on that interface is called.
( In

 Out

 Optional


PRESOURCELIST ResourceList  

The resource list to be supplied to the miniport during initialization.  The port driver is free to examine this resource list, but it will not be modified by the port driver.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


8. Cyclic DMA Wave Input and Output

This class of miniport drivers supports access to cyclic DMA-based wave audio functions.  The interface addresses cyclic buffers specifically, leaving streaming issues to be solved by the port driver.  Multiple channels are supported, each one unidirectional.

There are two interfaces that must be supported by the miniport.  The first provides for initialization of the miniport, the enumeration of channels and the creation of streams.  The second interface is the stream interface, which exposes most of the miniport’s functionality.

8.1 Miniport Interfaces

The overall miniport interface has three functions:  one for initialization, one to enumerate channels and one to create a stream object.  The stream object interface (not derived from IMiniport) exposes the bulk of the miniport functionality.

Miniport Interface

Interface
IMiniportWaveCyclic


Inheritance
IMiniport


Description
This is the interface exposed to the port driver by the device-associated object that implements the miniport.  It provides a function for initialization and a function for creating a miniport stream object.  The stream object is associated with a pin on a filter.  There is no interface for a filter-associated miniport object.


Functions
NTSTATUS Init()

((? PRESOURCELIST ResourceList

((? PPORTWAVECYCLIC Port





NTSTATUS GetChannelList()

((? PULONG Count

((? PCHANNELLISTENTRY *Entries





NTSTATUS NewStream()

((? PMINIPORTWAVECYCLICSTREAM *Stream

((? PUNKNOWN OuterUnknown

((? POOL_TYPE PoolType

((? ULONG Channel

((? BOOLEAN Capture

((? PWAVEFORMATEX DataFormat

((? PWAVEPORTCYCLICDMACHANNEL DmaChannel




IMiniportWaveCyclic

Function
Init()
( Passive

 DPC

 IRQ

Description
This function initializes the miniport.  Initialization includes verification of the hardware using the resources specified in the resource list.


Parameters
PRESOURCELIST ResourceList  

List of the resources to be used by the hardware associated with this miniport.
( In

 Out

 Optional


PPORTWAVECYCLIC Port  

Pointer to the port driver’s callback interface.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWaveCyclic

Function
GetChannelList()
( Passive

 DPC

 IRQ

Description
This function obtains a list of channels supported by the miniport.


Parameters
PULONG Count  

The number of elements in the channel list.
( In

 Out

 Optional


PCHANNELLISTENTRY *Entries  

Pointer to the list of channels, an array of *Count elements.  This list may be paged, but must remain at the supplied address until the miniport’s reference count reaches zero.

The channel list entry structure is defined as follows:

    typedef struct

    {

        ULONG           DataRangesCount;

        PKSDATARANGE    DataRanges;

        ULONG           Instances;

        ULONG           Flags;

    #define CHANNELLISTENTRYFLAG_RENDER     1

    #define CHANNELLISTENTRYFLAG_CAPTURE    2

    } CHANNELLISTENTRY, *PCHANNELLISTENTRY;

The first two fields supply a list of data ranges indicating formats supported by the channel.  For more information regarding the KSDATARANGE structure, consult the WDM Streaming specification.  The Instances field indicates how many instances of the channel may be created.  Typically, this value will be 1.  The remaining field indicates whether the channel supports rendering or capture of audio data.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWaveCyclic

Function
NewStream()
( Passive

 DPC

 IRQ

Description
This function creates a new instance of a logical stream associated with a specified physical channel.


Parameters
PMINIPORTWAVECYCLICSTREAM Stream  

The location at which the miniport deposits a pointer to the stream object’s IMiniportWaveCyclicStream interface.
 In

( Out

 Optional


PUNKNOWN OuterUnknown  

Pointer to the IUnknown interface of an object wishing to aggregate the stream object.  Unless aggregation is desired, this parameter will be NULL.
( In

 Out

( Optional


POOL_TYPE PoolType

The type of memory pool from which the object should be allocated.
( In

 Out

 Optional


ULONG Channel  

The number of the channel.  Input and output channels are numbered independently starting at zero.  The first input channel is numbered 0, and the first output channels is numbered 0.
( In

 Out

 Optional


BOOLEAN Capture  

TRUE for an input (capture) channel, FALSE for an output (playback) channel.
( In

 Out

 Optional


PKSDATAFORMAT DataFormat  

The format to use for this instance.  See the WDM Streaming specification for more information on the type of this parameter.
( In

 Out

 Optional


PDMACHANNEL DmaChannel   

DMA channel object.  The port driver calls only the functions Release(), AllocatedBufferSize(), BufferSize(), SetBufferSize(), UserAddress() and SystemAddress() on this object.
( In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


Miniport Interface

Interface
IMiniportWaveCyclicStream


Inheritance
IPropertyTarget


Description
This is the interface exposed to the port driver by the pin-associated object implemented by the miniport.  It provides the functions required to manage a single stream of incoming or outgoing audio data.


Functions
NTSTATUS SetFormat()

((? PKSDATAFORMAT Format





ULONG SetNoficationFrequency()

((? ULONG Interval





NTSTATUS SetState()

((? KSSTATE State





NTSTATUS GetPosition()

((? PULONG Position




IMiniportWaveCyclicStream

Function
SetFormat()
( Passive

 DPC

 IRQ

Description
This function changes the format associated with a stream.


Parameters
KSDATAFORMAT DataFormat
The new format.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWaveCyclicStream

Function
SetNotificationFrequency()
( Passive

 DPC

 IRQ

Description
This function sets the frequency at which notification interrupts are generated.


Parameters
ULONG Interval 

The interval between interrupts, expressed in frames.  A frame is a set of samples corresponding to a moment in time.  For example, for stereo channels, there are two samples (left and right) in a frame.
( In

 Out

 Optional

Return
ULONG

The new notification frequency.


IMiniportWaveCyclicStream

Function
SetState()
( Passive

 DPC

 IRQ

Description
This function starts playback or recording for the stream.  The port driver will never call this function without first calling the pause function.  Playback or recording starts at the current position in the DMA buffer.


Parameters
KSSTATE State  

The new state of the stream, one of:

· KSSTATE_STOP

· KSSTATE_ACQUIRE

· KSSTATE_PAUSE

· KSSTATE_RUN

For the purposes of many miniports, KSSTATE_ACQUIRE and KSSTATE_PAUSE are indistinguishable.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWaveCyclicStream

Function
GetPosition()
( Passive

 DPC

 IRQ

Description
This function gets the current position of the DMA read pointer for the stream.


Parameters
PULONG Position  

The position of the DMA read pointer.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


8.2 Port Driver Lower-Edge Interface

The port driver provides an interface to the miniport for instantiation of abstracted DMA channels and for interrupt notification.

Port Interface

Interface
IPortWaveCyclic


Inheritance
IPort


Description
This interface is supplied to the miniport for callbacks to the port driver.  Notification is performed in the ISR.  In the shared interrupt case, this may be done by the adapter driver.  Slave and bus master DMA channels may also be instantiated on this interface.


Functions
void Notify()

((? ULONG Channel





NTSTATUS NewSlaveDmaChannel()

((? PDMACHANNEL *DmaChannel

((? PUNKNOWN OuterUnknown

((? POOL_TYPE PoolType

((? PRESOURCELIST ResourceList

((? ULONG DmaIndex

((? ULONG MaximumLength

((? BOOLEAN DemandMode

((? DMA_SPEED DmaSpeed





NTSTATUS NewMasterDmaChannel()

((? PDMACHANNEL *DmaChannel

((? PUNKNOWN OuterUnknown

((? POOL_TYPE PoolType

((? PRESOURCELIST ResourceList

((? ULONG DmaIndex

((? ULONG MaximumLength

((? BOOLEAN Dma32BitAddresses

((? BOOLEAN Dma64BitAddresses

((? DMA_SPEED DmaSpeed




IPortWaveCyclic

Function
Notify()
( Passive

 DPC

 IRQ

Description
This function notifies the port driver that an interrupt indicating the progress of the DMA pointer has occurred.  It should be called from the miniport’s interrupt service routine.

This function is vital for accurate timing.  Most miniport will call this function in response to a notification interrupt after having cleared the interrupt source.  Although the miniport is free to use other methods to determine when to call this function, precise timing is important and should be maintained.

When an ISR is installed, a context parameter (ServiceContext) is submitted along with the address of the ISR.  When the interrupt occurs, the operating system calls the ISR, passing ServiceContext as one of the parameters of the ISR.  It is up to the driver developer to determine what value ServiceContext will contain.  It is recommended, though not required, that the ServiceContext be a pointer to the miniport object.  The context will then allow access to any information required by the ISR.


Parameters
ULONG Channel   

The number of the channel for which notification is to occur.
( In

 Out

 Optional

Return
None.


IPortWaveCyclic

Function
NewSlaveDmaChannel()
( Passive

 DPC

 IRQ

Description
This function creates a new instance of a slave DMA channel.


Parameters
PDMACHANNEL *DmaChannel

The location at which the miniport deposits a pointer to the DMA channel object’s IDmaChannel interface.
 In

( Out

 Optional


PUNKNOWN OuterUnknown  

Pointer to the IUnknown interface of an object wishing to aggregate the DMA channel object.  Unless aggregation is desired, this parameter will be NULL.
( In

 Out

( Optional


POOL_TYPE PoolType

The type of memory pool from which the object should be allocated.
( In

 Out

 Optional


PRESOURCELIST ResourceList  

The resource list containing the resource which describes the DMA channel.
( In

 Out

 Optional


ULONG DmaIndex  

The index in the resource list of the DMA channel descriptor.  This is used as a parameter to a Find…Entry() call performed on the resource list object.
( In

 Out

 Optional


ULONG MaximumLength  

The maximum length of the cyclic DMA buffer that will be associated with this channel.
( In

 Out

 Optional


BOOLEAN DemandMode   

Whether the device associated with the DMA channel supports demand mode.
( In

( Out

 Optional


DMA_SPEED DmaSpeed   

Compatible, TypeA, TypeB or TypeC.
( In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IPortWaveCyclic

Function
NewMasterDmaChannel()
( Passive

 DPC

 IRQ

Description
This function creates a new instance of a bus master DMA channel.


Parameters
PDMACHANNEL *DmaChannel

The location at which the miniport deposits a pointer to the DMA channel object’s IDmaChannel interface.
 In

( Out

 Optional


PUNKNOWN OuterUnknown  

Pointer to the IUnknown interface of an object wishing to aggregate the DMA channel object.  Unless aggregation is desired, this parameter will be NULL.
( In

 Out

( Optional


POOL_TYPE PoolType

The type of memory pool from which the object should be allocated.
( In

 Out

 Optional


PRESOURCELIST ResourceList  

The resource list containing the resource which describes the DMA channel.
( In

 Out

 Optional


ULONG DmaIndex  

The index in the resource list of the DMA channel descriptor.  This is used as a parameter to a Find…Entry() call performed on the resource list object.
( In

 Out

 Optional


ULONG MaximumLength  

The maximum length of the cyclic DMA buffer that will be associated with this channel.
( In

 Out

 Optional


BOOLEAN Dma32BitAddresses   

Whether the device associated with the DMA channel supports 32 bit addresses.
( In

( Out

 Optional


BOOLEAN Dma64BitAddresses   

Whether the device associated with the DMA channel supports 64 bit addresses.
( In

( Out

 Optional


DMA_SPEED DmaSpeed   

Compatible, TypeA, TypeB or TypeC.
( In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


9. PCI Scatter/Gather Wave Input and Output

This class of miniport drivers supports access to scatter/gather DMA-based wave audio functions.  The interface addresses physical mappings specifically, leaving streaming issues to be solved by the port driver.  Multiple channels are supported, each one unidirectional.

There are two interfaces that must be supported by the miniport.  The first provides for initialization of the miniport, the enumeration of channels and the creation of streams.  The second interface is the stream interface, which exposes most of the miniport’s functionality.

9.1 Miniport Interfaces

The overall miniport interface has three functions:  one for initialization, one to enumerate channels and one to create a stream object.  The stream object interface (not derived from IMiniport) exposes the bulk of the miniport functionality.

Miniport Interface

Interface
IMiniportWavePci


Inheritance
IMiniport


Description
This is the interface exposed to the port driver by the device-associated object that implements the miniport.  It provides a function for initialization, a function for enumerating channels and a function for creating a miniport stream object.  The stream object is associated with a pin on a filter.  There is no interface for a filter-associated miniport object.


Functions
NTSTATUS Init()

((? PRESOURCELIST ResourceList

((? PPORTWAVEPCI Port

((? PDMACHANNEL *DmaChannel





NTSTATUS GetChannelList()

((? PULONG Count

((? PCHANNELLISTENTRY *Entries





NTSTATUS NewStream()

((? PMINIPORTWAVEPCISTREAM *Stream

((? PUNKNOWN OuterUnknown

((? POOL_TYPE PoolType

(? PPORTWAVEPCISTREAM PortStream

(? ULONG Channel

(? BOOLEAN Capture

(? PKSDATAFORMAT DataFormat




IMiniportWavePci

Function
Init()
( Passive

 DPC

 IRQ

Description
This function initializes the miniport.  Initialization includes verification of the hardware using the resources specified in the resource list.


Parameters
PCM_RESOURCE_LIST ResourceList  

List of the resources to be used by the hardware associated with this miniport.
( In

 Out

 Optional


PPORTWAVEPCI Port  

Pointer to the port driver’s callback interface.
( In

 Out

 Optional


PDMACHANNEL *DmaChannel  

The DMA channel to be used by the miniport.  This object is obtained through a call to the port driver’s lower edge.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWavePci

Function
GetChannelList()
( Passive

 DPC

 IRQ

Description
This function obtains a list of channels supported by the miniport.


Parameters
PULONG Count  

The number of elements in the channel list.
( In

 Out

 Optional


PCHANNELLISTENTRY *Entries  

Pointer to the list of channels, an array of *Count elements.  This list may be paged, but must remain at the supplied address until the miniport’s reference count reaches zero.

The channel list entry structure is defined as follows:

    typedef struct

    {

        ULONG           DataRangesCount;

        PKSDATARANGE    DataRanges;

        ULONG           Instances;

        ULONG           Flags;

    #define CHANNELLISTENTRYFLAG_RENDER     1

    #define CHANNELLISTENTRYFLAG_CAPTURE    2

    } CHANNELLISTENTRY, *PCHANNELLISTENTRY;

The first two fields supply a list of data ranges indicating formats supported by the channel.  For more information regarding the KSDATARANGE structure, consult the WDM Streaming specification.  The Instances field indicates how many instances of the channel may be created.  The remaining field indicates whether the channel supports rendering or capture of audio data.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWavePci

Function
NewStream()
( Passive

 DPC

 IRQ

Description
This function creates a new instance of a logical stream associated with a specified physical channel.


Parameters
PMINIPORTWAVEPCISTREAM Stream  

The location at which the miniport deposits a pointer to the stream object’s IMiniportWaveISAStream interface.
 In

( Out

 Optional


PUNKNOWN OuterUnknown  

Pointer to the IUnknown interface of an object wishing to aggregate the stream object.  Unless aggregation is desired, this parameter will be NULL.
( In

 Out

( Optional


POOL_TYPE PoolType

The type of memory pool from which the object should be allocated.
( In

 Out

 Optional


PPORTWAVEPCISTREAM PortStream  

Stream-associated callback interface to the port driver.
( In

 Out

 Optional


ULONG Channel  

The number of the channel.  Input and output channels are numbered independently starting at zero.  The first input channel is numbered 0, and the first output channels is numbered 0.
( In

 Out

 Optional


BOOLEAN Capture  

TRUE for an input (capture) channel, FALSE for an output (playback) channel.
( In

 Out

 Optional


PKSDATAFORMAT DataFormat  

The format to use for this instance.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


Miniport Interface

Interface
IMiniportWavePciStream


Inheritance
IPropertyTarget


Description
This is the interface exposed to the port driver by the stream-associated object that implements the miniport.  Most of the miniport functionality is exposed here.


Functions
NTSTATUS SetFormat()

(? PKSDATAFORMAT DataFormat





NTSTATUS SetState()

(? KSSTATE State





NTSTATUS GetPosition()

(? PULONGLONG Position





NTSTATUS RevokeMappings()

(? PVOID FirstTag

(? PVOID LastTag

(? PULONG MappingsRevoked





void MappingsAvailable()



IMiniportWavePciStream

Function
SetFormat()
( Passive

 DPC

 IRQ

Description
This function sets the format of the stream.


Parameters
PKSDATAFORMAT DataFormat  

The new format of the stream.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWavePciStream

Function
SetState()
( Passive

 DPC

 IRQ

Description
This function changes the state of the stream transport.


Parameters
KSSTATE State  

The new state of the stream, one of:

· KSSTATE_STOP

· KSSTATE_ACQUIRE

· KSSTATE_PAUSE

· KSSTATE_RUN

For the purposes of many miniports, KSSTATE_ACQUIRE and KSSTATE_PAUSE are indistinguishable.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWavePciStream

Function
GetPosition()
( Passive

 DPC

 IRQ

Description
This function gets the current position of the stream.


Parameters
PULONGLONG Position  

The current byte position of the stream.  The miniport is required to maintain stream position based on the mappings it acquires, regardless of whether mappings are released or revoked.  The position indicated by this function is the miniport’s best estimate of the byte position of the data currently in the DAC or ADC.  The position is initially zero and is reset by a transition into the stopped state.
 In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWavePciStream

Function
RevokeMappings()
 Passive

( DPC

 IRQ

Description
This function revokes mappings that were previously obtained via GetMapping().  Mappings are revoked when a request (IRP) is cancelled and the memory previously mapped may not be available. 


Parameters
PVOID FirstTag  

The tag associated with the first mapping that is being revoked.
( In

 Out

 Optional


PVOID LastTag  

The tag associated with the last mapping that is being revoked.
( In

 Out

 Optional


PULONG MappingsRevoked  

The number of mappings in the indicated interval that were actually mapped (not yet released).  Due to synchronization issues, some of the revoked mappings may already have been released by the miniport.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportWavePciStream

Function
MappingsAvailable()
( Passive

 DPC

 IRQ

Description
This function indicates that new mappings are available.  It will be called when new mappings become available after miniport requests for mappings via GetMapping() have been refused.


Parameters
None.


Return
None.


9.2 Port Driver Lower-Edge Interface

The port driver provides an interface to the miniport at the device level and at the stream level.  The interface at the device level allows only for the instantiation of the DMA channel returned by the miniport initialization function.  The interface at the stream level supplies mappings to the miniport stream.

Port Interface

Interface
IPortWavePci


Inheritance
IPort


Description
This is the device-associated callback interface implemented by the port driver and providing services to the miniport object.


Functions
NTSTATUS NewDmaChannel()

((? PDMACHANNEL *DmaChannel

((? PUNKNOWN OuterUnknown

((? POOL_TYPE PoolType

((? ULONG MaximumLength

((? BOOLEAN Dma32BitAddresses

((? BOOLEAN Dma64BitAddresses

((? DMA_SPEED DmaSpeed




IPortWavePci

Function
NewDmaChannel()
( Passive

 DPC

 IRQ

Description
This function creates a new instance of a bus master DMA channel.


Parameters
PDMACHANNEL *DmaChannel

The location at which the miniport deposits a pointer to the DMA channel object’s IDmaChannel interface.
 In

( Out

 Optional


PUNKNOWN OuterUnknown  

Pointer to the IUnknown interface of an object wishing to aggregate the DMA channel object.  Unless aggregation is desired, this parameter will be NULL.
( In

 Out

( Optional


POOL_TYPE PoolType

The type of memory pool from which the object should be allocated.
( In

 Out

 Optional


ULONG MaximumLength  

The maximum length of the cyclic DMA buffer that will be associated with this channel.
( In

 Out

 Optional


BOOLEAN Dma32BitAddresses   

Whether the device associated with the DMA channel supports 32 bit addresses.
( In

( Out

 Optional


BOOLEAN Dma64BitAddresses   

Whether the device associated with the DMA channel supports 64 bit addresses.
( In

( Out

 Optional


DMA_SPEED DmaSpeed   

Compatible, TypeA, TypeB or TypeC.
( In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


Port Interface

Interface
IPortWavePciStream


Inheritance
IUnknown


Description
This is the stream-associated callback interface implemented by the port driver and providing services to miniport stream objects.


Functions
NTSTATUS GetMapping()

(? PVOID Tag

(? PPHYSICAL_ADDRESS PhysicalAddress

(? PULONG ByteCount

(? PULONG Flags





NTSTATUS ReleaseMapping()

(? PVOID Tag





NTSTATUS TerminatePacket()



IPortWavePciStream

Function
GetMapping()
( Passive

( DPC

 IRQ

Description
This function obtains a mapping from the port driver and associates a tag with the mapping.  Mappings obtained through this function must be released using ReleaseMapping() unless they are revoked by the port driver.  Mappings are revoked by a call to the stream’s RevokeMappings() function.


Parameters
PVOID Tag  

The tag to be associated with the mapping.  This tag may be used in subsequent RevokeMappings() calls to identify the mapping for revocation.
( In

 Out

 Optional


PPHYSICAL_ADDRESS PhysicalAddress  

The physical address of the mapping.
 In

( Out

 Optional


PULONG ByteCount

The number of bytes in the mapping.
 In

( Out

 Optional


PULONG Flags  

A non-zero flag value indicates that the mapping acquired in this call is the last mapping in a packet.  This flag recommends that the hardware interrupt the miniport when it is done with this mapping.  In response to the interrupt, the miniport would obtain new mappings to deliver to the hardware.  The miniport is not obligated to use this suggestion.
 In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IPortWavePciStream

Function
ReleaseMapping()
( Passive

( DPC

 IRQ

Description
This function releases mappings previously obtained through GetMapping().


Parameters
PVOID Tag  

The tag of the mapping to be released.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IPortWavePciStream

Function
TerminatePacket()
( Passive

( DPC

 IRQ

Description
This function terminates the packet currently being mapped.  This is used primarily for capture situations in which packets need to end at specific points in the stream (e.g. for video frames).


Parameters
None.


Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


10. Static Wave Table Output

This class of miniport drivers supports access to wavetable synthesizer voices.  It is intended for devices that provide on-board articulation functions that can be manipulated by system software.

The specification of this interface has been temporarily withdrawn.  Subsequent revisions of this document will include this interface.

11. Topology

This class of miniport drivers supports access to the various controls (volume, equalization, hardware reverb) that audio adapters typically offer.  It does this by exposing a topology consisting of a set of nodes and their interconnections.  A node can have any number of properties, one of which may be the control value. 

Controls are organized in a hierarchy to allow arbitrary subdivision of the control graph.  A top-level control, designated by the identifier 0, contains, directly or indirectly, all other controls in the graph.

Nodes that have control values may have any type of value that can be supported by the property mechanism.  Typically, a node will have at most one control value.  For example, a volume node would have a value indicating its current volume setting.  Volume and pan would be exposed as separate nodes.

Nodes are connected to one another by entities called connections.  Connections are directed, referring to a from node and a to node.  A connection also specifies a pin number for both of its associated nodes.  Pins are not explicitly supported as entities in the topology, but the pin numbering in the connection entities allows inputs and outputs with distinct functions to be differentiated.  For example, a state variable filter might have three output pins, one each for high, middle and low frequencies.  Pin numbering allows clients of the miniport to determine which connections are associated with which pins.

A distinguished node identification is used to represent the topology’s external connections.  In the WDM Streaming world, the pins on this ‘filter node’ are the pins on the filter implemented by the topology port driver.  These pins do not allow connection or support data flow, but instead represent physical connections of the adapter hardware.  Some of the filter pins represent connections internal to the system, such as the point at which analog data from a DAC enters the topology.  Other filter pins represent external physical connections, such as the line out jack on an audio adapter.

Node pin numbering alone does not allow the client to determine the function of the pins.  Although the miniport identifies the type of a node (by means of a GUID), it offers no description of the node type and no description of the pins supported by the node type.  The specification for how this information is discovered is left to other documents.

NOTE:  The set of node types and associated properties is detailed in a document entitled WDM Audio Driver Design Notes and Reference.

This miniport interface also supports the delivery of unsolicited control value changes from the miniport to the port driver.  This feature allows for devices that can be physically manipulated by the user.  External changes to node control values are indicated by a notification call to the lower edge of the port driver.

The topology miniport interface relies on a descriptor for describing connections between nodes:
#define FILTER_NODE ((ULONG)-1)

typedef struct

{


ULONG
FromNode;


ULONG
FromNodePin;


ULONG
ToNode;


ULONG
ToNodePin;

} TOPOLOGY_CONNECTION;

This structure is used to describe a connection between two pins in a topology.  A given pin may take part in multiple connections. 

Field
Description

FromNode
Identifier of the node which produces information for this connection, or FILTER_NODE if the pin is on the WDM Streaming filter.

FromNodePin
Identifier of the connected pin on the ‘from’ node.

ToNode
Identifier of the node which consumes information for this connection, or FILTER_NODE if the pin is on the WDM Streaming filter.

ToNodePin
Identifier of the connected pin on the ‘to’ node.

11.1 Miniport Interface

Miniport Interface

Interface
IMiniportTopology


Inheritance
IMiniport


Description
This is the interface exposed to the port driver by the device-associated object that implements the miniport.  It provides functions for initialization of  the miniport, the enumeration of pins, nodes and connections and the acquisition of control change information.


Functions
NTSTATUS Init()

((? PRESOURCELIST ResourceList

((? PPORTTOPOLOGY Port





NTSTATUS GetCounts()

((? PULONG PinCount

((? PULONG NodeCount

((? PULONG ConnectionCount





NTSTATUS GetPins()

((? ULONG First

((? ULONG Requested

((? PULONG Delivered

((? PTOPOLOGY_PIN Buffer





NTSTATUS GetNodes()

((? ULONG First

((? ULONG Requested

((? PULONG Delivered

((? GUID *Buffer





NTSTATUS GetConnections()

((? ULONG First

((? ULONG Requested

((? PULONG Delivered

((? PTOPOLOGY_CONNECTION Buffer





NTSTATUS ReadControlChanges()

((? ULONG Requested

((? PULONG Delivered

((? PULONG Buffer





NTSTATUS FlushControlChanges()




IMiniportTopology

Function
Init()
( Passive

 DPC

 IRQ

Description
This function initializes the miniport..


Parameters
PRESOURCELIST ResourceList  

List of the resources to be used by the hardware associated with this miniport.
( In

 Out

 Optional


PPORTTOPOLOGY Port  

Pointer to the port driver’s callback interface.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportTopology

Function
GetCounts()
( Passive

 DPC

 IRQ

Description
This function gets counts for the various entities provided by the miniport.


Parameters
PULONG PinCount  

The number of pins.
 In

( Out

( Optional


PULONG NodeCount  

The number of nodes.
 In

( Out

( Optional


PULONG ConnectionCount  

The number of connections.
 In

( Out

( Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportTopology

Function
GetPins()
( Passive

 DPC

 IRQ

Description
This function gets pin descriptors from the miniport.


Parameters
ULONG First  

The identifier of the first pin to get a descriptor for.
( In

 Out

 Optional


ULONG Requested  

The number of pin descriptors requested.
 In

( Out

 Optional


PULONG Delivered  

The number of pin descriptors delivered.
 In

( Out

 Optional


PTOPOLOGY_PIN Buffer  

The buffer in which pin descriptors are to be deposited.  This buffer must be sufficiently large to contain all the pin descriptors requested.  Entries in this buffer have the following format:

    typedef struct 

    {

        PKSDATAFORMAT   Format;

        KSPIN_DATAFLOW  DataFlow;

    }

    TOPOLOGY_PIN, *PTOPOLOGY_PIN;

The first field indicates the format of the pin.  The second indicates the direction that information flows through the pin.

The WDM Streaming specification provides more information on both of the types used in TOPOLOGY_PIN.  The format structures referenced from entries in the buffer may be paged but must remain at the indicated addresses until the miniport’s reference count drops to zero.
 In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportTopology

Function
GetNodes()
( Passive

 DPC

 IRQ

Description
This function gets node type GUIDs from the miniport.


Parameters
ULONG First  

The identifier of the first node to get a type GUID for.  The range of node identifiers runs from 0 to the number of nodes minus one.
( In

 Out

 Optional


ULONG Requested  

The number of node type GUIDs requested.
 In

( Out

 Optional


PULONG Delivered  

The number of node type GUIDs delivered.
 In

( Out

 Optional


GUID *Buffer   

The buffer in which node type GUIDs are to be deposited.  This buffer must be sufficiently large to contain all the node type GUIDs requested.
 In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportTopology

Function
GetConnections()
( Passive

 DPC

 IRQ

Description
This function gets connection descriptors from the miniport.


Parameters
ULONG First  

The index of the first connection to get a descriptor for.  The range of connection indexes runs from 0 to the number of connections minus one.
( In

 Out

 Optional


ULONG Requested  

The number of connection descriptors requested.
 In

( Out

 Optional


PULONG Delivered  

The number of connection descriptors delivered.
 In

( Out

 Optional


PTOPOLOGY_CONNECTION Buffer  

The buffer in which connection descriptors are to be deposited.  This buffer must be sufficiently large to contain all the connection descriptors requested.

Entries in the buffer have the following structure:

    typedef struct

    {

        ULONG FromNode;

        ULONG FromPin;

        ULONG ToNode;

        ULONG ToPin;

    } 

    TOPOLOGY_CONNECTION, *PTOPOLOGY_CONNECTION;

The From… pair of fields indicates the pin data flows from in the connection.  The To… pair of fields indicates the pin data flows to in the connection.  Nodes are numbered contiguously starting at zero.  The distinguished node number (ULONG)-1 represents the filter itself.  The interpretation of node pin numbers is dependent on the node type.  The filter pin numbers are indices into the pin array.
 In

( Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportTopology

Function
ReadControlChanges()
( Passive

( DPC

 IRQ

Description
This function reads control value changes induced externally.  It is called during the port driver’s DPC to determine what control value changes occurred due to an external influence.  For example, if the miniport controls a motorized studio mixer, rotation of the mixer knobs by the user would cause external control value changes to be reported.


Parameters
ULONG Requested  

The number of value changes requested.
( In

 Out

 Optional


PULONG Delivered  

The number of control value changes delivered.


 In

( Out

 Optional


PULONG Buffer  

Node identifiers for the controls that have changed values.
 In

( Out

 Optional

Return
NTSTATUS

STATUS_MORE_ENTRIES indicates a successful outcome and that more value changes await subsequent calls to this function.

STATUS_SUCCESS indicates a successful outcome and that all value changes have been read.

STATUS_NO_MORE_ENTRIES indicates that no value changes currently exist.

Exceptional return values TBD.


IMiniportTopology

Function
FlushControlChanges()
( Passive

( DPC

 IRQ

Description
This function discards external control value changes so they need not be read.


Parameters
None.


Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


11.2 Port Driver Lower-Edge Interface

Port Interface

Interface
IPortTopology


Inheritance
IPort


Description
This is the interface exposed by the port driver to the device-associated object that implements the miniport.  It provides a function to notify the port driver that control changes are available to be read.


Functions
void NotifyControlChanges()




IPortTopology

Function
NotifyControlChanges()
( Passive

 DPC

 IRQ

Description
This function notifies the port driver of the arrival of external control value changes.  It is typically called from an interrupt service routine (ISR).

When an ISR is installed, a context parameter (ServiceContext) is submitted along with the address of the ISR.  When the interrupt occurs, the operating system calls the ISR, passing ServiceContext as one of the parameters of the ISR.  It is up to the driver developer to determine what value ServiceContext will contain.  It is recommended, though not required, that the ServiceContext be the miniport object pointer.  The context will then contain any information required by the ISR.


Parameters
None.


Return
None.


12. MIDI Input and Output

This miniport definition is intended for MIDI devices of the UART variety:  that is, devices that do not have their own timing hardware.  The sound port handles all the timing issues in both directions, and relies on the miniport to promptly move data on and off the adapter in response to the calls listed below.

12.1 Miniport Interface

Miniport Interface

Interface
IMiniportMidi


Inheritance
IMiniport


Description
This is the interface exposed to the port driver by the device-associated object that implements the miniport.  It provides functions for initialization of the miniport and the reading and writing of MIDI data.


Functions
NTSTATUS Init()

((? PRESOURCELIST ResourceList

((? PPORTMIDI Port





NTSTATUS DeferredRead()

((? ULONG Channel

((? PVOID BufferAddress

((? ULONG Length

((? PULONG BytesRead





NTSTATUS Flush()

((? ULONG Channel

((? PULONG BytesFlushed





NTSTATUS Write()

((? ULONG Channel

((? PVOID BufferAddress

((? ULONG Length

((? PULONG BytesRead




IMiniportMidi

Function
Init()
( Passive

 DPC

 IRQ

Description
This function initializes the miniport.


Parameters
PRESOURCELIST ResourceList  

List of the resources to be used by the hardware associated with this miniport.
( In

 Out

 Optional


PPORTMIDI Port  

Pointer to the port driver’s callback interface.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportMidi

Function
DeferredRead()
( Passive

 DPC

 IRQ

Description
This function supplies incoming MIDI data to the port driver.  It is generally called in response to an interrupt generated by the MIDI input device indicating the arrival of new data.


Parameters
ULONG Channel  

The number of the channel to read from.
( In

 Out

 Optional


PVOID BufferAddress  

Requested MIDI data is deposited here.
( In

 Out

 Optional


ULONG Length  

The maximum number of bytes of MIDI data to read. 
( In

 Out

 Optional


PULONG BytesRead  

The actual number of bytes read.  This number will be Length or the number of bytes currently available, whichever is less.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome and that no more data is available to be read.  Miniports that cannot easily determine whether more data is available may return STATUS_SUCCESS_MORE_ENTRIES whenever BytesRead is equal to Length.

STATUS_NO_MORE_ENTRIES indicates that no data is currently available to be read.

Exceptional return values TBD.


IMiniportMidi

Function
Flush()
( Passive

 DPC

 IRQ

Description
This function discards incoming MIDI data from the device.  It is used when data is available for reading, but all outstanding read requests have been satisfied.


Parameters
ULONG Channel  

The number of the channel to flush.
( In

 Out

 Optional


PULONG BytesFlushed  

The number of bytes that were discarded.  The port driver may pass a NULL pointer if it does not require this information to be passed back.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


IMiniportMidi

Function
Write()
( Passive

 DPC

 IRQ

Description
This function supplies outgoing MIDI data to the miniport.  When the number of bytes written by the call is less than the indicated length, the port driver will call this function again to write the remaining data.  The call should not block on the transmission of data.


Parameters
ULONG Channel  

The number of the channel to write to.
( In

 Out

 Optional


PVOID BufferAddress 

Pointer to a buffer containing MIDI data to be written.
( In

 Out

 Optional


ULONG Length  

The maximum number of bytes of MIDI data to write. 
( In

 Out

 Optional


PULONG BytesWritten  

The actual number of bytes written.
( In

 Out

 Optional

Return
NTSTATUS

STATUS_SUCCESS indicates a successful outcome.

Exceptional return values TBD.


12.2 Port Driver Lower-Edge Interface

Port Interface

Interface
IPortMidi


Inheritance
IPort


Description
This is the interface exposed by the port driver to the device-associated object that implements the miniport.  It provides a function to notify the port driver that data is available to be read.


Functions
void NotifyIncoming()

((? ULONG Channel




IPortMidi

Function
NotifyIncoming()
( Passive

 DPC

 IRQ

Description
This function notifies the port driver of the arrival of MIDI data to be read.  It is typically called from an interrupt service routine (ISR).

When an ISR is installed, a context parameter (ServiceContext) is submitted along with the address of the ISR.  When the interrupt occurs, the operating system calls the ISR, passing ServiceContext as one of the parameters of the ISR.  It is up to the driver developer to determine what value ServiceContext will contain.  It is recommended, though not required, that the ServiceContext be the miniport object pointer.  The context will then contain any information required by the ISR.


Parameters
ULONG Channel  

The number of the channel on which data is available to be read.
( In

 Out

 Optional

Return
None.


PAGE  

_915342685.doc


Port Class Driver







Adapter Driver







Port Driver







Port Driver







Port Driver







Miniport







Miniport







Miniport











WDM Streaming Clients







Adapter Hardware












