Microsoft Confidential
Last Updated 8/9/2000 4:44 PM
All Rights Reserved

Proprietary Information

© Microsoft Corporation 1998

Microsoft Confidential
Last Updated 8/9/2000 4:44 PM
All Rights Reserved

Proprietary Information

© Microsoft Corporation 1998

Windows NT Device Drivers
Sample BDA Conditional Access Design

	Original Author
	Paul Jensen

	Group Manager
	T.K, Backman

	Development Lead
	T.K. Backman

	Development Manager
	Sriram Rajagopalan

	Last Changed By
	Paul Jensen

	Last Update
	8/9/00 4:29 PM

	Current Status
	

	Filename
	MYCA.DOC 109056 Bytes

Intellectual Property

This document is Copyright © Microsoft Corporation, 1998. The information contained in this document represents the current view of Microsoft Corporation on issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication. This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft Corporation may have patents or pending patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property rights except as expressly provided in any written license agreement from Microsoft Corporation.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties of merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret, or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability for consequential or incidental damages; the above may not apply to you.

DirectDraw, DirectSound, Microsoft, Win32, Windows, the Windows logo, and Windows NT are registered trademarks and ActiveMovie, ActiveVRML, ActiveX, BackOffice, DirectShow, DirectX and NetShow are trademarks of Microsoft Corporation.

Table of Contents

1Windows NT Device Drivers

Sample BDA Conditional Access Design
1
Intellectual Property
2
Table of Contents
2
Table of Figures
2
Overview
2
Design Goals
2
Justification
2
Scenarios
2
Requirements
2
Network Dependencies
2
Hardware Dependencies
2
Software Dependencies
2
DirectDraw Subsystem
2
DirectShow Subsystem
2
NT-5 Resource Allocation Subsystem
2
AVstreaming Subsystem
2
NDIS Network Driver Stack
2
TCP/IP Network Protocol Stack
2
KS Proxy Filter
2
Component Descriptions
2
BDA CA Driver
2
BDA CA Ring 3 KSProxy Plug-in
2
Interface Implementation
2
Interfaces Exposed on CA Sample Driver
2
Interfaces Exposed on CA Sample Plug-in
2
Data Sink Pins Exposed
2
Data Source Pins Exposed
2
Installation and Initialization
2
Driver Installation
2
Driver Initialization
2
Interface Initialization
2
Source Files and Binaries
2
Source Files Required
2
Source Files Implemented
2
Binaries Required
2
Binaries Generated
2

Table of Figures

2Figure 1 - BDA CA Sample Control Flow.

Figure 2 - BDA CA Sample Driver Data Flow
2

Overview

This document describes the BDA conditional access (CA) sample. The sample is implemented as a sample AVstreaming driver called casamp.sys and a Ring 3 KSProxy Plug-in component called caplugin.ax. The sample exposes a BDA CA Filter with ICAPolicy and IBDA_ECMMap COM interfaces. The sample contains basic code that forms a shell that vendors can fill in with their hardware and implementation specific code.

The filter contains one BDA control node, an ECM Mapper. The filter is meant to fit within a BDA receiver filter graph that receives, decrypts and decodes MPEG transport streams defined in ISO/IEC JTC1/SC29/WG11 N0801. The ECM Mapper’s role in such a graph is to monitor particular streams that contain CA information and to decrypt particular streams that contain the video, audio or data for a desired program. Information regarding which streams to monitor for CA information and which streams to decrypt is specified through the IBDA_ECMMap COM interface. The filter receives the MPEG transport stream containing many particular streams, each particular stream is contained within PES packets all with the same packet identifier (PID). The filter outputs the particular streams that it decrypted.

When the output pin on the filter is connected up the ICAPolicy COM interface implemented in the Plug-in gets aggregated onto the pin. This interface allows the sample to communicate with the CA manager. This communication allows the sample to register denials of access with the CA manager if there is a problem decrypting content, for example if the Smart Card has been removed or if the user does not have access to certain channels. The sample can also display UI to inform the user why a denial has occurred and what can be done to remove the denial.

Design Goals

· Support a hardware implementation that allows for independent implementation of decryption and CA hardware.

· Separate hardware specific calls into independent source files so that the sample can easily be used as a starting point for different hardware implementations.

· Support interfaces that will allow this module to fit into a system processing MPEG transport streams.

Justification

As digital television evolves there will be many different broadcasters, each with their own market and product array. These broadcasters will rely on hardware from many different vendors to allow their products to be received on their customers PCs. Though broadcasters will use standard data multiplexing techniques to transmit data streams, the distribution and identification of the content transmitted and the access control scheme selected may be particular to each broadcaster. The television application must be able to request content without regard to which access control mechanism is selected to protect premium content. The BDA Access Control Filter works with a BDA Network Provider to provide this functionality to the broadcast application.
Scenarios

The Sample BDA CA filter will be loaded and run in filter graphs that include the Sample BDA Network Provider Filter, Sample BDA Tuner/Demodulator Minidriver, Sample BDA Demultiplexor minidriver, and the Microsoft IP Sink Minidriver/Miniport. The resulting Filter graph will run, but will not actually deliver data.

Requirements

Network Dependencies

None.

Hardware Dependencies

There are no hardware dependencies for the Sample BDA CA Module to be installed and run in an active filter graph.

Software Dependencies

DirectDraw Subsystem

Microsoft’s DirectDraw technologies provide control of video surface allocations within the SVGA device and control of Video Ports (VPE) which provide real-time capture of video data. On systems that have All-In-Wonder style VGA cards, the control over video capture is managed via DirectDraw. The Video Capture portions of DirectDraw need to be properly implemented on NT5.

DirectShow Subsystem

Microsoft’s DirectShow technologies use filters that are written by a combination of IHVs, ISVs and Microsoft Corporation. Our video technologies, tuner, De-multiplex, and CA filters will be connected and controlled by DirectShow. Some enhancements to the Direct Show facilities may be required.

NT-5 Resource Allocation Subsystem

Television, network data, and electronic program data services will all be competing for use of the tuner, de-multiplex, and CA hardware. The BDA system will require a resource management scheme that allows underlying hardware resources to be grouped according to the DirectShow filter graphs in which they appear. Those groups will then be activated according to a priority scheme that considers the requested priority, whether the graph was already active, and whether the owning application has focus.

AVstreaming Subsystem

For Ring 0 driver components participating in DirectShow graphs, AVstreaming provides an efficient way to transfer data between driver components. All data is transferred at Ring 0 using the AVstreaming system. This technology is key to ensuring the reliable reception of the real-time broadcast streams on a busy Windows platform.

NDIS Network Driver Stack

All Broadcast IP content must be captured, decoded, and reassembled by the various Broadcast Drivers. Once IP packets are reassembled they will be delivered to a Microsoft supplied BDA NDIS Miniport. Successful delivery of data to generic Winsock applications relies on the ability of NDIS to recognize and connect to both unidirectional and bi-directional BDA NDIS Miniports. In addition, BDA components need to acquire information from the Network Subsystem. This information must be sent to the BDA NDIS Miniport via NDIS OIDs. Following is a list of new functionality that BDA will require from NDIS.

· NDIS must recognize whether an interface is SEND ONLY, RECEIVE ONLY, or SEND-RECEIVE. This information will be provided to the various protocols that may be bound to the interface.

· NDIS must provide a path for a protocol to send a list of ALL addresses (not just multicast) that will be acquired via a particular interface.

· NDIS should provide raw IPv4 and IPv6 mediums since most BDA components will deliver IP packets with specific media headers attached.

TCP/IP Network Protocol Stack

The Microsoft TCP/IP Protocol Stack must be able to connect to unidirectional as well as bi-directional interfaces. It must be able to automatically assign IP interface address to interfaces that may or may not have an underlying MAC address. Following is a list of functionality required on the TCP/IP Protocol Stack.

· Routing must support for SEND ONLY, RECEIVE ONLY, and SEND-RECEIVE interfaces.

· TCP must send each interface a complete list of all IP addresses that it will acquire through it.

KS Proxy Filter

Since Ring 0 drivers need to participate in DirectShow filter graphs, the KS Proxy filter is responsible for presenting the driver’s interfaces as a filter. All of our Ring 0 components including the VBI Codecs use KSPROXY to load into filter graphs.

Component Descriptions

A BDA CA module is implemented as an AVstreaming driver with a corresponding Ring 3 Plug-in DLL. Most control and data flow functions are handled in the driver. Interfaces exposed at Ring 3 are exposed via the KSProxy DLL. Any data passed from the BDA CA Filter to a Ring 3 Filter is passed via KSProxy.

The Ring 3 Plug-in provides interfaces to the user and to the CA Manager. It handles CA events (e.g. purchase offers, access denial, and customer UI interaction) that it receives from the driver.

BDA CA Driver

A BDA CA Module is partially implemented as a AVstreaming driver.

BDA CA Driver Control Flow

When the CA filter is instantiated within a graph it is the responsibility of other filters to tune and demodulate the MPEG transport stream. It is also the responsibility of other filters to parse and process the Program Map Table (PMT) to find out what programs are being broadcast and allow the user to select which of these they would like to view. The program number of the chosen program and the program descriptor corresponding to that program from the PMT must be sent to the CA filter through the plug-in component of this sample via its IBDA_ECMMap COM interface.

Each broadcast program is made up of a number of separate streams, called elementary streams (ES). Each of these ES’s contains a particular media content. There may be an ES for the video of a program, another for the audio of a program in English, another for the audio of a program in Spanish, another for data accompanying a program etc. Each ES is made up of packets arriving in the MPEG transport stream all having the same PID. The PMT specifies which ES’s make up a particular program. The application or other filters must decide which ES’s need to be decrypted. The PMT contains descriptors for each ES that specify information such as which stream contains Entitlement Control Messages (ECM’s) specifying CA information about that ES. The PID’s of the required ES’s and the ES descriptor from the PMT corresponding to the required ES’s must be sent to the CA filter through the plug-in component of this sample via its IBDA_ECMMap COM interface.

Similar to the PMT there exists a Conditional Access Table (CAT), which contains CA descriptors for the various CA systems being used in the MPEG transport stream. These CA descriptors specify information needed by the CA systems to decrypt incoming data including the PID of streams that contain only entitlement management messages (EMM’s). These CA descriptors must be sent to the CA filter through the plug-in component of this sample via its IBDA_ECMMap COM interface.

Whenever a significant change in the status of the ECM mapper, CA module or SmartCard reader occurs or if the hardware has reason to need to interact with the user (present a message or negotiate a transaction) the CA driver may register one of 4 events (one for each possibility) within the “BdaCAEvent” event set. This will cause the sample plug-in to query on of 4 corresponding properties within the “BdaCa” property set to retrieve the updated status or desired user interface to display. For example if the user pulled out the SmartCard from the SmartCard reader the CA filter should realize this has occurred and register the event signaling the status of the SmartCard reader has changed and the sample plug-in would query the CA filter’s SmartCard reader status property which would return a value indicating the SmartCard had been removed.

The CA driver also exposes required BDA property and method sets. The network provider uses these interfaces to determine such information as what pins and nodes this filter implements. The CA sample driver represents a filter with one node, an ECM mapper node.

Network Provider

CA Manager

IBDA_ECMMap

ICAPolicy

Plug-in

ECMMap property set

CA Property set

CA Event set

Driver

Figure 1 - BDA CA Sample Control Flow.

 ECM stream (containing keys) Decryptor

 Encrypted ES content stream

ES content stream

MPEG

transport

MPEG

stream

transport

 ECM stream (containing keys) Decryptor

stream

 Encrypted ES content stream

ES content stream

 EMM stream

General CA system

Figure 2 - BDA CA Sample Driver Data Flow

BDA CA Driver Data Flow

The actual data flow occurs in the hardware this driver controls. When connected correctly the filter this driver implements receives the MPEG transport stream on its only data sink pin. Through the control mechanisms mentioned in the control flow section preceding this, the driver knows which streams contain EMMs, ES content and CA information specific to particular ESs. It monitors and processes the streams containing EMMs and CA information specific to particular ESs. Using this CA data it decrypts the particular ESs and sends them out its only data source pin.

BDA CA Ring 3 KSProxy Plug-in

The interface to the CA Manager and to system resources for presenting UI and clearing transactions is handled by the CA Ring 3 KSProxy Plug-in. The Ring 3 Plug-in is a DLL that is installed at the same time as the CA driver. It is loaded and initialized when the CA driver is loaded and connected.

The plug-in exists in ring 3 so interfacing with the user can be facilitated by use of message boxes, windows and web-based interaction. This cannot be done within the ring 0 code that composes the driver. If the particular CA system needs code to query the user for information, allow the user to make a credit card purchase, inform the user of service changes etc.; the plugin is where that code should reside.

BDA CA Ring 3 KSProxy Plug-in Control Flow

The CA Module’s Ring 3 Plug-in is loaded immediately after the CA driver is loaded. When it is initialized, the CA Plug-in will register itself with the CA manager. It first receives a pointer to the CA manager by getting a pointer to the QueryServices interface of the graph it is instantiated within and then using the QueryServices interface to query a pointer to the CA manager. Using the pointer to the CA manager it gets a pointer to the ICAPolicies interface of the CA manager and requests that an instance of its own ICAPolicy interface be added to the list of policies.

The plug-in exposes an IBDA_ECMMap COM interface. This interface maps directly down to KsSynchronousDeviceControl calls that set and get properties within the ECMMap property set on the driver. This interface is used to send CA, ES and program descriptors, program numbers and ES content PIDs down to the driver using a COM interface.

The plug-in exposes an ICAPolicy COM interface that it can use to interact with the CA manager. The CA manager will pass down all changes between programs and channels to the ICAPolicy interface so it can check them and verify the user is allowed to view them. The ICAPolicy and also raise denials of access at any time it sees fit, for example if the BDA CA driver raises an event and indicates that the SmartCard has been removed, the plug-in can register a denial of access with a description indicating the SmartCard must be reinserted to resume viewing.

Upon initialization the plug-in creates a thread to watch for events created by the CA sample driver. These events indicate changes in the status of the ECM mapper, CA module or SmartCard reader or requests by the driver to display some form of user interface. Upon receipt of these events the plug-in will query for the updated status or desired user interface.

Interface Implementation

Since the Sample Conditional Access Filter is implemented as a AVstreaming driver, the interfaces exposed by the Filter are implemented as AVstreaming driver property, event and method sets. Calls to the various member methods, event signals and property manipulations are sent as I/O Request Packets (IRP’s) and are proxied by AVstreaming. The Sample Conditional Access KSProxy Plug-in is implemented as a generic DLL that KSProxy loads along with the Filter. The plug-in exposes two COM interfaces.

Interfaces Exposed on CA Sample Driver

The following interfaces are exposed on the filter implemented in the CA Sample Driver.

Note: property and event sets meant to be exposed on the ECM Map node have been temporarily moved to the output pin because KSProxy does not yet aggregate them to the output pin but will in the future.

BdaEcmMap Property Set (exposed on ECM Map node)

Allows for setting of the CA, program and ES descriptors as well as setting which program number is to be viewed and which ES’s are to be decrypted. The plugin exposes an IBDA_ECMMap COM interface which maps directly down to this interface allowing Ring 3 code to control this property set.

BdaCA Property Set (exposed on ECM Map node)

This property set contains 4 properties allowing for querying of the status of the ECM mapper, CA module or SmartCard reader and an addition property to query for a UI for the plug-in to display. Each of these 4 properties corresponds to an event within the BdaCAEvent event set; the signaling of one of these events indicates the plug-in should query the corresponding property within this set.

BdaCAEvent Event Set (exposed on ECM Map node)

This event set contains 4 events corresponding to their respective properties in the BdaCA property set. The driver signals any of these events to indicate the corresponding property should be queried.

BdaTopology Property Set (exposed on filter)

This property set is used by BDA to figure out what node types and pin types this filter can provide, how these nodes should be connected together, and the ID of the controlling pin. These properties map to corresponding function within BdaSupp.cpp which in turn access global variables defining this information within ObjDesc.cpp.

BdaChangeSync Method Set (exposed on filter)

BDA uses this method set to make sure changes to certain properties happen in a controlled order. Though the sample has no properties that require such control, functions implementing this architecture have been stubbed out for vendor use.

BdaDeviceConfiguration Method Set (exposed on filter)

The methods in this method set are used to control the configuration of this filter. The functions handling these methods are mapped to functions within BdaSupp.cpp with the exception of CreateTopology which has been implemented in a basic manner within the sample filter.

Interfaces Exposed on CA Sample Plug-in

The following interfaces are exposed on the CA Sample Plug-in.

ICAPolicy

This interface represents the policy object that gets automatically registered with the CA manager. This interface is used to communicate denials of access to the CA manager. This interface should only be instantiated by the plug-in itself when it registers this interface with the CA manager.

IBDA_ECMMap

This interface can be instantiated by any code that needs to send CA, program or ES descriptors as well as the program number of a program to be viewed or the PID of an ES to be decrypted to the ECM mapper.

Data Sink Pins Exposed

Following is a list of the Data Sink Pins exposed by the CA sample filter. Media format definitions for the pins are all found in BdaMedia.h.

MPEG Transport Stream Data Sink Pin

The CA sample filter exposes one MPEG transport stream data sink pin. This pin receives the entire transport stream containing packetized streams containing the EMMs, ECMs, and encrypted ES’s. According to the descriptors received through the IBDA_ECMMap interface it should monitor particular streams for all the conditional access data such as keys and other encryption information the ECM mapper needs to decrypt the particular ES’s. One instance of this pin is all that is allowed and is necessary.

This pin supports the following media format.

· STATIC_KSDATAFORMAT_TYPE_STREAM

Specifies that this pin receives a data stream.

· STATIC_KSDATAFORMAT_TYPE_MPEG2_TRANSPORT

Specifies that the stream is an MPEG-2 packetized transport stream.

· STATIC_KSDATAFORMAT_SPECIFIER_BDA_TRANSPORT

Specifies that this stream is within a BDA network.

Data Source Pins Exposed

Following is a list of the Data Source Pins exposed by the CA sample filter. Media format definitions for the pins are all found in BdaMedia.h.

MPEG Transport Stream Data Source Pin

The CA sample filter exposes one MPEG transport stream data source pin. This pin is where the filter will place the decrypted ES’s. One instance of this pin is all that is allowed and is necessary. This pin is not defined within the initial pin descriptions but is within the pin template array and hence is created by the BDA network provider.

This pin supports the following media format.

· STATIC_KSDATAFORMAT_TYPE_STREAM

Specifies that this pin produces a data stream.

· STATIC_KSDATAFORMAT_TYPE_MPEG2_TRANSPORT

Specifies that the stream is an MPEG-2 packetized transport stream.

· STATIC_KSDATAFORMAT_SPECIFIER_BDA_TRANSPORT

Specifies that this stream is within a BDA network.

Installation and Initialization

Driver Installation

The sample driver and plug-in can be installed using the “Add New Hardware” utility on the Control Panel and by selecting the “Have disk” option and using CASamp.INF included with this sample. Please note that the driver appears to get installed twice because the INF calls streamci.dll to register parts of the driver and streamci goes ahead and installs the entire driver again. I am in the process of finding a solution to this problem.

Driver Initialization

DriverEntry

When the operating system loads the driver, the driver’s DriverEntry routine is called. At this point KsInitializeDriver is called with a pointer to the DeviceDescriptor which supplies kernel streaming utilities with the device dispatch table and the filter descriptor. The device dispatch table contains pointers to functions to Start and Create the device. The Start function calls BdaCreateFilterFactory to create a filter factory to create instances of the filters implemented in this device, namely the sample CA filter. The Create function allocates memory for an instance of the CDevice class and makes this the context for the device.

Filter Descriptor Usage

The DeviceDescriptor passed to KSInitializeDriver contains the filter descriptor. KSProxy uses the filter descriptor to instantiate instances of any of the filters this driver can produce. The filter descriptor contains filter, pin, and BDA node descriptors as well as automation tables, dispatch tables, and pin templates. These items are all contained within the ObjDesc.CPP file. Kernel streaming, KSProxy and AVstreaming documentation should be referenced for information on how these tables and descriptors are used.

Interface Initialization

Driver Interface Initialization

Please reference BDA and KSProxy documentation for information about how Source Pins, Sink Pins, method sets, event sets and property sets are initialized by the KSProxy.

Plug-in Interface Initialization

During installation the INF file adds a registry entry under MediaInterfaces containing the GUID of the CA event property set. This entry also contains the name of the plug-in. Whenever KSProxy loads and initializes a filter exposing a property set with the same GUID as a GUID in the MediaInterfaces list it responds by loading the named plug-in DLL/AX file in the registry entry and every time any method, event or property set is exposed on a filter it checks to see if the loaded DLL/AX files support COM interfaces with the same GUID as the method, event, or property set being exposed. When a match is found KSProxy creates an instance of that COM interface. This is the method by which the CA sample plug-in gets loaded.

The DllRegisterServer function within the plug-in gets called when KSProxy loads the plug-in. The DllRegisterServer function within the CA sample plug-in calls AMovieDllRegisterServer2 which uses the g_Templates global variable within caplugin.cpp to expose the COM classes listed within g_Templates. This is the method by which the CA sample plug-in exposes its COM class.

Required IHV Customization

This CA sample driver and plug-in are meant to be a template for IHVs to use to implement a driver and a plug-in to support their hardware. Many functions within the source files are just stubbed out and must be filled with additional code in order for them to correctly control hardware. In a number of places I have written comments containing “TO DO:” reminders with notes about what an IHV needs to implement in order to make a useful driver. The code that needs to be added is mainly to support the particular hardware implementation an IHV chooses.

Driver Customization

The modifications necessary to the driver are mainly those needed to relay control messages to the hardware implementation. For example when a message comes through the ECM mapper interface telling the driver to map a certain ES, it is the responsibility of the driver to command the hardware to do this. One of the important features of the driver, which has not been implemented in the sample driver, is detection of denials of access. The driver is responsible for listening for and receiving messages for the hardware to indicate that a particular ES cannot be decrypted. When such a failure is detected the driver should register a change of status event (BDA_ECM_MAP_STATUS_CHANGED) using KsPinGenerateEvents. Following the event the plug-in will request the new ECM mapper status from the driver, to which the driver should return a value indicating a decryption failure.
Plug-in Customization

The modifications necessary to the plug-in are mainly those needed to handle CA manager communications specific to the CA system, such as denying access for different reasons and payment and refunding of tolls. When the plug-in retrieves a status change from the driver indicating it cannot decrypt an ES that was requested for decryption it is the responsibility of the plug-in to register a denial with the CA manager and attach appropriate tolls. The sample plug-in includes an currently unused function called RegisterDenial that creates a denial and attaches an instance of the CMyToll class to the denial. The CMyToll class is a class defined in catoll.h and catoll.cpp that the IHV can customize to contain their specific code to handle payment and refunding of tolls. The CMyToll class implements a ICAToll COM interface which is required of tolls used with the CA manager.

Source Files and Binaries

Source Files Required

amstream.h

atlbase.h

atlcom.h

atsmedia.h

BdaIface.h

bdamedia.h

bdasup.h

bdatypes.h

commctrl.h

ddkernel.h

ddraw.h

dvdmedia.h

kcom.h

ks.h

ksdebug.h

ksmedia.h

ksproxy.h

memory.h

stdio.h

streams.h

strmif.h

unknown.h

windows.h

windowsx.h

winerror.h

ecmmap.h generated from ecmmap.idl by MIDL and ca.h generated from ca.idl are also needed.

Source Files Implemented

Driver Source Files Implemented

BDAGUID.C – includes files with needed GUIDs

CASAMP.H – general class definitions for entire driver

CASAMP.RC - basic definitions for this driver

COMMON.H – pre-compiled header file for driver

DEVICE.CPP – functions implementing the device

FILTER.CPP – functions implementing the filter

INPIN.CPP – functions to support the input pin and interfaces exposed on the input pin

OUTPIN.CPP – functions to support the output pin and the interfaces exposed on the output pin

OBJDESC.CPP – declaration of the filter and pin descriptors, automation and dispatch tables

MAKEFILE & SOURCES - basic build instruction files

Plug-in Source Files Implemented

CAPOLICY.CPP & .H - exposes COM interfaces, implements CA policy interface and provides an ECM Map COM interface

CATOLL.CPP & .H - implement a customizable CA toll interface

PCH.H - pre-compiled header file for plug-in

CA_I.C & ECMMAP_I.C - created by MIDL from the IDL files for the CA manager and ECMMap interface, these just define various CLSIDs and IIDs for these interfaces

CA.H & ECMMAP.H - created by MIDL from the IDL files for the CA manager and ECMMap interface, these just define various base classes for these interfaces

CAPLUGIN.RC & CAPLUGIN.DEF - basic definitions for this plug-in

MAKEFILE & SOURCES - basic build instruction files

Binaries Required

ks.lib
ksguid.lib
BdaSup.lib
ksproxy.lib

Binaries Generated

casamp.sys
the CA sample driver

caplugin.ax
the CA sample plug-in

Microsoft(Windows NT

Systems Architecture

Any UI

Printed by Paul Jensen
Page 3 of 15
On 08/11/00, 6:24 PM
Printed by Paul Jensen
Page 15 of 15
On 08/11/00, 6:24 PM

