Microsoft USB Point-of-Sale

Ervin Peretz, Karan Mehra

Microsoft Corporation

July 1999

Background

The current mainstay of the point-of-sale industry is serial and parallel devices, mostly serial. There has been a lot of work done towards a dichotomous control-object / service-object architecture, where the service object drives and abstracts a particular vendor's device so that a control object can talk to any device of a given class (e.g. scale, barcode scanner, coin dispenser, line display, POS printer, the list goes on). There are hundreds of existing service objects for serial devices.

Microsoft has been working with the USB Device Working Group to standardize a set of HID (Human Input Device) usages that, once in place, would abstract all point-of-sale devices at the application level. However, it is apparent that a workable specification of HID usages for POS and a verifiable supporting driver are years away. So while Microsoft is interested in HID for Point-of-Sale in the long term, the immediate goal is to enable the USB point-of-sale industry in a way that is compatible with existing service objects.

POSUSB Driver

In order to enable USB point-of-sale devices under the existing software architecture, Microsoft is providing the POSUSB driver to expose USB point-of-sale interfaces as serial COM ports to service object DLLs.

For vendors building USB versions of existing serial devices, which accept similar command syntax as the serial version, the port of the service object to support the new USB device should require minimal effort.

Hardware Requirements

In order for POSUSB to drive your USB point-of-sale device, the device must first be compliant with the USB 1.1 specification, available at http://www.usb.org. Use this document to educate yourself on USB hardware and firmware basics such as configurations, interfaces, endpoints, and the corresponding descriptors.

The POS functionality must be exposed on the default configuration of your device. The default configuration must expose a single vendor-class interface; i.e. the bInterfaceClass field of the interface descriptor must be 0xFF. That interface should have a pair of endpoints (one IN endpoint and one OUT endpoint) for each serial interface you want POSUSB to expose. All these endpoints need to be of either type BULK or INTERRUPT.

POSUSB will walk the first vendor-class interface in the default configuration of your device. It will find the first IN and the first OUT endpoints of the right type and expose them as a serial interface; the second IN and second OUT endpoints of the right type will be exposed as the second serial interface, etc.

Download and Installation Instructions

Follow these instructions to install the USB Point-of-Sale:

· Go to http://www.microsoft.com/industry/retail/developers/initiatives/opos/home.stm

· Download and run the self-extracting executable file usbpos.exe.
· Copy the extracted files (posusb.sys and ptofsale.inf) onto a blank floppy.

· If you are testing a new device, edit ptofsale.inf and fill out the parts marked “<VENDOR SECTION>” with the hardware PnP id and other information for your device as described therein.

· Now plug your device into a test machine. Follow the instructions on the screen and insert the floppy when requested.

When setup completes, check the Device Manager for your device. Run regedit and look for the COM port name allocated for your device under the HKLM\Hardware\DeviceMap\SerialComm key. Future releases of POSUSB are slated to include Control Panel support for Point-of-Sale that will expose this information better.

Now configure your service object to use this provided COM port. Future releases will specify an automatic way for service objects to find the COM ports allocated for them.

Odd Endpoint Feature

Some simple POS devices do not require bi-directional communication, and so, have only a single endpoint. POSUSB has support for such devices. The driver is notified of this feature during installation, via the Setup Information File, ptofsale.inf, in which the vendor needs to set the OddEndpointFlag (a comment in ptofsale.inf explains how to do this).

The Odd Endpoint may be either an IN or an OUT endpoint. POSUSB tries to map as many pairs of IN/OUT endpoints as are present to serial interfaces. If an endpoint is left over, it is ignored by default; but when the OddEndpointFlag is turned on, POSUSB exposes this odd endpoint as a unidirectional COM interface. By default this flag is disabled, as we don’t recommend building such devices.
Status Line Emulation

An issue that came up at the March, 1999 OPOS meeting was whether the POSUSB driver would emulate physical serial status lines on the serial interfaces. The purpose of this feature is to support existing service objects that were written for an actual serial device, rather than for a USB device exposed as a virtual serial port. Since serial status lines are used in device-specific ways by serial POS devices, the serial status emulation feature requires special support on the USB version of the device to report the settings of the status lines for the emulated serial device.

The serial status emulation feature was implemented in POSUSB and was tested in simulation. For lack of device support, however, this feature is disabled in the current release, and there is no registry key or other backdoor way to enable it. Nevertheless, the feature is described here for vendors wishing to pursue building such a device and working with Microsoft to get the feature tested and exposed in a future release.

See the Hardware Requirements section above for the general requirements of a POSUSB device. The additional requirements/restrictions for a device supporting the serial status emulation feature are as follows: All data endpoints must be of the type BULK. For every pair of IN/OUT data endpoints on the vendor interface, there must be an INTERRUPT IN endpoint associated which the device will use to send serial status signals. These three endpoints will together be mapped to a single emulated COM port.

The device can report status signals via the interrupt endpoint that POSUSB will interpret to the service object DLLs. Further, POSUSB can fake signals like baud-rate, parity, bits-per-second, which are of no use to the USB protocol, thus achieving complete emulation of the serial environment.

POSUSB can also simulate all the registers on the serial port, filling in RTS, DTR, DCD, RI, DSR, CTS, etc from the status pipe, thus supporting the serial data structures such as DCB, COMMTIMEOUTS and COMMPROP.

Once again, serial status emulation is disabled in the current release. Vendors wishing to build a device with this feature should contact the Microsoft reps below.

Static Port Allocation

On Win2000, POSUSB reserves a COM port for each interface via the COM name arbiter on initial PnP and records it in the software key. This guarantees a non-conflicting, perennial COM port name for each interface across boots and re-plugs.

On Win98, there is no COM name arbiter. POSUSB pokes into the SERIALCOMM key for an available COM port name and records it in the software key. This guarantees a perennial COM port name for the interface, but it does not totally guarantee that other drivers that don’t record their COM ports in the SERIALCOMM key will not conflict.

Console Apps on Win98

In order to be WDM-compliant, the POSUSB driver does not register its serial COM interface with vcomm.vxd on Win98. On Win98, a C-runtime-type open from a console app (e.g. 'fopen') on a POSUSB COM interface will succeed the internal CreateFile, but the runtime's GetFileType call on the handle returns FILE_TYPE_UNKNOWN. . This is because the runtime checks if the device name is registered with vcomm.vxd, but since in this case it is not, it fails the console-level open. This means that redirect-to-COM will not work on Win98. This does not hinder service objects DLLs, but vendors should be aware that console test apps might not work for POSUSB COM interfaces on Win98.

The correct cross-platform way to open a COM interface is using the full legal '\\.\COMx' device name. Recall that the C compiler treats backslash as an escape character, so the C call from a service object DLL to open COM5 would read: CreateFile ("\\\\.\\COM5",...);

Supported Operating Systems

POSUSB requires Windows 98 or Windows 2000.

Windows NT4 is not supported because it did not ship with USB support. Although 3rd party USB drivers for NT4 are available, these drivers have interfaces incompatible with those of Microsoft Windows USB drivers. POSUSB will not work with these external drivers.

Release Vehicles

POSUSB for a stand-alone installation on either Windows 98 or Windows 2000 is available for immediate download at: http://www.microsoft.com/industry/retail/developers/initiatives/opos/home.stm.

POSUSB is targeted to ship with Millennium, the release of the Windows 98 code base following Windows 98 Second Edition.

POSUSB is targeted to ship with Neptune, the Windows NT code base release following Windows 2000.

Support

Email ervinp@microsoft.com and gloriaal@microsoft.com with any related questions.

If you already have a USB point-of-sale device and it does not meet the specifications in the Hardware Requirements section above, contact us immediately and send us a unit. We will try to accommodate all existing devices in future POSUSB releases.

If you are building a USB point-of-sale device, the best way to ensure smooth operation on Windows is to send us a prototype. Send a unit and spec to Ervin Peretz c/o Microsoft.

