Introduction to HID Minidrivers


HID minidrivers abstract the bus-specific details from the HID class. The USB Device Class Definition for Human Interface Devices, Version 1.0, specification (USB HID; available at http://www.usb.org/developers/index.html) only refers to devices connected by way of a USB bus, and Microsoft provides the HID minidriver for USB (Hidusb.sys) under Windows NT® version 5.0 and Windows® 98. Therefore, you do not need write any drivers for HID-compliant devices that are connected using USB. However, by writing a HID minidriver, you can make virtually any external device appear to be a HID device, regardless of the connector it uses. 


One advantage to making non-USB devices appear to be HID devices is that it completely isolates the connection details from applications accessing the device. For example, consider a camera that can be remotely controlled by a computer and that comes with either a USB connector or a serial connector to support older computers that don’t have USB ports. If you write a HID minidriver that makes the serial camera controls look like HID features, then you can create a single application using Microsoft DirectInput APIs to control either the serial or USB camera without special code to handle the connection differences. This provides a simple mechanism to support devices connected by way of legacy ports while at the same time taking advantage of the newer USB capabilities.


Introduction to the HID Minidriver Sample


The HID minidriver sample in the DDK has some peculiar features. The sample was designed to demonstrate a simple HID minidriver using a device that is readily available-in this case, a USB keyboard. To load the sample minidriver, it is necessary to trick the system to prevent it from loading the version of the Hidusb.sys minidriver provided with the operating system. See the “Running the HID Minidriver Sample” section below.


The minidriver sample is simple. It does two things: 


Waits for LED commands to come from the system. Recall keyboard LEDs report the NUM_LOCK, CAP_LOCK, and SCROLL_LOCK state.


Completes read IRPs when LED commands are received. The read IRP’s data buffer is filled with “keystroke” reports, causing the LED state to be fed into the system keyboard buffer.





Running the HID Minidriver Sample


To run the HID minidriver sample, follow these steps.


1.	Get the source code from the DDK.


2.	Build the Hidmini.sys driver and copy it to the \windows\system32\drivers directory on your test computer.


3.	Edit the Input.inf file in the %windows%\inf\ directory and change all instances of Hidusb.sys to Hidmini.sys. 


This causes the operating system to load the Hidmini.sys driver instead of the Hidusb.sys driver when it detects a USB input device. 


Note: Back up the Input.inf file before you overwrite your changes so you can restore the system when you complete your work.


4.	Unplug the USB keyboard and shut down your test computer. Plug in a PS/2-style keyboard (if it is not already attached) and reboot the computer. 


5.	After the computer reboots, use the PS/2-style keyboard to start Notepad or some other application that displays keystrokes. (The USB keyboard should not be usable.)


6.	Plug in the USB keyboard, and then press the CAP_LOCK key on the PS/2-style keyboard. 


You should see the string “CAP_LOCK” appear as if you had just typed that string. If not, go to Device Manager , remove the USB keyboard, and then click the Refresh button. This causes the driver database to be rebuilt, resulting in the Hidmini.sys driver being loaded, rather than Hidusb.sys.





Examining the HID Minidriver Sample


HID minidrivers register themselves with the HID class driver by calling HidRegisterMinidriver function in their DriverEntry routine. This call informs the HID class driver of the minidriver’s existence, causing the HID class driver to pass IRPs to the minidriver when appropriate. As with most other WDM drivers, the system calls the AddDevice routine when a new HID device is detected. In this case, the AddDevice routine simply sets up some spinlocks and memory pools to be used while processing read and write IRPs. 


Notice that the GET_MINIDRIVER_DEVICE_EXTENSION macro is used to get access to the HIDMINI device extension. This is done because DeviceObject->DeviceExtension points to the HID CLASS device extension, rather than the HIDMINI device extension. Obviously, confusing the HID CLASS device extension with the HIDMINI device extension will cause data corruption or other problems, usually resulting in a delayed kernel-mode crash.


The startup process continues with the IRP_MN_START_DEVICE Plug and Play minor IRP, which is handled by the HidMiniStartDevice and HidMiniStartCompletion routines. Later, the HID class driver sends IOCTL_HID_GET_DEVICE_DESCRIPTOR, IOCTL_HID_GET_REPORT_DESCRIPTOR, and IOCTL_HID_GET_STRING IRPs to query various devices properties. 


With actual USB HID devices, these routines return strings are usually burned into the device’s firmware. In the HID minidriver sample, a HID device is simulated; therefore; these strings are hard-coded in the driver. When one of these IRPs is received, the HID minidriver sample simply copies the appropriate strings into the IRP’s UserBuffer. The format of the descriptor strings is described in the USB HID specification. The MyReportDescriptor and MyHidDescriptor variables are defined in the Hid.c file.


Next, examine the reads and writes. When the HID class driver receives write requests from the system, the HID class driver sends an IOCTL_HID_WRITE_REPORT IRP. The sample minidriver routes this IRP to the HidMiniWriteReport routine. By simulating hardware that cannot continuously receive data, the HidMiniWriteReport routine queues the IRP and marks it pending after performing other processing. 


To simulate the device issuing an interrupt that indicates it’s ready to receive data, the HidMiniWriteReport routine launches a timer. In this case, think of the timer’s DPC routine as being the DPC routine that would handle a real device’s interrupt to indicate that it’s ready to receive more data. The DPC routine calls the HidMiniWriteCompletion to finish the write request and complete the IRP. The HidMiniWriteCompletion routine is discussed in more detail later in this section.


The system issues write reports when it has something to tell the device. In the case of a USB keyboard, the system only needs to tell the keyboard what LED lights to turn on and off to indicate the CAP, NUM, and SCROLL lock state. So after a CAP, NUM, or SCROLL lock keystroke is detected on the PS/2-style keyboard, the system sends a new “set LED” command to the USB keyboard to keep both keyboards in the same CAP, NUM, and SCROLL lock state. 


Because of a peculiarity in the HID class driver, the data in the IOCTL_HID_WRITE_REPORT IRP’s UserBuffer is not valid after returning from the HidMiniIoctl routine and thus cannot be used in the HidMiniWriteCompletion routine. To work around this limitation, the contents of the UserBuffer must either be copied or processed in the HidMiniWriteReport routine. In this case, the sample is interested only in what LEDs have changed state so it can feed the appropriate string into the system keyboard buffer. So the delta in the LED state is computed and queued with the IOCTL_HID_WRITE_REPORT IRP. HidMiniWriteCompletion first removes a queued IOCTL_HID_WRITE_REPORT IRP and the corresponding encoded LED information. It then translates the encoded state into an English string, which is queued up in the OutputRawQueue to be used by the HidMiniReadCompletion code.


The system sends read IRPs to the HID class driver when it wants to find out what keys were either pressed or released. In Windows NT 5.0, the system always tries to keep two outstanding read requests: one to detect a key being depressed and one to detect a key being released. Read requests are sent to the HID minidriver using the IOCTL_HID_READ_REPORT IRP, which initially is sent to the HidMiniReadReport routine. HidMiniReadReport simply marks the IRP as pending and stores the IRP in a queue that is later processed by the HidMiniReadCompletion routine. 


The HidMiniReadCompletion routine runs in one of the system worker threads. When it detects that it has an outstanding read request, it removes the read IRP and tries to determine whether the HidMiniWriteCompletion routine has put data in the OutputRawQueue. If the data is found in the queue, a single byte is removed and translated into an eight-byte HID keyboard report using the CharToDescriptor routine. (See the USB HID specification at http://www.usb.org/developers/index.html for the format of HID keyboard reports.)


With actual HID devices connected using USB, read descriptors are retrieved directly from the hardware and no translation of descriptors is necessary. Finally, the HID descriptor data is copied to the IOCTL_HID_READ_REPORT IRP’s UserBuffer, and the IRP is completed. To simulate the key being released, the subsequent IOCTL_HID_READ_REPORT IRP is completed with a NULL report. This is controlled by the rest static variable.


By generating read descriptors, the HID minidriver sample can place keystrokes in the system keyboard buffer, which in turn are inserted into the Notepad application. 








