MICROSOFT CONFIDENTIAL

WDM
RealTime
API

A Proposal
Table of Contents

2How to use this guide

3Retrieving Information about the System

4Creating and running real-time threads

8Allowing other real-time threads to run

9Synchronization

10Dynamic Management real-time threads

Chapter

1

Goals
These are the goals for these services:

1) Guaranteed CPU availability. As hard realtime as possible.

2) Reliable scheduling. Ideally threads keep running even if Windows crashes.

3) Very fast thread switching.

4) Both hard up front CPU reservation and automatic statistically generated reservations possible.

5) Clean and simple design and API.

Fundamental Principles
In order to achieve the above goals, the following principles were applied as much as possible when designing this service.

1) The realtime scheduler is the highest priority software running on the machine.

2) Only the realtime scheduler can take control from realtime threads.

3) A realtime thread cannot hold off the realtime thread scheduler.

4) One realtime thread cannot prevent another realtime thread from running on schedule.

5) No system service or driver can prevent realtime threads from running as scheduled.

6) CPU is allocated to realtime threads when they are created. If insufficient CPU is available then the realtime thread creation fails.

7) The realtime scheduler overhead should be as small as possible.

8) Switching realtime threads should be as fast as possible.

9) Realtime thread load should be as finely granular as feasible.

10) Realtime thread load should be distributed as evenly over the realtime thread period as possible.

11) Atomic operations block the thread that requires them. They do not affect the schedules of other realtime threads.

The WDM realtime API is for use by kernel mode drivers only. Since the realtime threads run at IRQL>DISPATCH_LEVEL all memory they touch must be locked down and all functions they call must be safe to call at raised IRQL. The API can be broken down into the following categories:

· Retrieving information about the system (RtVersion)

· Creating and destroying realtime threads (RtCreateThread, RtDestroyThread)

· Allowing other realtime threads to run (RtYield)

· Synchronization (KeAcquireSpinLock, KeReleaseSpinLock)

· Dynamic management of real-time threads (RtAdjustCpuLoad)

Hardware Requirements:

Currently the realtime executive runs only on machines that have a local apic that can be enabled. It also requires the presence of performance counters. Current processors which have a local apic that can be enabled by software are Intel Pentium Pro, Pentium II, Pentium III, and Celeron processors. All of those processors are based on the P6 core. All of those processors also have performance counters. The AMD K7 also has a local apic and performance counters that can be enabled successfully by software and the realtime executive does run on K7 processors. Currently Intel Pentium machines and AMD K6, K6-2, and K6-III processors do not support the realtime executive.

Some of the Pentium II/Celeron processors that are shipped in notebook or mobile configurations do NOT support turning on the local apic. The realtime executive will not run on those machines. New mobile processors from Intel (Coppermine) will support the local apic and the realtime executive should run on those machines.

How to use this guide

This guide should help you add a real-time thread to your kernel-mode driver. It will outline each service provided by the realtime API and describe the structures that are used as parameters for these services.

Chapter

2

Detailed information about the proposed WDM RealTime API
Retrieving Information about the System

NTSTATUS

RtVersion(OUT PULONG Version)

The RtVersion function returns a status that indicates whether realtime services are currently running and available on the machine. This function can also store the version number of the currently running realtime executive. This function may be called from any thread, Windows or realtime.

Input parameters

It takes one input parameter, a pointer to the ULONG location to fill with the version number. This parameter may be NULL and if it is, then the version number information is not written. If the version pointer is not NULL the version information will always be written, regardless of the status code returned by this function.

Output parameters

The version number is in the format xx.xx.xxxx where each xx is 1 byte of the ULONG and the ordering left-to-right is high-order byte to low-order byte. For example, 0x010a0104 is version 1.10.260

Return value

This function can be used to determine whether realtime services are supported on the current machine. If the realtime executive is running this function will return STATUS_SUCCESS. If for some reason the realtime executive is not running and realtime services are not available on this machine, then STATUS_UNSUCCESSFUL will be returned.

Creating and destroying realtime threads

NTSTATUS

RtCreateThread(

ULONGLONG Period,

ULONGLONG Duration,

ULONG Flags,

ULONG StackSize,

RTTHREADPROC RtThread,

IN PVOID pRtThreadContext,

OUT PHANDLE pRtThreadHandle

)

The RtCreateThread function creates a realtime thread. This function can only be called from within a standard Windows thread. It MUST not be called from within a realtime thread.

Input parameters

Period

Period determines the frequency with which the realtime thread must be run. It is always specified in units of time. All time parameters are specified in units of picoseconds (10e-12 seconds). This means the maximum period that can be specified is ~213 days. The following predefined constants should be used when specifying time:

#define WEEK 604800000000000000

#define DAY 86400000000000000

#define HOUR 3600000000000000

#define MIN 60000000000000

#define SEC 1000000000000

#define MSEC 1000000000

#define USEC 1000000

#define NSEC 1000

#define PSEC 1

Duration

Duration is the amount of time within the period that the realtime thread will need to run. Percentage CPU load can be calculated as 100*(Duration/Period) as long as Duration and Period are both specified in units of time. Duration may be specified as 0 in which case the realtime scheduler will dynamically allocate CPU to the realtime thread based on statistics generated as the thread runs. In that case a thread MUST call RtYield at the end of each period to indicate to the scheduler when it is done with the processing for each period. The scheduler uses that information to dynamically adjust the CPU allocated to that client. If this type of client never calls RtYield, or always calls RtYield late for the current period, its CPU allocation will remain pegged at all of the remaining CPU cycles and no other clients RtCreateThread calls will succeed. Note that Windows is allocated some minimum CPU bandwidth so real time threads can never prevent windows from running.

Flags

Attributes of your thread. The predefined constants in which can be specified:

Hardware:

USESFLOAT

Thread will use floating point instructions

USESMMX

Thread will use MMX instructions

Duration Units:

TIME

Duration is specified in units of time

CPUCYCLES

Duration is specified in a count of CPU cycles

StackSize

StackSize is the size of the stack required by the realtime thread in 4k blocks. Currently StackSize must be between 1 and 8 inclusive. RtCreateThread will fail with STATUS_UNSUCCESSFUL for any other values of StackSize.

RtThread

Entry point for the realtime thread function.

pRtThreadContext

Pointer to context information that is passed to your thread function as its Context parameter. This parameter may be NULL, in that case a NULL pointer will be passed as your functions Context parameter.

Output parameters

pRtThreadHandle

pRtThreadHandle is a pointer to an RtThreadHandle that can be output from RtCreateThread. pRtThreadHandle can be NULL, in which case no RtThreadHandle is returned. Storage for the HANDLE RtThreadHandle must be allocated by the code that calls RtCreateThread.

RealTime thread function parameters

typedef VOID (*RTTHREADPROC)(PVOID Context, ThreadStats *Statistics);

The realtime thread is called with 2 parameters: its Context, and a pointer to a read only copy of statistical information that is maintained by the realtime executive and is updated every time contol is passed to the realtime thread.

typedef struct threadstats {

ULONGLONG Period;
// First entries are RtCreateThread parameters.

ULONGLONG Duration;

ULONG Flags;

ULONG StackSize;

ULONGLONG periodindex;

ULONGLONG timesliceindex;

ULONGLONG timesliceindexthisperiod;

ULONGLONG thisperiodstarttime;

ULONGLONG thistimeslicestarttime;

ULONGLONG remainingdurationthisperiod;

} ThreadStats;

Return value

RtCreateThread returns STATUS_SUCCESSFUL if the realtime thread was successfully created and added to the realtime thread list. Otherwise STATUS_UNSUCCESSFUL or STATUS_NO_MEMORY is returned.
NTSTATUS

RtDestroyThread(

IN HANDLE RtThreadHandle

)

The RtDestroyThread function removes the realtime thread indicated by RtThreadHandle from the list of running realtime threads, and releases the resources and cpu allocation associated with that thread. This function can only be called from within a normal Windows thread. It MUST not be called from within a realtime thread.

Input parameters

RtThreadHandle

A handle to the realtime thread to be destroyed.

Output parameters

This function has no output parameters.

Return value

This function returns STATUS_SUCCESS if it finds a realtime thread with the passed in handle and successfully releases all of the resources allocated with this thread.

It returns STATUS_UNSUCCESSFUL if it there is no realtime thread with the passed in handle.

Allowing other realtime threads to run

VOID

RtYield(

ULONGLONG Mark,

ULONGLONG Delta

)

The RtYield function will yield execution to other realtime threads in the system. It should be called whenever a realtime thread does not require further CPU resources.

Input parameters

Mark

This is an absolute time which will be subtracted from the current time by the scheduler whenever it is deciding whether or not to run this thread. When the current scheduler time minus the Mark is greater or equal to the Delta time, then the thread can be run. Note that this scheduler algorithm always assumes this time is in the past. All time parameters are specified in units of picoseconds (10e-12 seconds).

Delta

This is a delta time from the Mark that indicates the point in time up to which this thread should not be run. All time parameters are specified in units of picoseconds (10e-12 seconds).

Output parameters

This function has no output parameters.

Return value

This function has no return value. This function cannot fail. It will yield the specified amount of time. Note that in the special case when both Mark and Delta are passed in as zero, rather than not yielding at all, the function will yield the rest of is current timeslice. Which in general is an indeterminate amount of time.

Synchronization

Since realtime threads run at IRQL>DISPATCH_LEVEL, currently the only syncronization functions provided for them are KeAcquireSpinLock and KeReleaseSpinLock. These allow realtime threads to syncronize with existing system code when required. Note that when a realtime thread tries to acquire a held spinlock, it blocks until the spinlock is released. Ideally realtime threads should be written using lock free algorithms and should not take spinlocks unless absolutely necessary.

Dynamic management of real-time threads

NTSTATUS

RtAdjustCpuLoad(

ULONGLONG Period,

ULONGLONG Duration,

ULONG Flags

)

The RtAdjustCpuLoad function changes the cpu allocation of the currently running realtime thread. This function can only be called from within a realtime thread. If a realtime thread requires more CPU or does not need some of the CPU it has allocated it should call this function.

Input parameters

Period

Period determines the frequency with which the realtime thread must be run. It is always specified in units of time. All time parameters are specified in units of picoseconds (10e-12 seconds). This means the maximum period that can be specified is ~213 days. This may be changed as needed from the value passed at thread creation time.

Duration

Time needed to complete the operations each time the thread is called. This may be changed as needed from the value passed at thread creation time. Note that the units for this parameter may also be changed by modifying the Flags parameter.

Flags

The hardware Flags must exactly match the hardware Flags that were passed at thread creation time. The other Flags may be changed. The predefined Flag values which can be specified:

Hardware:

USESFLOAT

Thread will use floating point instructions

USESMMX

Thread will use MMX instructions

Duration Units:

TIME

Duration is specified in units of time

CPUCYCLES

Duration is specified in a count of CPU cycles

Output parameters

This function has no output parameters.

Return value

This function returns STATUS_SUCCESS if the CPU allocation was successfully changed for this thread. Otherwise this function returns STATUS_UNSUCCESSFUL and the CPU resources allocated to this thread remain unchanged. If any of the parameters are invalid (changing hardware flags to values different from those passed at thread create time for example) then STATUS_INVALID_PARAMETER is returned.

1

