
Microsoft®
Windows CE USB Serial Host Driver

Contents

3Introduction

Overview
4
Installation
4
Uninstall
4
Programming Interface
6
USB Interface
8
Device Errors
9
Debugging
14
OEM Desktop Testing Overview
15

Revision History

	Date
	Description
	Author

	07/06/99
	1.00 Initial draft
	jeffmi

	10/12/99
	1.01
	

	10/16/00
	1.02
	

Introduction

Figure 1. Windows 2000 and Windows 98 WDM layered architecture

· The following modules are shown from bottom-up in Figure 1.

· PCI Enumerator takes care of loading the USB driver stack components when a USB bus is detected on a PC platform, and always loads at least the other core components.

· UHCB.SYS and OHCB.SYS are USB host controller drivers. (OHCB.SYS for the Open Host Controller Interface or UHCB.SYS for the Universal Host Controller Interface)

· USBD.SYS is the USB class driver.

· USBHUB.SYS is the USB hub driver. It is loaded if the PCI enumerator detects a USB hub.

· WCEUSBSH.SYS is the Windows CE USB Serial Host driver.

Overview

· The target platforms are Windows 2000 and Windows 98.

· Plug-and-Play, binary compatible (x86), WDM driver

· Windows NT 4.0 has no native USB support and is therefore not supported. Although there are 3rd party USB stacks available for NT 4.0, these drivers have interfaces incompatible with the Microsoft Windows USB drivers. This driver will not work with these external drivers.

· The driver supports multiple WCE USB Function Devices, limited by the number USB ports, memory, etc. However, ActiveSync 3.1 currently supports only one device.

· On the top-edge, the driver exposes a standard Win32 file-device interface and a Serial-Port interface.

· On the bottom-edge, the driver uses the USB Client Driver Interface to communicate with the Windows CE USB Function Device. This uses the native USBDI stack services.

Installation

· The driver is detected and installed by the Platform’s USB Hub enumerator on the first physical insertion into a USB Port. When you plug in the device, the "Found New Hardware Wizard" should kick in and install the driver via an install script (INF) without any user intervention.

· Vendors wishing to have their hardware enumerated must add their PnP hardware PID&VID to the installation script WCEUSBSH.INF, following the three documented sections <VENDOR SECTION> in that file.

· After the driver is initially installed, you can plug and unplug at will and the driver will load/unload without the user being prompted to re-install.

Uninstall

· To completely uninstall the driver you must use the system’s Hardware Wizard, and optionally purge the system registry and remove all files.

Win 2000:

Use Hardware Wizard \ Uninstall \ Uninstall a device \ Show Hidden \ then, select and remove all previously installed devices under Windows CE USB Devices.

OPTIONAL:

Delete %WINNT%\INF\oem* and %WINNT%\System32\drivers\wceusbs*

Note that the \INF dir is system hidden by default.

Delete from the Win 2000 Registry:

HKLM\System\CCS\Control\Class\{25dbce51-6c8f-4a72-8a6d-b54c2b4fc835}

HKLM\System\CCS\Control\DeviceClasses\{25dbce51-6c8f-4a72-8a6d-b54c2b4fc835}

HKLM\System\CCS\Services\EventLog\System\ WCEUSBSH

HKLM\System\CCS\Services\WCEUSBSH

Reboot

Win 98:

Use Device Manager to uninstall the device.

OPTIONAL:

Delete %WINDOWS%\INF\OTHER*WCE* and

%WINDOWS%\System32\drivers\wceusbs*

Delete from the Win 98 Registry:

HKLM\Enum\WCE*

HKLM\System\CCS\Control\DeviceClasses\{25dbce51-6c8f-4a72-8a6d-b54c2b4fc835}

HKLM\System\CCS\Services\Class\{25dbce51-6c8f-4a72-8a6d-b54c2b4fc835}

HKLM\System\CCS\Services\Class\WCE*

Reboot

· NOTE: If the user does not manually run an Uninstall (Wizard or DevMgr) then you must remove USB's enumeration info. There can be multiple entries under USB's key because it enumerates per port.

Win2000:

HKLM\System\CCS\Enum\USB\Vid_Xxxx&Pid_Xxxx

Win98:

HKLM\Enum\USB\Vid_Xxxx&Pid_Xxxx

Programming Interface

· The driver exposes a standard Win32 file-device interface, so an app can open it directly. The device name is WCEUSBSHx, where x is the 3-digit ones-based instance number 001, 002, etc. So, for example, you would use CreateFile(“\\.\wceusbsh001”, …) to talk the first instance of the device, CreateFile(“\\.\wceusbsh002”, …) to talk with the second device instance and perform multiple concurrent I/O.

· Windows 2000 ONLY:
the driver exposes a Serial-Port (FILE_DEVICE_SERIAL_PORT) interface on the top-edge for legacy application debugging. Your legacy test application can open the device as a Communications Resource “COMx”, where x = 0…n. So, for example, on a desktop PC with 2 serial ports and a WCE USB Function Device installed as COM3 - you would use CreateFile(“COM3”, …) to talk to the WCE device. You can then use the Communications API set documented in the Platform SDK.

NOTE:
this interface is for debug purposes only, and is not enabled by default. To enable the COMx interface you must add the following Registry value:

HKLM\System\CCS\Services\WCEUSBSH\Parameters\REG_DWORD: ExposeComPort:0x1

· On Win98 you cannot access the driver as a Communications Resource (COMx) using the familiar Comm API, because the API gets trapped by VCOMM. This requires the driver to be installed as a virtual modem, and use of ccport.sys and wdmmdmld.vxd. These intermediate driver layers proved unacceptable for use with this driver. However, you can directly access the WDM driver on Win98 using the Win32 file-device interface, and use DeviceIoControl directly for the IOCTL_SERIAL_Xxx. These IOCTLs directly correspond to the Comm API set.

· The following IOCTLs are implemented to emulate a serial-port NULL modem. These IOCTLs directly correspond to the Comm API set.

· IOCTL_SERIAL_CLR_DTR

· IOCTL_SERIAL_CLR_RTS

· IOCTL_SERIAL_CONFIG_SIZE

· IOCTL_SERIAL_GET_BAUD_RATE

· IOCTL_SERIAL_GET_CHARS

· IOCTL_SERIAL_GET_COMMSTATUS

· IOCTL_SERIAL_GET_DTRRTS

· IOCTL_SERIAL_GET_HANDFLOW

· IOCTL_SERIAL_GET_LINE_CONTROL

· IOCTL_SERIAL_GET_MODEMSTATUS

· IOCTL_SERIAL_GET_PROPERTIES

· IOCTL_SERIAL_GET_TIMEOUTS

· IOCTL_SERIAL_GET_WAIT_MASK

· IOCTL_SERIAL_IMMEDIATE_CHAR

· IOCTL_SERIAL_PURGE

· IOCTL_SERIAL_RESET_DEVICE

· IOCTL_SERIAL_SET_BAUD_RATE

· IOCTL_SERIAL_SET_CHARS

· IOCTL_SERIAL_SET_DTR

· IOCTL_SERIAL_SET_HANDFLOW

· IOCTL_SERIAL_SET_LINE_CONTROL

· IOCTL_SERIAL_SET_QUEUE_SIZE

· IOCTL_SERIAL_SET_RTS

· IOCTL_SERIAL_SET_TIMEOUTS

· IOCTL_SERIAL_SET_WAIT_MASK

· IOCTL_SERIAL_WAIT_ON_MASK

· These IOCTLs are documented in the Win2000 DDK. Also, see ntddser.h in the DDK.

· Note that the driver can be surprise-removed at anytime by the user simply unplugging the USB device. The host driver registers a Device Class GUID {25dbce51-6c8f-4a72-8a6d-b54c2b4fc835} for system-wide PnP Event Notification. Both user-mode and kernel-mode components can receive these PnP Events and act accordingly. See the Platform SDK and the Win 2000 DDK for more information on using PnP notifications.

NOTE: the following describes the disappearing COM port problem. If the app has an open handle to the driver and you unplug (and potentially re-plug the USB device) then the 1st device instance tries to unload, and does so up to the point of physically removing itself from the system. It can't complete however, because the app has an outstanding handle open on it. If you then re-plug the USB device, with the 1st instance still up, then a 2nd instance is created by the system creating a new file device \\.\\wceusbsh002 or COM4. If the legacy app is not monitoring the PnP events then it still thinks it has a valid handle to COM3, where that instance is now inactive and rejects all I/O. If the app is monitoring PnP events, then it will see that the 1st instance is being removed, and should release the handle.

· The PC host driver currently does not support device power states, remote wake, etc. These must first be supported in the WCE device. The WCE function driver will see Power Down / Power UP messages every time the device powers on/off. You will therefore see it as a device unplug/re-plug on the host side.

· The host driver supports Block Write requests of up to 128 kb. Larger write requests are rejected, and should be broken up by the test application.

· The host driver currently does NOT send a zero-length packet, to indicate the end of a transaction, for write requests that are multiples of the endpoint’s wMaxPacketSize. The application should simply send an additional zero length write via WriteFile(hDevice, NULL, 0, &dwBtyes, NULL). This note applies to test applications using the host driver for host-to-host communications only; it does not affect host-to-function data flow.

USB Interface

· The host driver assumes 1 Interface, which contains 1 bulk read, 1 bulk write, and 1 optional interrupt endpoint. It also assumes bInterfaceClass = 0xFF. The driver makes no best effort attempts to check for multiple bulk endpoints.

· The host driver assumes these endpoints reside on AltenateSetting 0. However, the AlternateSetting can be changed via registry key and re-plugging the device:

On Win2000

HKLM\SYSTEM\ControlSet\Services\wceusbsh\Parameters\REG_DWORD:AlternateSetting:0xXX

On Win98

HKLM\System\CurrentControlSet\Services\Class\WCESUSB\000*\ Parameters\REG_DWORD:AlternateSetting:0xXX

Where * is the instance number.

· DTR/RTS Status Line Emulation: the driver issues a Class specific request to indicate the state of the host output control lines.

bmRequestType

00100001B (0x21h)

bRequest

SET_CONTROL_LINE_STATE (0x22h)

wValue

Control Signal BitMask

wIndex

Interface

wLength

0

Data

None

The wValue bitmask is defined as :

D15..D2
Reserved

D1

RTS state (1=Active, 0=Inactive)

D0

DTR state (1=Active, 0=Inactive)

The WCE driver will emulate a typical NULL modem cable, such that the DCD and DSR state will follow the host DTR, and CTS state will follow host RTS.

NOTE: when ActiveSync tries to connect it will attempt to make two calls to SET_DTR. The function driver must be able to handle these.

· (Optional) Interrupt Endpoint: this endpoint is used to indicate the availability of IN data, as well as to reflect the state of the device serial control lines:

D15..D3
Reserved

D2

DSR state (1=Active, 0=Inactive)

D1

CTS state (1=Active, 0=Inactive)

D0

Data Available - (1=Host should read IN endpoint, 0=No data currently available)

When the Data Ready bit is set the host driver will put a timeout value on IN endpoint reads, and will continue polling the IN endpoint as long as there is data or until the timeout expires. The default timeout is 1280 msec, and is registry configurable.

HKLM\System\CCS\Services\wceusbsh\Parameters\InterruptTimeout:REG_DWORD:0xXX

The value is in msec.

Note: when the timeout fires the host driver must tell the USB stack to cancel the read on the IN endpoint, which takes an indeterminate amount of time to complete. During development it took ~73 msec on a P300 MP machine, or ~14 msec on a single proc P90, depending on where the USB stack was in it’s processing. This means if you set the timeout value too low then you will spend the bulk of the time waiting for the IN endpoint read to cancel, instead of actually doing reads. If you set the value too high then you effectively act like a driver without an INT endpoint – always polling for read data. The idea behind the INT endpoint is to keep the desktop’s USB Host Controller from always polling the USB Bus, which ties up the desktop’s PCI bus.

Note: there is a one second keep alive between the host and function upper layer protocols. A value too small or large could effect this timing.

Device Errors

· The host driver writes error log information to My Computer \ System Tools \ Event Viewer \ System.

· If the host driver fails to get USB descriptors, or set a configuration, then an error log is written and the driver will fail to load.

· If there are device errors detected on the device BULK ENDPOINTS (as reported by the native USB stack) then the host driver will attempt to reset the failing endpoint. There is a maximum number of consecutive retries by the host driver. If the endpoint fails to recover after the maximum number of consecutive retries then an error log is written, and the driver is disabled. The driver will then show in Device Manager as ‘No Longer Functioning’.

· The default maximum number of consecutive bulk endpoint retries is 100.

· The maximum number of bulk endpoint retries is registry configurable under:

On Win2000
HKLM\SYSTEM\ControlSet\Services\wceusbsh\Parameters\REG_DWORD: MaxPipeErrors:0xXX

On Win98

HKLM\System\CurrentControlSet\Services\Class\WCESUSB\000*\ Parameters\REG_DWORD: MaxPipeErrors:0xXX

Where * is the instance number.

· The maximum number of command retries sent on endpoint 0 (e.g. SET_DTR) is hard coded to two. This value will not change because

a) commands on EP0 should never fail unless the device is bad

b) ActiveSync retries commands (e.g. SET_DTR), so we need a way to detect, disable, and inform the user that device is not responding.

· The error log dump data can be viewed in the Event Viewer as an array of DWORDS, and is interpreted as an IO_ERROR_LOG_PACKET, as defined in the Win2000 DDK:

typedef struct _IO_ERROR_LOG_PACKET (

 UCHAR MajorFunctionCode;

 UCHAR RetryCount;

 USHORT DumpDataSize;

 USHORT NumberOfStrings;

 USHORT StringOffset;

 USHORT EventCategory;

 NTSTATUS ErrorCode;

 ULONG UniqueErrorValue;

 NTSTATUS FinalStatus;

 ULONG SequenceNumber;

 ULONG IoControlCode;

 LARGE_INTEGER DeviceOffset;

 ULONG DumpData[1];

}IO_ERROR_LOG_PACKET, *PIO_ERROR_LOG_PACKET;

Caller-supplied data in the packet includes the following:

	Member
	Meaning

	MajorFunctionCode
	The IRP_MJ_XXX of the current IRP.

	RetryCount
	A count of how many times the caller has retried the operation and encountered the same error.

	DumpDataSize
	The number of bytes of caller-suplied DumpData, if any.

	NumberOfStrings
	The number of insertion strings supplied following the DumpData; the initial string, if any, is assumed to be the driver name or that of the target device object.

	StringOffset
	The offset, immediately following any DumpData, of the caller-supplied, zero-terminated Unicode insertion strings, if any.

	EventCategory
	A caller-determined value matching that in the caller's message file for categories if the driver set itself up in the registry as an event-logging component; otherwise, zero.

	ErrorCode
	An IO_ERR_XXX value.

	UniqueErrorValue
	A driver-determined value that indicates where in the driver the error was encountered.

	FinalStatus
	The STATUS_XXX value to be set in the I/O status block of the IRP or a STATUS_XXX returned by a support routine.

	SequenceNumber
	A driver-assigned number for the current IRP, constant for the life of the request.

	IoControlCode
	An IOCTL_XXX if MajorFunctionCode is IRP_MJ_DEVICE_CONTROL, IRP_MJ_INTERNAL_DEVICE_CONTROL, or IRP_MJ_SCSI; otherwise, zero.

	DeviceOffset
	The offset on the device where the error occurred, or zero.

	DumpData
	Caller-supplied data, such as device register contents, if DumpDataSize is nonzero.

· ErrorCodes are currently defined in the driver as

//

// MessageId: SERIAL_USB_READ_BUFF_OVERRUN

//

// MessageText:

//

// The internal USB Read Buffer was overrun.

//

#define SERIAL_USB_READ_BUFF_OVERRUN ((NTSTATUS)0x80060001L)

//

// MessageId: SERIAL_INIT_FAILED

//

// MessageText:

//

// Unable to initialize the Driver.

//

#define SERIAL_INIT_FAILED ((NTSTATUS)0xC0060002L)

//

// MessageId: SERIAL_NO_SYMLINK_CREATED

//

// MessageText:

//

// Unable to create the symbolic link %2 for device %3.

//

#define SERIAL_NO_SYMLINK_CREATED ((NTSTATUS)0xC0060004L)

//

// MessageId: SERIAL_INSUFFICIENT_RESOURCES

//

// MessageText:

//

// Not enough resources were available for the driver.

//

#define SERIAL_INSUFFICIENT_RESOURCES ((NTSTATUS)0xC0060008L)

//

// MessageId: SERIAL_UNABLE_TO_ACCESS_CONFIG

//

// MessageText:

//

// Specific user configuration data is unretrievable.

//

#define SERIAL_UNABLE_TO_ACCESS_CONFIG ((NTSTATUS)0xC0060013L)

//

// MessageId: SERIAL_INVALID_USER_CONFIG

//

// MessageText:

//

// User configuration for parameter %2 must have %3.

//

#define SERIAL_INVALID_USER_CONFIG ((NTSTATUS)0xC0060019L)

//

// MessageId: SERIAL_GARBLED_PARAMETER

//

// MessageText:

//

// Parameter %2 data is unretrievable from the registry.

//

#define SERIAL_GARBLED_PARAMETER ((NTSTATUS)0xC0060023L)

//

// MessageId: SERIAL_REGISTRY_WRITE_FAILED

//

// MessageText:

//

// Error writing to the registry.

//

#define SERIAL_REGISTRY_WRITE_FAILED ((NTSTATUS)0xC0060029L)

//

// MessageId: SERIAL_HARDWARE_FAILURE

//

// MessageText:

//

// The driver detected a hardware failure on device %2 and will disable this device.

//

#define SERIAL_HARDWARE_FAILURE ((NTSTATUS)0xC006002DL)

· UniqueErrorValues are currently defined in the driver as

#define ERR_COMM_SYMLINK 1 (decimal)

#define ERR_SERIALCOMM 2

#define ERR_GET_DEVICE_DESCRIPTOR 3

#define ERR_SELECT_INTERFACE 4

#define ERR_CONFIG_DEVICE 5

#define ERR_RESET_WORKER 6

#define ERR_MAX_READ_PIPE_DEVICE_ERRORS 7

#define ERR_MAX_WRITE_PIPE_DEVICE_ERRORS 8

#define ERR_MAX_INT_PIPE_DEVICE_ERRORS 9

#define ERR_USB_READ_BUFF_OVERRUN 10

#define ERR_NO_USBREAD_BUFF 11

#define ERR_NO_RING_BUFF 12

#define ERR_NO_DEVICE_OBJ 13

#define ERR_NO_READ_PIPE_RESET 14

#define ERR_NO_WRITE_PIPE_RESET 15

#define ERR_NO_INT_PIPE_RESET 16

#define ERR_NO_CREATE_FILE 17

#define ERR_NO_DTR 18

#define ERR_NO_RTS 19

· FinalStatus codes are system defined (%NTDDK%\inc\usbdi.h, ntstatus.h, etc.). Typical error codes can include:

#define STATUS_TIMEOUT
((NTSTATUS)0x00000102L)

#define STATUS_DEVICE_DATA_ERROR ((NTSTATUS)0xC000009CL)

#define USBD_STATUS_DEV_NOT_RESPONDING ((USBD_STATUS)0xC0000005L)

#define USBD_STATUS_INTERNAL_HC_ERROR ((USBD_STATUS)0x80000800L)

· For example: Viewing the following Error log data as WORDs

0000: 00000200 00520002 00000000 c006002d
0010: 00000012 00000102 00000000 00000000

0020: 00000000 00000000

c006002d (hex) – ErrorCode: SERIAL_HARDWARE_FAILURE

00000012 (hex) – UniqueErrorValue: device failed to SET DTR

00000102 (hex) - FinalStatus: device Timed out, defined in ntstatus.h

Debugging

· The checked build of the host driver contains ASSERTS, TEST_TRAPS, and varying degrees of debug trace levels. Debug tracing is enabled via registry key. The checked build of the driver MUST be used with a kernel debugger.

On Win2000

HKLM\SYSTEM\ControlSet\Services\wceusbsh\Parameters\REG_DWORD:DebugLevel:0xXX

On Win98

HKLM\System\CurrentControlSet\Services\Class\WCESUSB\000*\ Parameters\REG_DWORD: DebugLevel:0xXX

Where * is the instance number.

· The DebugLevel trace bits are currently defined as:

#define DBG_OFF ((ULONG)0x00000000)

#define DBG_ERR ((ULONG)0x00000001)

#define DBG_WRN ((ULONG)0x00000002)

#define DBG_INIT ((ULONG)0x00000004)

#define DBG_PNP ((ULONG)0x00000008)

#define DBG_READ ((ULONG)0x00000010)

#define DBG_WRITE ((ULONG)0x00000020)

#define DBG_DUMP_READS ((ULONG)0x00000040)

#define DBG_DUMP_WRITES ((ULONG)0x00000080)

#define DBG_READ_LENGTH ((ULONG)0x00000100)

#define DBG_WRITE_LENGTH ((ULONG)0x00000200)

#define DBG_USB ((ULONG)0x00000400)

#define DBG_SERIAL ((ULONG)0x00000800)

#define DBG_TIME ((ULONG)0x00001000)

#define DBG_EVENTS ((ULONG)0x00002000)

#define DBG_CANCEL ((ULONG)0x00004000)

#define DBG_IRP ((ULONG)0x00008000)

#define DBG_INT ((ULONG)0x00010000)

#define DBG_DUMP_INT ((ULONG)0x00020000)

#define DBG_WORK_ITEMS ((ULONG)0x00040000)

#define DBG_LOCKS ((ULONG)0x00100000)

#define DBG_TRACE ((ULONG)0x00200000)

#define DBG_PERF ((ULONG)0x80000000)

#define DBG_ALL ((ULONG)0xFFFFFFFF)

OEM Desktop Testing Overview

· OEMs should perform routine tests of their WCE hardware and firmware using the sample test matrix across the variety of USB Host controllers and Windows desktop platforms. Note that there is currently no WHQL classification for these devices, so testing must be provided by the OEMs.

· Desktop testing is required to ensure the device consistently enumerates at the root hub, as well as (at least) 5 hubs deep. The device should consistently enumerate during PnP (plug/unplug) and device power down/up.

· The WCE device should not cause other USB devices to be ejected from the USB while attached, or while detaching from the port, so testing should be performed with other USB devices both upstream and downstream.

	USB Controllers
	CMD OHCI Controller
	Lucent OHCI Controller Old Rev.
	Lucent OHCI Controller New Rev.
	Lucent Quad OHCI Controller
	Opti OHCI Controller
	Intel 82371AB/EB UHCI Controller
	NEC E13+

	PocketPC Tests
	
	
	
	
	
	
	

	PocketPC enumerates without any problems when connected to the root hub
	
	
	
	
	
	
	

	File transfer and synchronization works both ways
	
	
	
	
	
	
	

	PocketPC works after 10X PnP from the cradle
	
	
	
	
	
	
	

	PocketPC works after 10X Power down/up from the cradle
	
	
	
	
	
	

	PocketPC works when connected to external USB hub (test 5 hubs deep)
	
	
	
	
	
	
	

	ACPI
	
	
	
	
	
	
	

	Device functions after suspend/resume from all power states
	
	
	
	
	
	
	

	Suspend to S3 or S4, unplug device, resume and ensure that drivers are correctly removed, and entry in devman is gone
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	NON-ACPI
	
	
	
	
	
	
	

	Device functions after hibernate/resume
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Automated
	
	
	
	
	
	
	

	TBD
	
	
	
	
	
	
	

	TBD
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Standard
	
	
	
	
	
	
	

	Device functional after disable/enable (10x)
	
	
	
	
	
	
	

	Manual PnP of device into root hub and downstream hub (10x)
	
	
	
	
	
	
	

	Device functional after remove/refresh (10x)
	
	
	
	
	
	
	

	Disable device and unplug, then verify that all references to the device have been removed
	
	
	
	
	
	
	

	Disable device and reboot
	
	
	
	
	
	
	

UHCB.SYS

OHCB.SYS

USBD.SYS

PCI Enumerator

USBHUB.SYS

USB�Driver�Interface

USB Bus

USB Driver Stack

WCEUSBSH.SYS

WDM / Serial-Port�Interface

