Windows 9x

Host Controller Driver Interface (HCDI) Specification

rev .01

IRP/URB interface

IRP functions supported

An HCD supports the following IRP major functions.

IRP_MJ_CREATE

Called when USBD attaches to the HCD.

IRP_MJ_CLOSE

Called when USBD detaches from the HCD.

IRP_MJ_INTERNAL_DEVICE_CONTROL

This function is used by USBD to submit URBs to USBD.

The parameter format expected for this function is:�_IO_STACK_LOCATION.Parameters.Others.Argument1 = pointer to USB_REQUEST_BLOCK.

**We may want to define IRP_MJ_SUBMIT_URB equivalent to IRP_MJ_INTERNAL_DEVICE_CONTROL, like scsi does.�

URBs

HCD handles URBs passed in by USBD (the class driver) -- see the USBDI specification for a detailed description of URBs. In some cases these URBs may be the original URBs submitted by a client driver to USBD with possibly some parameters modified by USBD.

Errors

USBD defines a set of private USB_STATUS_XXX values. HCD must set the status field of a URB upon completion of the IRP containing the URB to one of these codes. If the HCD returns STATUS_PENDING for the IRP for later completion HCD must set the status field to USBD_BUSY. HCD normally completes IRPs with STATUS_SUCCESS even if the URB status field is not success – USBD will map the URB status code to an appropriate NT status code in the IRP before completing it to the client driver. See the USBDI specification for a list of the USBD status codes:

Bandwidth Allocation

Bandwidth Accounts

For a detailed description of bandwidth accounts see the USBDI specification.

HCD Interface APIs

some definitions:

URB - USB request block, data structure that describes a specific api request.

HCD - Host controller driver, device driver that talks directly to USB hardware on the host.

USBD - Universal Serial Bus driver, provides the interface layer (USBDI) for USB device drivers.

HCDs handle URBs in the same way that the USBD driver handles them. A HCD will be required to support a subset of the URB commands supported by USBD and a few additional URB (HCD specific) commands. URBs will always be passed to an HCD by USBD – it is the USBDs responsibility to perform parameter validation and error mapping. The URBs passed to an HCD will be either passed along from a client driver or created by USBD as the result of another URB request made to USBD.

General APIs

HCD_OPEN_ENDPOINT

HCD_CLOSE_ENDPOINT

HCD_OPEN_ACCOUNT

HCD_CLOSE_ACCOUNT

CONTROL_TRANSFER

INTERRUPT_TRANSFER

BULK_TRANSFER

ISOCHRONOUS_TRANSFER

SET_FRAME_LENGTH

GET_FRAME_LENGTH

GET_CURRENT_FRAME_NUMBER

HCD_OPEN_ENDPOINT

description

Creates an endpoint (including allocating bandwidth) with characteristics specified by a USB endpoint descriptor.

URB request format

typedef struct _HCD_URB_OPEN_ENDPOINT {� struct _URB_HEADER ;�� USHORT 	DeviceAddress;� PUSB_ENDPOINT_DESCRIPTOR EndpointDescriptor;� PVOID 	HcdEndpoint;	� �} HCD_URB_OPEN_ENDPOINT;

parameters

input

Function

Function code set to URB_FUNCTION_HCD_OPEN_ENDPOINT.

DeviceAddress

Device address for the device this endpoint is on.

AccountHandle

Account to draw bandwidth from when opening this endpoint.

EndpointDescriptor

Pointer to a USB defined endpoint descriptor for the endpoint to open, this descriptor will provide the information HCD needs to know about the endpoint.

output

HcdEndpoint

HCD handle for this endpoint if successful.

HCD_CLOSE_ENDPOINT

description

Closes an endpoint structure and frees its bandwidth – the bandwidth was allocated from an account it is returned to that account. If any transfers are pending for the endpoint then this function fails.

URB request format

typedef struct _URB_HCD_CLOSE_ENDPOINT {� struct _URB_HEADER ;� PVOID HcdEndpoint;� } URB_HCD_CLOSE_ENDPOINT;

parameters

input

Function

Function code set to URB_FUNCTION_HCD_CLOSE_ENDPOINT.

HcdEndpoint

HCD Handle to the endpoint to be closed.

output

HCD_Control_Transfer

This command is passed directly from USBD, see USBDI specification for description.

Bulk_Transfer

This command is passed directly from USBD, see USBDI specification for description.

Isochronous_Transfer

This command is passed directly from USBD, see USBDI specification for description.

INTERRUPT_TRANSFER

This command is passed directly from USBD, see USBDI specification for description.

Set_Frame_Length

This command is passed directly from USBD, see USBDI specification for description.

Get_Frame_Length

This command is passed directly from USBD, see USBDI specification for description.

Get_Current_Frame_Number

This command is passed directly from USBD, see USBDI specification for description.

HCD_OPEN_ACCOUNT

TBD

HCD_CLOSE_ACCOUNT

TBD

