PURPOSE:
To provide a set of apis in the core USB stack that can be called from user mode or drivers to determine the topology of the bus and specific information about the devices on the bus including how much isochronous bandwidth they may be using. Such a user mode application is assumed to have intimate knowledge of USB.

IOCTLS:

The IOCTLS are divided in to three groups:

1. IOCTLS sent to the BUS device name, the USB busses in the system follow the naming convention HCD0,HCD1…HCD9 - we support up to 10 controllers in the system.

2. IOCTLS sent to a USB Node, a USB node is defined to be either the device object for a USB hub or the device object for a USB parent ‘bus’ driver (a USB parent driver ejects PDO for the individual interfaces of a composite device). A node connection refers to a physical device object ejected by either the hub or parent ‘bus’ driver.

3. INTERNAL IOCTLS sent to the PDO passed to a USB device driver when it is loaded. These are for use by kernel mode drivers and are not accessible from user mode.

Enumerating the bus:

The user mode application enumerates the bus by first calling USB_GET_ROOT_HUB_NAME for a given host controller. Then given the name of the node the application calls GET_NODE_INFORMATION to determine how many connections the node has. The application can then iterate through all the connections calling GET_CONNECTION_INFORMATION and if the NodeName field is not null on a connection repeat the process with this new NodeName.

BUS IOCLTS:

IOCTL_USB_GET_ROOT_HUB_NAME

inputBuffer/outputBuffer = pointer to buffer for the name of the root hub USB node -- this name may be opened and USB node IOCLTS may be issued to it. This name corresponds to the root hub of the host controller to which the ioctl is sent.

length = HUB_NAME_LENGTH unicode characters long.

BUS NODE IOCTLS:

IOCTL_USB_GET_NODE_INFORMATION

typedef enum _USB_HUB_NODE {

 UsbHub,

 UsbMIParent

} USB_HUB_NODE;

typedef struct _USB_HUB_INFORMATION {

 //

 // copy of data from hub descriptor

 //

 USB_HUB_DESCRIPTOR HubDescriptor;

 // max power this hub may supply

 LONG MaxPower;

 // power currently allocated by this hub

 LONG PowerUsed;

} USB_HUB_INFORMATION, *PUSB_HUB_INFORMATION;

typedef struct _USB_MI_PARENT_INFORMATION {

 ULONG NumberOfInterfaces;

} USB_MI_PARENT_INFORMATION, *PUSB_MI_PARENT_INFORMATION;

typedef struct _USB_NODE_INFORMATION {

 USB_HUB_NODE NodeType; // hub, mi parent

 union {

 USB_HUB_INFORMATION HubInformation;

 USB_MI_PARENT_INFORMATION MiParentInformation;

 } u;

} USB_NODE_INFORMATION, *PUSB_NODE_INFORMATION;

input/output buffer = pointer to USB_NODE_INFORMATION, this information can be used to determine if the node is a hub or a parent driver and how many devices can be attached.

length = size of USB_NODE_INFORMATION

IOCTL_USB_GET_NODE_CONNECTION_INFORMATION

typedef struct _USB_PIPE_INFO {

 USB_ENDPOINT_DESCRIPTOR EndpointDescriptor;

} USB_PIPE_INFO, PUSB_PIPE_INFO;

typedef enum _USB_CONNECTION_STATUS {

 NoDeviceConnected,

 DeviceConnected,

 DeviceFailedEnumeration,

 DeviceInSuspend

TBD need more status codes

} USB_CONNECTION_STATUS, *PUSB_CONNECTION_STATUS;

typedef struct _USB_NODE_CONNECTION_INFORMATION {

 ULONG ConnectionIndex;

 // unicode symbolic name for this node if it is a hub or parent driver

 // null if this node is a device.

 WCHAR NodeName[HUB_NAME_LENGTH];

 // usb device descriptor returned by this device

 // during enumeration

 USB_DEVICE_DESCRIPTOR DeviceDescriptor;

 UCHAR CurrentConfigurationValue;

 BOOLEAN LowSpeed;

 USHORT DeviceAddress;

 // power allocated to this port (in mA)

 USHORT MaxPower;

 ULONG NumberOfOpenPipes;

 USB_CONNECTION_STATUS ConnectionStatus;

 USB_PIPE_INFO PipeList[0];

} USB_NODE_CONNECTION_INFORMATION, *PUSB_NODE_CONNECTION_INFORMATION;

inputBuffer/outputBuffer - pointer to buffer to be filled in with the USB_NODE_CONNECTION_INFORMATION. On entry ConnectionIndex should be set to the desired zero based index value of the port or interface to request information about.

length - size of buffer passed in by user mode application – needs to be long enough to hold the list of all open pipes on the connection.

In addition to basic information about the device a list of USB pipes opened by the device and their characteristics is provided so that the caller may determine how much bandwidth is being consumed by this device.

IOCTL_USB_GET_DESCRIPTOR_FROM_NODE_CONNECTION
typedef struct _USB_DESCRIPTOR_REQUEST {

 ULONG ConnectionIndex;

 struct {

 UCHAR bmRequest;

 UCHAR bRequest;

 USHORT wValue;

 USHORT wIndex;

 USHORT wLength;

 } SetupPacket;

 UCHAR Data[0];

} USB_DESCRIPTOR_REQUEST, *PUSB_DESCRIPTOR_REQUEST;

inputBuffer/outputBuiffer - pointer to a buffer containing a USB_DESCRIPTOR_REQUEST. On entry SetupPacket is filled in with the appropriate values for a particular GET_DESCRIPTOR request. On exit the Data[] is filled in with the data returned by the device. This api provides a generic mechanism for a user mode app to request a descriptor from a device in order to display additional descriptive information.

INTERNAL IOCTLS:

 IOCTL_INTERNAL_USB_SUBMIT_URB

 This IOCTL is used by client drivers to submit URB (USB Request Blocks)

 Parameters.Others.Argument1 = pointer to URB

 IOCTL_INTERNAL_USB_RESET_PORT

This IOCTL will generate a USB reset on the port associated with the PDO passed to IoCallDriver. After reset, the device is in the addressed, unconfigured state. It is up to the driver to restore the device to the same state as before the reset. This IOCTL allows a device driver to re-initialize its’ device without invoking plug and play.

 IOCTL_INTERNAL_USB_GET_PORT_STATUS

 This IOCTL returns the current port status for the port associated with the PDO passed to IoCallDriver .

 Parameters.Others.Argument1 = pointer to port status register (ULONG)

 status bits are:

#define USBD_PORT_ENABLED 0x00000001

#define USBD_PORT_CONNECTED 0x00000002

 IOCTL_INTERNAL_USB_ENABLE_PORT

 This IOCTL will request the hub to re-enable the port associated with the PDO passed to IoCalldriver.

This IOCTL is allows a device driver to re-enable a port that has been disabled due to a babble error generated by the attached device.

