Windows 9x

Universal Serial Bus Driver Interface (USBDI) Specification

IRP/URB interface

IRP functions supported

USBD supports the following IRP major functions.

IRP_MJ_CREATE

Called when USB class drivers attach themselves to USBD.

IRP_MJ_CLOSE

Called when USB class drivers detach themselves from USBD.

IRP_MJ_INTERNAL_DEVICE_CONTROL

USBD supports the following Internal DeviceIoControl codes:

USBD_IOCTL_SUBMIT_URB

This function is used by USB device class drivers to submit URBs to USBD.

The parameter format expected for this function is:��_IO_STACK_LOCATION.Parameters.Others.Argument1 = pointer to USB_REQUEST_BLOCK.

URBs

Requests are passed to USBD via a pointer to a URB structure, a function code within the URB identifies the specific request. There is a separate URB structure for each function, however, every URB has a common header which contains the following fields:

Length

Function Code

DeviceHandlerObject

Status Code

URB Header Structure:

typedef struct {� USHORT Length;� USHORT Function;� ULONG Status;� PVOID DeviceHandlerObject; �} URB_HEADER;�

URB Header Parameters

The header portion of a URB must always be initialized with the following input parameters and will always return the following output parameters:

input

Length

Specifies the
size (in bytes)
 of
the
specific
URB
_
XXX

request structure
.

Function

Function code set to URB_FUNCTION_
XXX
.

DeviceHandlerObject

The device handler object for this USB device
, this structure is created by USBD and passed to the USB device driver when it is loaded
.

output

Status

USB_STATUS_XXX status code for the given request.

Errors

USBD defines a
set of private USB_STATUS_XXX values which are returned from calls to IRP_MJ_INTERNAL_DEVICE_CONTROL in the status field of the URB. The status field in the IRP is always set to a valid NTSTATUS code. USBD will map the URB status code to a valid NTSTATUS code and set
s
 the status field in IRP request to the NTSTATUS code when it completes the IRP.
This way a USB device driver
does not
need
to
 perform
mapping of USB
 error codes unless it wishes to
.

The following is a list of the private USB status codes:

TBD

Bandwidth Allocation

Bandwidth Accounts

Bandwidth accounts allow USB device drivers to pre-allocate bandwidth on the bus
, clients may
use
bandwidth
accounts
 to insure that they can open a particu
lar set of endpoints when they need to and to manage bandwidth
among
 multiple configurations for the same device.
 There are two types of accounts, isochronous and interrupt.

Isochronous
 Accounts

I
sochronous
bandwidth is calculated based on the number of bit

times needed to support a given
maximum pa
c
ket size
. When an isochronous account is created the caller indicates
a

maximum pa
c
ket

size
 for a hypothetical endpoint (i
.
e
.

an endpoint
of th
ese

c
hara
c
teristics
does
not
 have to exist on the device)

–
 the
bandwidth to support an endpoint of this configuration is allocated and associated with the
account
handle
that is
returned. Later when the client opens an isochronous endpoint
it
 has the option of drawing the bandwidth needed from
t
his
 account
,
it
 indicates this by passing
the
 valid account handle to the
OPEN_ENDPOINT
 function
.
 When the endpoint is later closed,
any
bandwidth
allocated from an account is returned to that account.

Interrupt
 Accounts

Interrupt endpoints are more complex
 since the bandwidth required to support
an endpoint
 depends
on the polling interval
.
 An interrupt endpoint
can
occupy
one of
N
possible positions in the
schedule based
on the polling interval

(N is calculated by rounding down the requested polling interval to the nearest power of
2
 less than or equal to 32)
–

the bandwidth used by the end
p
oint
will
depend
 on the position

USBD
allocates to this endpoint
 as well as the
maximum pa
c
ket
s
ize
. USBD attempts to balance the load
 (bandwidth used by
 the
 interrupt endpoint
)
 ac
ross the
N
 po
s
sible positions

it can occupy in the
 schedule.
 Because of this
,
 when a bandwidth account is created for an interrupt endpoint
both
the polling interval
and
 the
maximum pa
c
ket
size
are
 specified

so that
a posi
tion in the schedule
can be
 assi
g
n
ed to the ac
c
ount
.
When an endpoint is opened using bandwidth from an interrupt account the position in the schedule for the interrupt endpoint is taken from the account.
A
s
with isochronous endpoints when the interrupt endpoint is closed any bandw
i
dth
(and schedule position) is returned to the account from which it was drawn.
Also note that o
nce
created
,

a
n interrupt
 bandwidth account c
an

s
upport
an
y
 interrupt endpoint of
less that or equal to
 the reque
sted polling interval and
less than or equal to
 the

maximum pa
c
ket
.

Allocating Interrupt
 bandwidth
 from an Is
o
chronous A
ccount

Do we allow this??

Bandwidth Pruning

TBD

USB Driver Interface APIs

General APIs

Create_InterrUpt_Account

Create_Isochronous_Account

Close_Account

Open_Interface

Close_Interface

Open_Endpoint

Close_Endpoint

Cancel_Endpoint

Take_Frame_Length_Control

Release_Frame_Length_Control

Get_Frame_Length

Set_Frame_Length

Get_Current_Frame_Number

Transfer APIs

Standard_Control_Transfer

General_Control_Transfer

Bulk_Transfer

Interrupt_Transfer

Isochronous_Transfer

Create_Interrupt_Account

description

Creates an account from which interrupt endpoints can allocate bandwidth when they are opened, the account reserves bandwidth according to the maximum packet size and service interval passed in. Once allocated the bandwidth can be claimed by passing in the returned AccountHandle when using the OPEN_ENDPOINT or OPEN_INTERFACE functions.

URB request format

typedef struct {� URB_HEADER UrbHeader;� � ULONG ServiceInterval; � ULONG MaximumPacketSize;� PVOID AccountHandle;�} URB_CREATE_INTERRUPT_ACCOUNT;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Create_InterrpUPt_Account.

MaximumPacketSize

Maximum packet size in bytes.

ServiceInterval

Polling period in ms.

output

AccountHandle

A valid account handle if status == USB_STATUS_SUCCESS, 0 if failure;

Create_Isochronous_Account

description

Creates an account from which USBD can allocate bandwidth when an isochronous endpoint is opened.

URB request format

typedef struct {� URB_HEADER UrbHeader;�� ULONG MaximumPacketSize;� PVOID AccountHandle;�} URB_CREATE_ISOCHRONOUS_ACCOUNT;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_CREATE_ISOCHRONOUS_ACCOUNT.

MaximumPacketSize

Maximum packet size in bytes.

output

AccountHandle

A valid account handle if status == USB_STATUS_SUCCESS, 0 if failure;

Close_Account

description

Closes a bandwidth account, the bandwidth reserved by the account is made available to any device calling OPEN_ENDPOINT or OPEN_INTERFACe and not specifying a specific account (i.e. it is returned to the ‘general fund’). If the bandwidth released is in use by one or more ‘open’ endpoints then it will be made available as soon as those pipes are closed.

URB request format

typedef struct {� URB_HEADER UrbHeader;� � PVOID AccountHandle;�} URB_CLOSE_ACCOUNT

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_CLOSE_ACCOUNT.

AccountHandle

A valid bandwidth account handle.

output

Open_Interface

description

Open a specific interface for a USB device, the device must have previously been configured by calls to both SET_CONFIGURATION and SET_INTERFACE. If successful a list of open endpoints for this device is returned. This function succeeds only if all endpoints for the requested interface can be opened. Bandwidth reserved in either an interrupt or isochronous account can not be used when opening endpoints with this function, instead the driver must call OPEN_ENDPOINT separately for each endpoint in the interface. This function only succeeds if all the endpoints in the interface can be opened.

request format

typedef struct {� ULONG EndpointAddress;� PVOID EndpointHandle;�} ENDPOINT_INFORMATION;�

typedef struct {� URB_HEADER UrbHeader;�� ULONG InterfaceNumber;� PVOID InterfaceHandle; � ULONG EndpointCount;� � ENDPOINT_INFORMATION EndpointList[1];�} URB_OPEN_INTERFACE;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_OPEN_INTERFACE.

InterfaceNumber

The USB interface number (from the interface descriptor) describing the interface to open.

EndpointCount

Number of ENDPOINT_INFORMATION structures that follow, caller must allow room for all endpoint handles in the interface to be returned.

output

InterfaceHandle

Handle for this interface, 0 if failure.

EndpointCount

Number of ENDPOINT_INFORMATION structures filled in.

EndpointList[]

A list of structures containing an endpoint handle and address for each endpoint in this interface.

Close_Interface

description

Closes all endpoints for a given ‘open’ interface, all endpoints in the interface must have no pending transfers or the request will fail. When an endpoint is closed if the bandwidth allocated for the endpoint was taken from an account is returned to that account.

request format

typedef struct { � URB_HEADER UrbHeader;�� PVOID InterfaceHandle; �} URB_CLOSE_INTERFACE;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Close_Interface.

InterfaceHandle

The interface handle from a previous call to OPEN_INTERFACE.

output

Open_Endpoint

description

This function will attempt to open the specified endpoint. If a bandwidth account is specified the bandwidth necessary is allocated from this account. If there is insufficient bandwidth in the account to open the endpoint an attempt is made to get the bandwidth necessary, if this succeeds then the bandwidth allocated is associated with the account (i.e. it is returned to this account when the endpoint closes).

request format

typedef struct {� URB_HEADER UrbHeader;�� ULONG EndpointAddress; � PVOID EndpointHandle;� PVOID AccountHandle;�} URB_OPEN_ENDPOINT;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Open_Endpoint.

EndpointAddress

The endpoint address from the endpoint descriptor.

AccountHandle

Handle to a valid bandwidth account, if 0 then bandwidth is not allocated from an account.

output

EndpointHandle

Endpoint handle if UrbHeader.Status == USB_STATUS_SUCCESS

Close_Endpoint

description

Closes an endpoint, any bandwidth allocated to this from an account is returned to that account. The request will fail if the endpoint has any pending transfers.

request format

typedef struct {� URB_HEADER UrbHeader;�� PVOID EndpointHandle;� } URB_CLOSE_ENDPOINT;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Close_Endpoint.

EndpointHandle

The endpoint handle from a previous call to OPEN_ENDPOINT.

output

Cancel_Endpoint

description

Cancels any pending transfers for a given endpoint, this is different from sending the SET_IDLE command that cancels transfers queued to an endpoint from a device point of view.

request format

typedef struct {� URB_HEADER UrbHeader;�� PVOID EndpointHandle;� } URB_CANCEL_ENDPOINT;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Cancel_Endpoint.

EndpointHandle

The endpoint handle from a previous call to OPEN_ENDPOINT.

output

Take_Frame_Length_Control

description

This function (if successful) gives the caller the ability to change the USB frame length for the
bus
 his device is on -- i.e. he can call SET_FRAME_LENGTH. No other client on the same
bus
 may change the frame length until this client releases control by calling Release_Frame_Length_Control.

request format

typedef struct {� URB_HEADER UrbHeader;�� } URB_TAKE_FRAME_LENGTH_CONTROL;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_TAKE_Frame_Length_Control.

output

Release_Frame_Length_Control

description

Releases control of the frame length for the caller’s
bus
 if the caller currently holds the ‘frame length control’.

request format

typedef struct {� URB_HEADER UrbHeader;��} URB_ Release_Frame_Length_Control;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Release_Frame_Length_Control.

output

Set_Frame_Length

description

This function allows the client to adjust the number of bit times in the USB frame. A client must have successfully taken control of the frame length (by calling TAKE_FRAME_LENGTH_CONTROL). Th
e
 frame length cannot be adjusted more often than once every 6 frames.

request format

typedef struct {� URB_HEADER UrbHeader;� LONG FrameLengthDelta;� } URB_Set_Frame_Length;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_ Set_Frame_Length.

FrameLengthDelta

Number of bit times to subtract/add to the USB frame length, this must be either +1 or -1.

output

Get_Frame_Length

description

This function allows the client to determine the number of bit times in a USB frame and the frame number at or after it can be changed.

request format

typedef struct {� URB_HEADER UrbHeader;� ULONG FrameLength;� ULONG FrameNumber;� } URB_GET_FRAME_LENGTH;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Get_Frame_Length.

Output

FrameLength

Number of bit times in a USB frame.

FrameNumber

The frame number during or after which the frame length can be changed.

Get_Current_Frame_Number

description

Returns the current 32 bit frame number.

request format

typedef struct {� URB_HEADER UrbHeader;� ULONG FrameNumber;� } URB_GET_CURRENT_FRAME_NUMBER;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Get_Current_Frame_Number.

Output

FrameNumber

The current 32-bit frame number.

Standard_Control_Transfer

description

This request is used to send standard commands (defined in Chapter 9 of the USB specification) to a device on the default pipe. The standard commands are:�GET_CONFIGURATION�SET_CONFIGURATION�GET_DESCRIPTOR�SET_IDLE�GET_INTERFACE�SET_INTERFACE�GET_MAX_PACKET�SET_MAX_PACKET�GET_ADDRESS�SET_ADDRESS�GET_STATUS�SET_STATUS�SET_REMOTE_WAKEUP�

**

JD: we need to clarify if the status phase of a control transfer can return data.

**

Vendor and class specific commands are sent through this interface as well, it is up to the device driver to format the setup packet properly for these commands. This interface will be the only way to send commands on the default pipe.

Standard Command Notes

SET_CONFIGURATION

This command will be failed by USBD if any interfaces or endpoints on the device are open.

SET_INTERFACE (really should be called SET_ALT_INTERFACE)

This command will be failed by USBD if the another alternate of the given interface is open or if any endpoints for the requested (new) interface are open.

SET_MAX_PACKET

This command will be failed by USBD if the endpoint requested is open.

request format

typedef struct {� URB_HEADER UrbHeader;�� ;These fields compose the setup packet� WORD RequestCode;� WORD wValue;� WORD wIndex;� WORD wLength;�� PVOID EndpointHandle;� ULONG TransferDirection;�� ULONG TransferBufferLength;� PVOID TransferBuffer;� PMDL TransferBufferMDL;� � } URB_STANDARD_CONTROL_TRANSFER;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Standard_Control_Transfer.

RequestCode

Can be any one of the following request codes:

GET_CONFIGURATION�SET_CONFIGURATION�GET_DESCRIPTOR�SET_DESCRIPTOR�SET_IDLE�GET_INTERFACE�SET_INTERFACE�GET_MAX_PACKET�SET_MAX_PACKET�**GET_ADDRESS�**SET_ADDRESS�GET_STATUS�SET_STATUS�SET_REMOTE_WAKEUP��** we probably won’t allow these since the drivers should never need them (only the hub driver/bus extender will need to send them).

wValue

Corresponds to the ‘wValue’ field in Chapter 9 of the USB specification for the given command.

wIndex

Corresponds to the ‘wIndex’ field in Chapter 9 of the USB specification.

wLength

Corresponds to the ‘wLength’ field in Chapter 9 of the USB specification.

EndpointHandle

This must be the handle to default control endpoint (endpoint zero) (NULL means default pipe ?).

TransferDirection

Transfer direction either OUT (host to device) or IN (device to host).

TransferBufferLength

Length of input/output buffer in bytes.

TransferBuffer

Input/output buffer pointer, if TransferBufferMDL is null this is assumed to be locked system memory allocated from the non-paged pool.

TransferBufferMDL

MDL that describes the input/output buffer.

output

TransferBufferLength

Number of bytes written to the input buffer or number of bytes transferred from the output buffer.

General_Control_Transfer

description

This function is used to submit general control transfers to a control endpoint.

request format

typedef struct {� URB_HEADER UrbHeader;�� DWORD SetupPacket[2];�� PVOID EndpointHandle;� BOOLEAN TransferDirection;�� ULONG TransferBufferLength;� PVOID TransferBuffer;� PMDL TransferBufferMDL;�� } URB_GENERAL_CONTROL_TRANSFER;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_General_Control_Transfer.

SetupPacket

The control transfer setup packet, this is device specific for all endpoints accept endpoint zero.

EndpointHandle

Handle to a control endpoint, can not be NULL.

TransferDirection

Transfer direction, either IN(device to host) or OUT (host to device).

TransferBufferLength

Length of input/output buffer in bytes.

TransferBuffer

Input/output buffer pointer, if TransferBufferMDL is null this is assumed to be locked system memory allocated from the non-paged pool.

TransferBufferMDL

MDL that describes the input/output buffer.

output

TransferBufferLength

Number of bytes written to the input buffer or number of bytes transferred from the output buffer.

Bulk_Transfer

description

This function is used to submit bulk transfers to a specific endpoint.

request format

typedef struct {� URB_HEADER UrbHeader;�� PVOID EndpointHandle;� BOOLEAN TransferDirection;�� ULONG TransferBufferLength;� PVOID TransferBuffer;� PMDL TransferBufferMDL;� �} URB_BULK_TRANSFER;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_Bulk_Transfer.

EndpointHandle

Handle to a bulk endpoint.

TransferDirection

Transfer direction, either IN(device to host) or OUT (host to device).

TransferBufferLength

Length of input/output buffer in bytes.

TransferBuffer

Input/output buffer pointer, if TransferBufferMDL is null this is assumed to be locked system memory allocated from the non-paged pool.

TransferBufferMDL

MDL that describes the input/output buffer.

output

TransferBufferLength

For an ‘IN’ transfer the number of bytes written to the input buffer is returned. For an ‘OUT’ transfer the number of bytes sent from the output buffer is returned.

Interrupt_Transfer

description

This function is used to submit interrupt transfers to a specific endpoint.

request format

typedef struct {� URB_HEADER UrbHeader;�� PVOID EndpointHandle;� � ULONG TransferBufferLength;� PVOID TransferBuffer;� PMDL TransferBufferMDL;� �} URB_INTERRUPT_TRANSFER;

parameters

input

UrbHeader.Function

Function code set to 16.

EndpointHandle

Handle to an interrupt endpoint.

TransferBufferLength

Length of input buffer in bytes.

TransferBuffer

Input buffer pointer, if TransferBufferMDL is null this is assumed to be locked system memory allocated from the non-paged pool.

TransferBufferMDL

MDL that describes the input buffer.

output

TransferBufferLength

Number of bytes written to the input buffer.

Isochronous_Transfer (general)

description

This function is used to submit isochronous transfers to a specific endpoint. The client specifies a transmission buffer, an array of packet lengths and a starting frame number. On completion the status per packet is returned in the PacketArray.

request format

typedef struct {� URB_HEADER UrbHeader;�� PVOID EndpointHandle;� BOOLEAN TransferDirection;� � PVOID TransferBuffer;� PMDL TransferBufferMDL;� � ULONG StartFrameNumber;� ULONG PacketArraySize;� ULONG PacketArray[512];��} URB_ISOCHRONOUS_TRANSFER;

parameters

input

UrbHeader.Function

Function code set to URB_FUNCTION_INTERRUPT_Transfer

EndpointHandle

Handle to an isochronous endpoint.

StartFrameNumber

Frame number on which to begin this transfer.

TransferBuffer

Input/Output buffer pointer, if TransferBufferMDL is null this is assumed to be locked system memory allocated from the non-paged pool.

TransferBufferMDL

MDL that describes the input/output buffer.

PacketArraySize

Number of elements in the PacketArray (max. 512).

PacketArray[]

Array of packet Lengths for each packet in the transfer, maximum length 512.

output

UrbHeader.Status

USB status code, if !=USB_STATUS_SUCCESS then per packet status information is available in the PacketArray.

PacketArray[]

Array of status codes for each packet in the transfer.

