 USB Driver and Minidriver Design Notes and Reference — 13

Microsoft®
Memphis Developer's Release Device Driver Kit
USB Driver and Minidriver Design Notes and Reference

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property rights except as expressly provided in any written license agreement from Microsoft Corporation.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you.

ActiveMovie, ActiveVRML, ActiveX, BackOffice, Developer Studio, Direct3D, DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectSound, DirectX, Microsoft, NetMeeting, OpenType, Visual Basic, Visual C++, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

© 1996–97 Microsoft Corporation. All rights reserved.

Revision History

Date
Description

12/10/96
Memphis Preview draft

1/13/97
January 97 Preview draft

3/19/97
March 97 Developer's Release draft

Contents

3Introduction

Overview
3
I/O Request Packet Transfers
4
IOCTL Codes
4
USB Request Block (URB) Transfers
4
Common URB Header Structure
4
Bandwidth Allocation
5
URB Transfer Requests
5
Common Data Structures
6
Reference
6
USB Device Driver-Provided Functions
6
Summary List of Default Pipe Requests
7
Summary List of General Purpose Requests
7
Summary List of Transfer Requests
8
Common Structure Reference
8
USBD_INTERFACE_INFORMATION
8
USBD_PIPE_INFORMATION
9
URB Request Reference
9
URB_FUNCTION_ABORT_PIPE
10
URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER
10
URB_FUNCTION_CLEAR_FEATURE_XXX
11
URB_FUNCTION_CONTROL_TRANSFER
11
URB_FUNCTION_GET_CURRENT_FRAME_NUMBER
12
URB_FUNCTION_GET_DESCRIPTOR_XXX
13
URB_FUNCTION_GET_FRAME_LENGTH
14
URB_FUNCTION_GET_STATUS_XXX
14
URB_FUNCTION_ISOCH_TRANSFER
15
URB_FUNCTION_RELEASE_FRAME_LENGTH_CONTROL
17
URB_FUNCTION_RESET_PIPE
17
URB_FUNCTION_SELECT_CONFIGURATION
17
URB_FUNCTION_SELECT_INTERFACE
19
URB_FUNCTION_SET_DESCRIPTOR_XXX
20
URB_FUNCTION_SET_FEATURE_XXX
21
URB_FUNCTION_SET_FRAME_LENGTH
21
URB_FUNCTION_SYNC_FRAME
22
URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL
23
URB_FUNCTION_VENDOR_XXX and URB_FUNCTION_CLASS_XXX
23
USBD Services Reference
24
USBD_CreateConfigurationRequestEx
24
USBD_GetUSBDIVersion
25
USBD_ParseDescriptors
25
USBD_ParseConfigurationDescriptorEx
26
USBD_GetInterfaceLength
27
GET_SELECT_CONFIGURATION_REQUEST_SIZE
27
GET_SELECT_INTERFACE_REQUEST_SIZE
27
GET_USBD_INTERFACE_SIZE
28
GET_ISO_URB_SIZE
28

Introduction

Important: This document is an early draft revision, distributed primarily for review comment. Changes may be made to any part of the document, especially at the details level.

The USB Driver Interface (USBDI) is part of the Win32® Driver Model (WDM) layered architecture for the Microsoft® Windows® Memphis and Windows NT® operating systems. USBDI is the interface offered to client drivers by the operating system USB driver stack. Part of the WDM architecture is shown in Figure 1, with the USBDI highlighted. USBDI is an IRP-based interface; individual requests are packaged within a WDM I/O request packet (IRP) and are passed to the device object of the next driver in the stack — the device object is returned from the client driver's call to IoAttachDeviceToStack

Figure 1. A portion of the WDM layered architecture, with the USB driver interface highlighted.

The following modules are shown in Figure 1.

· HIDCLASS.SYS is the HID class driver. It sends and receives HID reports to and from its minidrivers.

· HIDUSB.SYS is the HID device driver. It sends and receives HID reports over the USB bus.

· USBHUB.SYS is the USB hub driver. It is loaded if the PCI enumerator detects a USB hub.

· USBD.SYS is the USB class driver.

· UHCB.SYS and OHCB.SYS are USB host controller drivers. (OHCB.SYS for the Open Host Controller Interface or UHCB.SYS for the Universal Host Controller Interface)

· PCI Enumerator takes care of loading the USB stack driver components when a USB bus is detected on a platform and always loads at least the other core components.

Overview

A WDM USB device driver communicates with a WDM USB stack through an IRP interface. There are two ways to call DDIs:

· The client device driver passes USB request block (URB) structures to the next-lower driver as a parameter in an IRP with Irp->MajorFunction set to IRP_MJ_INTERNAL_DEVICE_CONTROL and the next IRP stack location Parameters.DeviceIoControl.IoControlCode field set to IOCTL_INTERNAL_USB_SUBMIT_URB.

· The client device driver passes an IRP with Irp->Majorfunction set to IRP_MJ_INTERNAL_DEVICE_CONTROL, and the next IRP stack location Parameters.DeviceIoControl.IoControlCode field set to one of the IOCTL_INTERNAL_USB_ other function codes.

The client device driver and bus driver share information in the common structures USBD_INTERFACE_INFORMATION and USBD_PIPE_INFORMATION.

I/O Request Packet Transfers

IRPs are passed to the next lower driver by using the WDM function IoCallDriver with the device object of the next lower driver as a parameter. The device object of the next lower driver for all USB client device drivers is the DeviceObject returned from the call to IoAttachDeviceToStack. For more information, see WDM Design Notes and Reference, which is another of the documents supplied with this Memphis DDK.
IOCTL Codes

USB client device drivers must use the IOCTL codes listed in the following table for IRP_MJ_INTERNAL_DEVICE_CONTROL. The parameter format expected for this function is:
IO_STACK_LOCATION.Parameters.Others.Argument1 = pointer to USB request block.

IRP Major Function
Description

IOCTL_INTERNAL_USB_SUBMIT_URB
Used by USB client device drivers to submit URBs to the USB stack.

IOCTL_INTERNAL_USB_RESET_PORT
Details to be provided in a later draft.

IOCTL_INTERNAL_USB_ENUMERATE
Used to retrieve a list of all devices on the bus.

IOCTL_INTERNAL_USB_GET_ROOTHUB_PDO
Details to be provided in a later draft.

USB Request Block (URB) Transfers

Clients send these requests to the bus by including them in an IRP pointer to a URB structure; a function code within the URB identifies the specific request.

For transfer requests, multiple URB structures may be linked and passed in with a single IRP.

The USB driver stack components assume all URB structures passed to them are allocated from the nonpaged pool.

Common URB Header Structure

Different URB structures are defined for each function. However, every URB has a common header, which is defined below. The header portion of a URB must always be initialized with the input parameters Length and Function, and will always return the output parameter Status.

struct _URB_HEADER {
USHORT Length;
USHORT Function;
USBD_STATUS Status;
PVOID UsbdDeviceHandle;
ULONG UsbdFlags;
};

Length

Specifies the size (in bytes) of the specific URB_XXX request structure.

Function

Function code set to URB_FUNCTION_XXX, where XXX refers to USB device driver–provided functions.

Status

USB_STATUS_XXX status code for the given request. For more information, see “Status Codes” in the URB Transfer Requests section.

UsbdDeviceHandle

This field is reserved for operating system USB stack use.

UsbdFlags

This field is reserved for operating system USB stack use.

Bandwidth Allocation

Bandwidth allocation occurs through the process of selecting a configuration or interface and acquiring open pipe handles. While a driver holds an open handle for a specific pipe, the bandwidth necessary to transfer data on that pipe (based on maximum packet size and service interval) is reserved.

URB Transfer Requests

This section describes the following aspects of URB transfer requests: transfer flags, status codes, halt/stall behavior, and linked URBs.

Transfer Flags

The TransferFlags parameter of the URB is used to control certain options of a transfer and to indicate direction. The following flags are defined:

Transfer Flag Value
Description

USBD_SHORT_TRANSFER_OK
This bit is used only when the USBD_TRANSFER_DIRECTION_IN bit is set.

When a packet is received from a device that is shorter than MaxPacket for the endpoint and does not exactly fill the buffer (unless USBD_SHORT_TRANSFER_OK is set) the transfer will be terminated with an error.

For control endpoints, if a short transfer occurs and USB_SHORT_TRANSFER_OK is set, then the HCD will immediately proceed to the status phase of the command; otherwise, the error is reported and neither the status phase nor the remainder of the data phase will be run.

USBD_START_ISO_TRANSFER_ASAP
For more information, see the reference section that describes the URB_FUNCTION_ISOCH_TRANSFER request.

USBD_TRANSFER_DIRECTION_IN
This bit is set if the data payload direction is device-to-host.

This bit needs to be set by the client drivers only when issuing a control transfer for the nondefault pipe. The proper value will be set by USBD for all other transfer requests, including control transfer requests on the default pipe.

Status Codes

Usbdi.h defines a set of private USB_STATUS_XXX values that are returned from calls to IRP_MJ_INTERNAL_DEVICE_CONTROL in the status field of the URB. The status field in the IRP is always set to a valid NTSTATUS code. USBD maps the URB status code to a valid NTSTATUS code and sets the status field in the IRP to the NTSTATUS code when it completes the IRP. This way, a USB client device driver does not need to perform mapping of USB error codes unless it wishes to. See Usbdi.h for a list of these.

Halt/Stall Behavior

In this document, a host-side stall, the condition where current transfers for a pipe are halted and new transfers are rejected by the software stack, is referred to as PIPE HALTED.

When an error occurs during a transfer (for example, a time-out or a stall PID returned), the HCD immediately completes all the URBs associated with the IRP request on which the error condition occurred, with USBD_STATUS_PIPE_ABORTED. The pipe is set to the halted state, and no further transfers can be submitted to the pipe associated with this endpoint. If any additional requests are queued for this pipe, they will remain queued (these transfers will not be completed).

When the USB driver issues the URB_FUNCTION_RESET_PIPE request for the halted pipe, transfers to the associated pipe will resume with the next queued URB.

· Halt behavior on the default control pipe. Since devices are required to always accept a setup packet on the control pipe, the USB stack implements an autoclearing mechanism for the halt condition on this pipe. Because of this, the control pipe will never enter the HALTED state and the client driver need not take any special action to clear the condition when an error occurs.

· Halt behavior on isochronous pipes. Because of the nature of isochronous data transfers, these pipes will never enter the halted state.

Linked URBs

Information describing rules for linking multiple URBs in a single IRP request will be included in a future draft.

Common Data Structures

For information about the common data structures USBD_INTERFACE_INFORMATION and USBD_PIPE_INFORMATION, see the Common Structure Reference topic. See the URB Request Reference topic for information about the URB_FUNCTION_SELECT_INTERFACE and URB_FUNCTION_SELECT_CONFIGURATION requests.

Reference

USB Device Driver-Provided Functions

The USBDI provides three different types of functions to a client USB device driver:

· Default pipe functions

· General-purpose functions

· Transfer functions

The functions within each category that are defined in this document are listed in the following tables.

Summary List of Default Pipe Requests

Function
Description

URB_FUNCTION_CLEAR_FEATURE_XXX
Enables a client to send the USB command Clear Feature. XXX is TO_DEVICE, TO_INTERFACE, TO_ENDPOINT or TO_OTHER.

URB_FUNCTION_GET_DESCRIPTOR_XXX
Enables a client to use the USB command Get Descriptor to retrieve USB descriptors on a particular device. XXX is FROM_DEVICE or FROM_ENDPOINT.

URB_FUNCTION_GET_STATUS_XXX
Enables a client to send the USB Get Status command on the default pipe. XXX is FROM_DEVICE, FROM_INTERFACE, FROM_ENDPOINT, or FROM_OTHER.

URB_FUNCTION_SET_DESCRIPTOR_XXX
Enables a client to use the USB command SetDescriptor to set USB descriptors on a particular device. XXX is TO_DEVICE or TO_ENDPOINT.

URB_FUNCTION_SET_FEATURE_XXX
Enables a client to send the USB command Set Feature. XXX is TO_DEVICE, TO_INTERFACE, TO_ENDPOINT, or TO_ OTHER.

URB_FUNCTION_SYNC_FRAME
Enables a client to send the USB command Synch Frame.

URB_FUNCTION_VENDOR_OR_CLASS_XXX
Enables a client to send vendor-specific and dlass-specific commands on the default pipe. XXX is DEVICE, INTERFACE, ENDPOINT, or OTHER.

Summary List of General Purpose Requests

Function
Description

URB_FUNCTION_ABORT_PIPE
Enables a client to cancel any pending transfers for the specified pipe. State and endpoint state are unaffected.

URB_FUNCTION_GET_CURRENT
_FRAME_NUMBER
Enables a client to retrieve the current 32-bit frame number.

URB_FUNCTION_GET_FRAME_LENGTH
Enables a client to determine the number of bit times in a USB frame and the frame number at or after which the number of bit times can be changed.

URB_FUNCTION_RELEASE_FRAME
_LENGTH_CONTROL
Enables a client to release control of the frame length for the client’s bus if the client currently holds the ability to set the frame length.

URB_FUNCTION_RESET_PIPE
Enables a client to clear the stalled state of a pipe within the USB stack. Transfers will resume with the next URB queued for the endpoint.

URB_FUNCTION_SELECT
_CONFIGURATION
Enables a client to open a specific configuration for a USB device.

URB_FUNCTION_SELECT_INTERFACE
Enables a client to open a specific alternate interface for a USB device; the device must have been previously configured by a call to URB_FUNCTION_SELECT_CONFIGURATION. Policy information is specified for each pipe in the interface, and an open handle is returned for each pipe in the interface.

URB_FUNCTION_SET_FRAME_LENGTH
Enables a client to adjust the number of bit times in the USB frame. The client must have successfully taken control of the frame length (by calling URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL).

URB_FUNCTION_TAKE_FRAME
_LENGTH_CONTROL
Gives a client the ability to change the USB frame length for the bus the client’s device is on. After a successful URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL call, a client can call URB_FUNCTION_SET_FRAME_LENGTH. No other client on the same bus can change the frame length until this client releases control by calling URB_FUNCTION_RELEASE_FRAME_LENGTH_CONTROL.

Summary List of Transfer Requests

Function
Description

URB_FUNCTION_CONTROL_TRANSFER
Enables a client to submit general control transfers to a (nondefault) control pipe.

URB_FUNCTION_BULK_OR_INTERRUPT
_TRANSFER
Enables a client to submit bulk or interrupt transfers to a specific pipe.

URB_FUNCTION_ISOCH_TRANSFER
Enables a client to submit isochronous transfers to a specific isochronous pipe.

Common Structure Reference

This section documents the USBD_INTERFACE_INFORMATION and USBD_PIPE_INFORMATION structures.

USBD_INTERFACE_INFORMATION

This structure is used as input and output to the URB_FUNCTION_SELECT_CONFIGURATION and URB_FUNCTION_SELECT_INTERFACE requests.

typedef struct _USBD_INTERFACE_INFORMATION {
 USHORT Length;
 UCHAR InterfaceNumber;
 UCHAR AlternateSetting;

 UCHAR Class;

 UCHAR SubClass;

 UCHAR Protocol;

 UCHAR Reserved;

 USBD_INTERFACE_HANDLE InterfaceHandle;

 ULONG NumberOfPipes;
 USBD_PIPE_INFORMATION Pipes[0];
} USBD_INTERFACE_INFORMATION, *PUSBD_INTERFACE_INFORMATION;

Members:

Length

Length of this structure, including all pipe information structures that follow. There are some library functions and macros that make calculating the size needed here easier.

InterfaceNumber

USB interface number associated with this interface; corresponds to the bInterfaceNumber field in a USB interface descriptor.

AlternateSetting

USB alternate interface setting used to select this specific alternate interface on the device; corresponds to the bAlternateSetting value in an interface descriptor.

Class

Corresponds to the bInterfaceClass field in a USB interface descriptor.

SubClass

Corresponds to the bInterfaceSubClass value in an interface descriptor.

Protocol

Corresponds to the bInterfaceProtocol value in an interface descriptor.

InterfaceHandle

To be provided in a future draft.

NumberOfPipes

Number of pipes in this interface.

Pipes[0]

List of PIPE_INTERFACE structures for each pipe in the interface.

USBD_PIPE_INFORMATION

This structure is returned for each pipe opened using a URB_FUNCTION_SELECT_CONFIGURATION request.

typedef struct _USBD_PIPE_INFORMATION {

 USHORT MaximumPacketSize;

 UCHAR EndpointAddress;

 UCHAR Interval;

 USBD_PIPE_TYPE PipeType;

 USBD_PIPE_HANDLE PipeHandle;

 ULONG MaximumTransferSize;

 ULONG PipeFlags;
} USBD_PIPE_INFORMATION, *PUSBD_PIPE_INFORMATION;

Members:

MaximumPacketSize

Maximum packet size for this pipe.

EndPointAddress

8-bit USB endpoint address, which includes the direction bit taken from the endpoint descriptor.

Interval

Polling interval, in milliseconds. Used for interrupt pipes.

PipeType

Identifies the type of transfer valid for this pipe. (For definitions of the different pipe types, see Chapter 4 of the Universal Serial Bus Specification Revision 1.0.)

UsbdPipeTypeControl
Control transfer pipe

UsbdPipeTypeIsochronous
Isochronous transfer pipe

UsbdPipeTypeBulk
Bulk transfer pipe

UsbdPipeTypeInterrupt
Interrupt transfer pipe

PipeHandle

USB pipe handle for this pipe.

MaximumTransferSize

Maximum number of bytes the client driver will transfer with a single URB.

PipeFlags

To be provided in a future draft.

URB Request Reference

This section describes each of the requests a client can send to USB stack. The different requests are presented in alphabetical order.

URB_FUNCTION_ABORT_PIPE

This general-purpose request enables a client to cancel any pending transfers for the specified pipe. Pipe state and endpoint state are unaffected. Note that the abort request may complete before all outstanding requests have completed. Do not assume that all outstanding requests are complete because the abort request completes.

struct _URB_PIPE_REQUEST {
 struct _URB_HEADER;
 USBD_PIPE_HANDLE PipeHandle;
};

Members:

Function

Function code set to URB_FUNCTION_ABORT_PIPE.

#define URB_FUNCTION_ABORT_PIPE 0x0002

PipeHandle

The pipe handle from a previous call to URB_FUNCTION_SELECT_CONFIGURATION or URB_FUNCTION_SELECT_INTERFACE.

URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER

This transfer request enables a client to submit bulk or interrupt transfers to a specific pipe.

struct _URB_BULK_OR_INTERRUPT_TRANSFER {
 struct _URB_HEADER;
 USBD_PIPE_HANDLE PipeHandle;
 ULONG TransferFlags;

 ULONG TransferBufferLength;
 PVOID TransferBuffer;
 PMDL TransferBufferMDL;
 struct _URB *UrbLink;
 struct _URB_HCD_AREA hca;
};

Members:

Function

Function code set to URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER.

#define URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER 0x0009

PipeHandle

Handle to a bulk pipe.

TransferFlags

The direction bit is set by USBD.

TransferBufferLength

For a transfer from device to host (an IN transfer), the number of bytes written to the input buffer is returned. For a transfer from host to device (an OUT transfer) the number of bytes sent from the output buffer is returned.

TransferBuffer

Input/output buffer pointer. If TransferBufferMDL is NULL, the buffer is assumed to be in locked system memory allocated from the nonpaged pool.

TransferBufferMDL

Optional MDL that describes the input/output buffer.

UrbLink

Optional link to the next URB request. Used if this is a chain of requests.

HCDArea

For HCD use.

URB_FUNCTION_CLEAR_FEATURE_XXX

This default pipe request enables clients to send the USB command Clear Feature. XXX is TO_DEVICE, TO_INTERFACE, TO_ENDPOINT, or TO_OTHER.

struct _URB_CONTROL_FEATURE_REQUEST {
 struct URB_HEADER;
 UCHAR Reserved[20];
 struct URB *UrbLink;
 struct URB_HCD_AREA hca;
 USHORT Reserved0;
 USHORT FeatureSelector;
 USHORT Index;
 USHORT Reserved1;
};

Members

Function

Function code set to URB_FUNCTION_CLEAR_FEATURE_XXX.

#define URB_FUNCTION_CLEAR_FEATURE_TO_DEVICE 0x0010

#define URB_FUNCTION_CLEAR_FEATURE_TO_INTERFACE 0x0011

#define URB_FUNCTION_CLEAR_FEATURE_TO_ENDPOINT 0x0012

#define URB_FUNCTION_CLEAR_FEATURE_TO_OTHER 0x0022

UrbLink

Optional link to the next URB request. Used if this is a chain of requests.

hca

For HCD use.

FeatureSelector

Feature selector stored in the wValue field of the setup packet. (For more information about feature selectors and wValue, see Chapter 9 of the Universal Serial Bus Specification Revision 1.0.)

Index

Index value stored in the wIndex field of the setup packet. (For more information about the use of wIndex with a CLEAR_FEATURE request, see Chapter 9 of the Universal Serial Bus Specification Revision 1.0.)

URB_FUNCTION_CONTROL_TRANSFER

This transfer request enables a client to submit general control transfers to a (nondefault) control pipe.

struct _URB_CONTROL_TRANSFER{
 struct _URB_HEADER;
 USBD_PIPE_HANDLE PipeHandle;
 ULONG TransferFlags;

 ULONG TransferBufferLength;
 PVOID TransferBuffer;
 PMDL TransferBufferMDL;
 struct _URB *UrbLink;
 struct _URB_HCD_AREA hca;
 UCHAR SetupPacket[8];
};

Members:

Function

Function code set to URB_FUNCTION_Control_Transfer.

#define URB_FUNCTION_CONTROL_TRANSFER 0x0008

PipeHandle

Handle to a control pipe; cannot be NULL.

TransferFlags

Transfer direction, either USBD_TRANSFER_DIRECTION_IN (device to host) or USBD_TRANSFER_DIRECTION_OUT (host to device).

TransferBufferLength

For a transfer from device to host (an IN transfer), the number of bytes written to the input buffer is returned. For a transfer from host to device (an OUT transfer) the number of bytes sent from the output buffer is returned.

TransferBuffer

Input/output buffer pointer; if TransferBufferMDL is NULL, the buffer is assumed to be locked system memory allocated from the nonpaged pool.

TransferBufferMDL

Optional MDL that describes the input/output buffer.

UrbLink

Optional link to the next URB request. Used if this is a chain of requests.

hca

For HCD use.

SetupPacket

The control transfer setup packet. This parameter is device-specific for all pipes except pipe zero.

URB_FUNCTION_GET_CURRENT_FRAME_NUMBER

This general-purpose request enables a client to retrieve the current 32-bit frame number.

struct _URB_GET_CURRENT_FRAME_NUMBER {
 struct _URB_HEADER;
 ULONG FrameNumber;
};

Members:

Function

Function code set to URB_FUNCTION_Get_Current_Frame_Number.
#define URB_FUNCTION_GET_CURRENT_FRAME_NUMBER 0x0007

FrameNumber

The current 32-bit frame number.

URB_FUNCTION_GET_DESCRIPTOR_XXX

This default pipe request enables clients to use the USB command Get Descriptor to retrieve USB descriptors on a particular device. XXX is FROM_DEVICE, FROM_ENDPOINT, or FROM_INTERFACE.

struct _URB_CONTROL_DESCRIPTOR_REQUEST {
 struct _URB_HEADER;
 PVOID Reserved;
 ULONG Reserved0;
 ULONG TransferBufferLength;
 PVOID TransferBuffer;
 PMDL TransferBufferMDL;
 struct URB *UrbLink;
 struct URB_HCD_AREA hca;
 USHORT Reserved1;
 UCHAR Index;
 UCHAR DescriptorType;
 USHORT LanguageId;
 USHORT Reserved2;
};

Members:

Function

Function code set to URB_FUNCTION_GET_DESCRIPTOR_XXX.

#define URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE 0x000B

#define URB_FUNCTION_GET_DESCRIPTOR_FROM_ENDPOINT 0x0024

#define URB_FUNCTION_GET_DESCRIPTOR_FROM_INTERFACE 0x0028

TransferBufferLength

For a transfer from device to host (an IN transfer), the number of bytes written to the input buffer is returned. For a transfer from host to device (an OUT transfer), the number of bytes sent from the output buffer is returned.

TransferBuffer

Input buffer pointer. For a transfer from device to host (an IN transfer), if the TransferBufferMDL parameter is NULL, the buffer is assumed to be locked system memory allocated from the nonpaged pool. For a transfer from device to host (an OUT transfer), filled in with the requested descriptor information.

TransferBufferMDL

Optional MDL that describes the input/output buffer.

UrbLink

Optional link to the next URB request. Used if this is a chain of requests.

hca

For HCD use.

Index

Descriptor index. (For more information, see Chapter 9 of the Universal Serial Bus Specification Revision 1.0.)

DescriptorType

USB_XXX_DESCRIPTOR_TYPE. A standard request to a device supports three types of descriptors: device, configuration, and string. (For definitions of the different descriptor types, see Chapter 9 of the Universal Serial Bus Specification Revision 1.0.)

LanguageId

Language ID. (Used with string descriptors; for more information, see Chapter 9 of the Universal Serial Bus Specification Revision 1.0.)

URB_FUNCTION_GET_FRAME_LENGTH

This general-purpose request enables a client to determine the number of bit times in a USB frame and the frame number at or after which the number of bit times can be changed.

struct _URB_GET_FRAME_LENGTH {
 struct _URB_HEADER;
 ULONG FrameLength;
 ULONG FrameNumber;
};

Members

Function

Function code set to URB_FUNCTION_Get_Frame_Length.

#define URB_FUNCTION_GET_FRAME_LENGTH 0x0005

FrameLength

Current number of bit times in a USB frame.

FrameNumber

The frame number during or after which the frame length can be changed.

URB_FUNCTION_GET_STATUS_XXX
This default pipe request enables a client to send the USB Get Status command on the default pipe. XXX is FROM_DEVICE, FROM_INTERFACE, FROM_ENDPOINT, or FROM_OTHER.

struct _URB_CONTROL_GET_STATUS_REQUEST {
 struct _URB_HEADER;
 PVOID Reserved;
 ULONG Reserved0;
 ULONG TransferBufferLength;
 PVOID TransferBuffer;
 PMDL TransferBufferMDL;
 struct _URB *UrbLink;
 struct _URB_HCD_AREA hca;
 USHORT Reserved1[4];
 UCHAR Index;
 USHORT Reserved2;
};

Members:

Function

Function code set to URB_FUNCTION_GET_STATUS_XXX.

#define URB_FUNCTION_GET_STATUS_FROM_DEVICE 0x0013

#define URB_FUNCTION_GET_STATUS_FROM_INTERFACE 0x0014

#define URB_FUNCTION_GET_STATUS_FROM_ENDPOINT 0x0015

#define URB_FUNCTION_GET_STATUS_FROM_OTHER 0x0021

TransferBufferLength

Length of input/output buffer in bytes.

TransferBuffer

Input/output buffer pointer. If the TransferBufferMDL parameter is NULL, the buffer is assumed to be locked system memory allocated from the nonpaged pool.

TransferBufferMDL

Optional MDL that describes the input/output buffer.

UrbLink

Optional link to the next URB request. Used if this is a chain of requests.

hca

For HCD use.

Index

Index value for the setup packet. (See Chapter 9 of the USB Specification, Revision 1.0.)

URB_FUNCTION_ISOCH_TRANSFER

This transfer request enables a client to submit isochronous transfers to a specific pipe.

typedef struct _USBD_ISO_PACKET_DESCRIPTOR {

 ULONG Offset;

 ULONG Length;

 USBD_STATUS Status;

} USBD_ISO_PACKET_DESCRIPTOR, *PUSBD_ISO_PACKET_DESCRIPTOR;

struct _URB_ISOCH_TRANSFER {

 struct _URB_HEADER;

 USBD_PIPE_HANDLE PipeHandle;

 ULONG TransferFlags;

 ULONG TransferBufferLength;

 PVOID TransferBuffer;

 PMDL TransferBufferMDL;

 ULONG ReservedMBZ;

 struct _URB_HCD_AREA hca;

 ULONG StartFrame;

 ULONG NumberOfPackets;

 ULONG ErrorCount;

 USBD_ISO_PACKET_DESCRIPTOR IsoPacket[0];

};

Members:

Function
Function code set to URB_FUNCTION_ISOCH_Transfer.
#define URB_FUNCTION_ISOCH_TRANSFER 0x000A

PipeHandle

The pipe handle to an isochronous pipe.

TransferFlags

To be provided in a future draft.

TransferBufferLength

Length of input/output buffer in bytes.

TransferBuffer

Input/output buffer pointer. If the TransferBufferMDL parameter is NULL, the buffer is assumed to be locked system memory allocated from the nonpaged pool.

TransferBufferMDL

Optional MDL that describes the input/output buffer.

TransferFlags

Option flags for this transfer.

hca
For HCD use.

StartFrame

Starting frame number.

NumberOfPackets

Number of packets to transfer.

ErrorCount

Number of packets that completed with errors.

Packet

Unbounded array of packet descriptors.

Output:

USB status code. If !=USB_STATUS_SUCCESS, then per-packet status information is available in the IsoPacket array.

Notes:

The client specifies a transmission buffer, an array of packet offsets, and a starting frame number. On completion the status per packet is returned in the IsoPacket array.

The START_ISO_TRANSFER_ASAP flag may be specified in the TransferFlags field for isochronous transfers. If this flag is set and no transfers have been submitted for the pipe since it was opened or reset, then the transfer will begin on the next frame and StartFrame will be updated with the frame number the transfer was actually started on. If this flag is set and the pipe has active transfers, then the transfer will be queued to begin on the frame after the last queued transfer is completed.

For OUT transfers, the length field in the ISO_PACKET_FIELD is not used; the length of the packet is calculated from the difference in offset values of consecutive packets.

For IN transfers, the length field is updated with the actual number of bytes returned. If the length is less than the difference between the offset of the current packet and the next packet, then a gap will be left in the input buffer.

The URB for an isochronous transfer will only be completed with an error if every packet in the transfer generated an error; otherwise, the URB status will be success and ErrorCount will contain the number of packets that generated errors.

The TransferBuffer or TransferBufferMDL must specify a virtually contiguous buffer. The offsets in the packet descriptor represent offsets into this buffer.

Errors:

NOT_ACCESSED

Returned for each packet that was submitted too late for the packet to be sent, based on the requested start frame. Returned for the requests if no packets could be sent.

ISOCH_REQUEST_FAILED

Returned when all the packets of an isochronous request are completed with errors.

BAD_START_FRAME

Returned if the requested start frame is not within USBD_ISO_START_FRAME_RANGE of the current USB frame.

URB_FUNCTION_RELEASE_FRAME_LENGTH_CONTROL

This general-purpose request enables a client to release control of the frame length for the client’s bus if the client currently holds the ability to set the frame length.

struct _URB_Frame_Length_Control {
 struct _URB_HEADER;

};

Members:

Function

Function code set to URB_FUNCTION_Release_Frame_Length_Control.
#define URB_FUNCTION_RELEASE_FRAME_LENGTH_CONTROL 0x0004

URB_FUNCTION_RESET_PIPE

This general-purpose request enables a client to clear the halted state of a pipe within the USB stack. It does not reset the stalled state of the endpoint on the device; the device driver must accomplish this by sending the appropriate FEATURE request on the default pipe. Transfers will resume with the next URB queued for the endpoint.

struct _URB_PIPE_REQUEST{

 struct _URB_HEADER;

 USBD_PIPE_HANDLE PipeHandle;

};

Members:

Function

Function code set to URB_FUNCTION_RESET_PIPE.

#define URB_FUNCTION_RESET_PIPE 0x001E

PipeHandle
The pipe handle from a previous call to URB_FUNCTION_SELECT_CONFIGURATION or URB_FUNCTION_SELECT_INTERFACE.

Errors:

INVALID_PIPE_HANDLE

The PipeHandle parameter is invalid.

URB_FUNCTION_SELECT_CONFIGURATION

This general-purpose request enables a client to open a specific configuration for a USB device. A handle for each interface and pipe within the configuration is returned. Alternate settings for all interfaces must be specified, along with policy information for any pipes. Note: There are library functions and macros that simplify formatting this request.

struct _URB_SELECT_CONFIGURATION {

 struct _URB_HEADER;

 PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor;

 USBD_CONFIGURATION_HANDLE ConfigurationHandle;

 USBD_INTERFACE_INFORMATION Interface;

};

Members:

Length
Must be set to the length of the entire structure, including the size of all interface information structures and their associated pipes.
Function

Function code set to URB_FUNCTION_SELECT_CONFIGURATION.

#define URB_FUNCTION_SELECT_CONFIGURATION 0x0000

ConfigurationDescriptor

Pointer to a USB configuration descriptor. If this parameter is NULL, then the device will be set to the nonconfigured state by sending a SET_CONFIGURATION command with a configuration value of 0 (zero) to the device on the default pipe.

ConfigurationHandle

Handle for this configuration; 0 if failure.

Interface

As input, this is an array of USBD_INTERFACE_INFORMATION structures, each containing a USBD_PIPE_INFORMATION structure for each pipe in the interface:

USBD_INTERFACE_INFORMATION.InterfaceNumber — Interface number to select.

USBD_INTERFACE_INFORMATION.AlternateSetting — Alternate setting to select.

USBD_PIPE_INFORMATION.MaximumTransferSize — Maximum bytes per URB.

USBD_PIPE_INFORMATION.PipeFlags — To be provided in future draft; for now, must be 0.
As output, this is an array of USBD_INTERFACE_INFORMATION structures, each containing a USBD_PIPE_INFORMATION structure for each pipe in the interface. The following information is returned:

USBD_INTERFACE_INFORMATION.InterfaceHandle — Handle for this interface; 0 if failure.

USBD_INTERFACE_INFORMATION.Class — To be provided in a future draft.
USBD_INTERFACE_INFORMATION.SubClass — To be provided in a future draft.

USBD_INTERFACE_INFORMATION.Protocol — To be provided in a future draft.

USBD_PIPE_INFORMATION.PipeHandle — USBD open pipe handle to be used in transfer requests.

USBD_PIPE_INFORMATION.PipeType — Defines type of USB pipe opened (interrupt, isochronous, bulk, or control).

USBD_PIPE_INFORMATION.EndPointAddress — 8-bit USB endpoint number (7-bit ID plus direction). Used as a parameter for some commands on the default pipe.

USBD_PIPE_INFORMATION.MaximumPacketSize — Maximum packet size for this pipe, in bytes.

USBD_PIPE_INFORMATION.Interval — Polling interval for this pipe, in milliseconds.

Note: This request will:

· Issue the USB SET_CONFIGURATION command to the device.

· Issue the USB SET_INTERFACE command for all interfaces with alternate settings based on input parameters.

· Open all pipes within the specified interfaces (with policy information passed in the PipeFlags and MaximimTransferSize fields) and set the pipes to the active state.

If any pipe cannot be opened, then the entire request is failed. Once this request is successfully completed, the device is considered to be in the configured state.

Errors:

NO _BANDWIDTH

Returned if there is insufficient bandwidth available to open all pipes in the configuration with the requested settings.

URB_FUNCTION_SELECT_INTERFACE

This general-purpose request enables a client to open a specific alternate interface for a USB device; the device must have previously been configured by a call to URB_FUNCTION_SELECT_CONFIGURATION. Policy information is specified for each pipe in the interface, and an open handle is returned for each pipe in the interface.

struct _URB_SELECT_INTERFACE {

 struct _URB_HEADER;

 USBD_CONFIGURATION_HANDLE ConfigurationHandle;

 USBD_INTERFACE_INFORMATION Interface;

};

Members:

Function

Function code set to URB_FUNCTION_SELECT_INTERFACE.

#define URB_FUNCTION_SELECT_INTERFACE 0x0001

ConfigurationHandle

Configuration handle returned from SELECT_CONFIGURATION.

Interface

As input, this is an array of USBD_INTERFACE_INFORMATION structures, each containing a USBD_PIPE_INFORMATION structure for each pipe in the interface:

USBD_INTERFACE_INFORMATION.InterfaceNumber — Interface number to select.

USBD_INTERFACE_INFORMATION.AlternateSetting — Alternate setting to select.

USBD_PIPE_INFORMATION.MaximumTransferSize — Maximum bytes per URB.

USBD_PIPE_INFORMATION.PipeFlags — To be provided in future draft; for now, must be 0.
As output, this is an array of USBD_INTERFACE_INFORMATION structures, each containing a USBD_PIPE_INFORMATION structure for each pipe in the interface. The following information is returned:

USBD_INTERFACE_INFORMATION.InterfaceHandle — Handle for this interface; 0 if failure.

USBD_INTERFACE_INFORMATION.Class — To be provided in a future draft.
USBD_INTERFACE_INFORMATION.SubClass — To be provided in a future draft.

USBD_INTERFACE_INFORMATION.Protocol — To be provided in a future draft.

USBD_PIPE_INFORMATION.PipeHandle — USBD open pipe handle to be used in transfer requests.

USBD_PIPE_INFORMATION.PipeType — Defines type of USB pipe opened (interrupt, isochronous, bulk, or control).

USBD_PIPE_INFORMATION.EndPointAddress — 8-bit USB endpoint number (7-bit ID plus direction). Used as a parameter for some commands on the default pipe.

USBD_PIPE_INFORMATION.MaximumPacketSize — Maximum packet size for this pipe, in bytes.

USBD_PIPE_INFORMATION.Interval - Polling interval for this pipe, in milliseconds.

Errors:

NO _BANDWIDTH

Returned if there is insufficient bandwidth available to open all pipes with the requested settings.

ERROR_BUSY

Returned if any of the endpoints in the current alternate setting for the interface has active transfers.

URB_FUNCTION_SET_DESCRIPTOR_XXX
This default pipe request enables clients to use the USB command SetDescriptor to set USB descriptors on a particular device. XXX is TO_DEVICE, TO_ENDPOINT or TO_INTERFACE.

struct _URB_CONTROL_DESCRIPTOR_REQUEST {
 struct _URB_HEADER;
 PVOID Reserved;
 ULONG Reserved0;
 ULONG TransferBufferLength;
 PVOID TransferBuffer;
 PMDL TransferBufferMDL;
 struct URB *UrbLink;
 struct _URB_HCD_AREA hca;
 USHORT Reserved1;
 UCHAR Index;
 UCHAR DescriptorType;
 USHORT LanguageId;
 USHORT Reserved2;
};

Members:

Function

Function code set to URB_FUNCTION_SET_DESCRIPTOR.

#define URB_FUNCTION_SET_DESCRIPTOR_TO_DEVICE 0x000C

#define URB_FUNCTION_SET_DESCRIPTOR_TO_ENDPOINT 0x0025

#define URB_FUNCTION_SET_DESCRIPTOR_TO_INTERFACE 0x0029

TransferBufferLength

As input, this is the length of output buffer in bytes. As output, this is the number of bytes transferred from the output buffer.

TransferBuffer

Output buffer pointer. As input, if the TransferBufferMDL parameter is NULL, the buffer is assumed to be locked system memory allocated from the nonpaged pool. As output, this is the descriptor sent to the device.

TransferBufferMDL

Optional MDL that describes the input/output buffer.

UrbLink

Optional ink to the next URB request. Used if this is a chain of requests.

hca
For HCD use.

Index

Descriptor index. (For more information, see Chapter 9 of the USB Specification, Revision 1.0.)

DescriptorType

USB_XXX_DESCRIPTOR_TYPE. A standard request to a device supports three types of descriptors: device, configuration, and string. (For definitions of the different descriptor types, see Chapter 9 of the USB Specification, Revision 1.0.)

LanguageId

Language ID. (Used with string descriptors; for more information, see Chapter 9 of the USB Specification, Revision 1.0.)

URB_FUNCTION_SET_FEATURE_XXX

This default pipe request enables clients to send the USB command Set Feature. XXX is TO_DEVICE, TO_INTERFACE, TO_ENDPOINT, or TO_OTHER.

struct _URB_CONTROL_FEATURE_REQUEST{
 struct _URB_HEADER;
 UCHAR Reserved[20];
 struct URB *UrbLink;
 struct _URB_HCD_AREA hca;
 USHORT Reserved0;
 USHORT FeatureSelector;
 USHORT Index;
 USHORT Reserved1;
};

Members:

Function

Function code set to URB_FUNCTION_SET_FEATURE_XXX.

#define URB_FUNCTION_SET_FEATURE_TO_DEVICE 0x000D

#define URB_FUNCTION_SET_FEATURE_TO_INTERFACE 0x000E

#define URB_FUNCTION_SET_FEATURE_TO_ENDPOINT 0x000F

#define URB_FUNCTION_SET_FEATURE_TO_OTHER 0x0023

UrbLink

Optional link to the next URB request. Used if this is a chain of requests.

hca
For HCD use.

FeatureSelector

Feature selector stored in the wValue field of the setup packet. (For more information, see Chapter 9 of the Universal Serial Bus Specification Revision 1.0.)

Index

Index value stored in the wIndex field of the setup packet. (For more information, see Chapter 9 of the Universal Serial Bus Specification Revision 1.0.)

URB_FUNCTION_SET_FRAME_LENGTH

This general-purpose request enables a client to adjust the number of bit times in the USB frame. The client must have successfully taken control of the frame length by calling URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL. The frame length cannot be adjusted more often than once every six frames.

struct _URB_Set_Frame_Length {
 struct _URB_HEADER;
 LONG FrameLengthDelta;
};

Members:

Function

Function code set to URB_FUNCTION_ Set_Frame_Length.

#define URB_FUNCTION_SET_FRAME_LENGTH 0x0006

FrameLengthDelta

Number of bit times to subtract/add to the USB frame length; this must be either +1 or -1.

Errors:

ADJUSTMENT_OUT_OF_BOUNDS

Returned if the adjustment takes the frame length out of the bounds specified by the USB specification (11970 to 12030 bits per frame).

URB_FUNCTION_SYNC_FRAME

This default pipe request enables a client to send a USB Synch Frame command.

struct _URB_CONTROL_SYNC_FRAME_REQUEST {
 struct _URB_HEADER;
 PVOID Reserved;
 ULONG Reserved0;
 ULONG TransferBufferLength;
 PVOID TransferBuffer;
 PMDL TransferBufferMDL;
 struct URB *UrbLink;
 struct _URB_HCD_AREA hca;
 UCHAR Reserved1[8];
 USHORT Endpoint;
 USHORT Reserved2;
};

Members:

Function

Function code set to URB_FUNCTION_SYNC_FRAME.

#define URB_FUNCTION_SYNC_FRAME 0x0016

TransferBufferLength

Length of input/output buffer in bytes.

TransferBuffer

Input/output buffer pointer. If the TransferBufferMDL parameter is NULL, the buffer is assumed to be locked system memory allocated from the nonpaged pool.

TransferBufferMDL

Optional MDL that describes the input/output buffer.

UrbLink

Optional link to the next URB request. Used if this is a chain of requests.

hca

For HCD use.

EndPoint

Destination.

URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL

This general-purpose request gives a client the ability to change the USB frame length for the bus the client’s device is on. After a successful TAKE_FRAME_LENGTH_CONTROL call, a client can call SET_FRAME_LENGTH. No other client on the same bus can change the frame length until this client releases control by calling RELEASE_FRAME_LENGTH_CONTROL.

struct _URB_FRAME_LENGTH_CONTROL {
 struct _URB_HEADER;
};

Members:

Function

Function code set to URB_FUNCTION_TAKE_Frame_Length_Control.

#define URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL 0x0003

URB_FUNCTION_VENDOR_XXX and URB_FUNCTION_CLASS_XXX
This default pipe request enables a client to send vendor-specific and class-specific commands on the default pipe. XXX is DEVICE, INTERFACE, ENDPOINT, or OTHER.

struct _URB_CONTROL_VENDOR_OR_CLASS_REQUEST {
 struct _URB_HEADER;
 PVOID Reserved;
 ULONG TransferFlags;
 ULONG TransferBufferLength;
 PVOID TransferBuffer;
 PMDL TransferBufferMDL;
 struct URB *UrbLink;
 struct _URB_HCD_AREA hca;
 UCHAR RequestTypeReservedBits;
 UCHAR Request;
 USHORT Value;
 USHORT Index;
 USHORT Reserved1;
};

Members:

Function

Function code set to URB_FUNCTION_VENDOR_XXX or URB_FUNCTION_CLASS_XXX.

#define URB_FUNCTION_VENDOR_DEVICE 0x0017

#define URB_FUNCTION_VENDOR_INTERFACE 0x0018

#define URB_FUNCTION_VENDOR_ENDPOINT 0x0019

#define URB_FUNCTION_VENDOR_OTHER 0x0020

#define URB_FUNCTION_CLASS_DEVICE 0x001A

#define URB_FUNCTION_CLASS_INTERFACE 0x001B

#define URB_FUNCTION_CLASS_ENDPOINT 0x001C

#define URB_FUNCTION_CLASS_OTHER 0x001F

TransferFlags

Transfer direction, either USBD_TRANSFER_DIRECTION_IN (device to host) or USBD_TRANSFER_DIRECTION_OUT (host to device).

TransferBufferLength

Length of input/output buffer in bytes.

TransferBuffer

Input/output buffer pointer. If the TransferBufferMDL parameter is NULL, the buffer is assumed to be locked system memory allocated from the nonpaged pool.

TransferBufferMDL

Optional MDL that describes the input/output buffer.

UrbLink

Optional link to the next URB request. Used if this is a chain of requests.

hca

For HCD use.

RequestTypeReservedBits

The setup packet for vendor/class requests is built by USBD. This field is provided so the driver may pass additional bits in the bmRequestType field of the setup packet that are not defined by the USB specification, but may be defined by a particular device class. (For more information, see Chapter 9 of the Universal Serial Bus Specification Revision 1.0.)

Request

Vendor or class defined.

Value

Vendor or class defined.

Index

Vendor or class defined.

Note: For vendor-specific and class-specific commands, the setup packet is constructed based on input parameters in the URB. The function code specifies the recipient (DEVICE, INTERFACE, ENDPOINT, or OTHER). Direction is indicated through the TransferDirection field, and data buffer length is specified by the TransferBufferLength field.

USBD Services Reference

The USBD driver exports several services to assist client drivers in setting up URB_FUNCTION_SELECT_CONFIGURATION and URB_FUNCTION_SELECT_INTERFACE requests. See Usbdilib.h for prototypes.

The USBD driver-provided services are:

· CreateConfigurationRequestEx

· GetUSBDIVersion

· ParseConfiguration DescriptorEx

USBD_CreateConfigurationRequestEx

This service allocates and initializes a URB of appropriate size to configure a device based on the list of interfaces passed in.

The interface list is a contiguous array of USBD_INTERFACE_LIST_ENTRIES, each pointing to a specific interface descriptor to be incorporated in the request. The list is terminated by a list entry with an InterfaceDescriptor pointer of NULL.

On return, the interface field of each list entry is filled in with a pointer to the USBD_INTERFACE_INFORMATION structure within the URB corresponding to the same interface descriptor.

PURB

USBD_CreateConfigurationRequestEx(

 IN PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor,

 IN PUSBD_INTERFACE_LIST_ENTRY InterfaceList

);

Members:

ConfigurationDescriptor

Pointer to USB configuration descriptor, returned from a device (including all interface and endpoint descriptors).

InterfaceList
List of interfaces we are interested in.

USBD_GetUSBDIVersion

This service, given a pointer to a VersionInformation structure, fills the fields that hold the USBDI version and the supported USBDI version.

VOID

USBD_GetUSBDIVersion(

 PUSBD_VERSION_INFORMATION VersionInformation

);

Members:

VersionInformation

Pointer to a VersionInformation structure.

VersionInformation.USBDI_Version
To be provided in a future draft.

VersionInformation.Supported_USB_Version

To be provided in a future draft.

USBD_ParseDescriptors

Parses a group of standard USB configuration descriptors (returned from a device) for a specific descriptor type.

PUSB_COMMON_DESCRIPTOR

USBD_ParseDescriptors(

 IN PVOID DescriptorBuffer,

 IN ULONG TotalLength,

 IN PVOID StartPosition,

 IN LONG DescriptorType

);

Parameters:

DescriptorBuffer

Pointer to a block of contiguous USB desscriptors

TotalLength

Size in bytes of the Descriptor buffer

StartPosition

Starting position in the buffer to begin parsing, this must point to the begining of a USB descriptor.

DescriptorType

USB descritor type to locate.

Return Value:

Returns a pointer to a USB descriptor with a DescriptorType field matching the input parameter or NULL if not found.

USBD_ParseConfigurationDescriptorEx

This service parses a standard USB configuration descriptor (returned from a device) for a specific interface, alternate setting, class, subclass, or protocol code.

PUSB_INTERFACE_DESCRIPTOR

USBD_ParseConfigurationDescriptor(

 IN PUSB_CONFIGURATION_DESCRIPTOR ConfigurationDescriptor,

 IN PVOID StartPosition,

 IN LONG InterfaceNumber,

 IN LONG AlternateSetting,

 IN LONG InterfaceClass,

 IN LONG InterfaceSubClass,

 IN LONG InterfaceProtocol

);

Parameters:

ConfigurationDescriptor

Pointer to a USB configuration descriptor, returned from a device (includes all interface and endpoint descriptors).

StartPosition

Pointer to starting position within the configuration descriptor to begin parsing; this must be a valid USB descriptor.

InterfaceNumber

Number to locate, (-1) match any.

AlternateSetting
Alternate setting to locate, (-1) match any.

InterfaceClass

Class to find, (-1) match any.

InterfaceSubClass

Subclass to find, (-1) match any.

InterfaceProtocol

Protocol to find, (-1) match any.

Return Value:

This function will return a pointer to the requested interface if found; otherwise, NULL is returned.

USBD_GetInterfaceLength

Returns the length (in bytes) of a given interface descriptor including all endpoint and class descriptors.
ULONG

USBD_GetInterfaceLength(

 IN PUSB_INTERFACE_DESCRIPTOR InterfaceDescriptor,

 IN PUCHAR BufferEnd

);

Parameters:

InterfaceDescriptor

To be provided in a future draft.

BufferEnd

Pointer to the end of the buffer containing the descriptors.

Return Value:

Length of descriptors.

GET_SELECT_CONFIGURATION_REQUEST_SIZE

This macro will calculate the appropriate size of a USB select configuration URB request based on the total number of interfaces and pipes in all the interfaces selected.

GET_SELECT_CONFIGURATION_REQUEST_SIZE(totalInterfaces, totalPipes);

Parameters:

TotalInterfaces

Total number of interfaces in the configuration.

TotalPipes

Total number of pipes in the configuration.

Return Value:

The size of the SELECT_CONFIGURATION structure needed for this request is returned.

GET_SELECT_INTERFACE_REQUEST_SIZE

This macro will calculate the appropriate size of a USB select interface URB request based on the total number of pipes in the alternate interface selected.

GET_SELECT_INTERFACE_REQUEST_SIZE(totalPipes);

Parameters:

TotalPipes

Total number of pipes in the configuration.

Return Value:

The size of the SELECT_INTERFACE structure needed for this request is returned.

GET_USBD_INTERFACE_SIZE

This macro will calculate the size of a USB interface information structure needed to describe a given interface, based on the number of endpoints.

GET_USBD_INTERFACE_SIZE(numEndpoints);

Parameters:

numEndpoints

Total number of endpoints.

Return Value:

The size of the USBD_INTERFACE_INFORMATION structure needed for this request is returned.

GET_ISO_URB_SIZE

This macro will calculate the size of an ISO URB request, given the number of packets.

GET_ISO_URB_SIZE(n);

Parameters:

n

Number of packets.
Return Value:

The size of the USBD_ISO_PACKET_DESCRIPTOR structure.

USBHUB.SYS

HIDUSB.SYS

USB�Driver�Interface

Other� USB Driver �Clients

HIDCLASS.SYS

USB Bus

USBD.SYS

UHCB.SYS

OHCB.SYS

PCI Enumerator

USB Driver Stack

Microsoft Confidential Draft. Do Not Redistribute.
© 1996-97 Microsoft Corporation. All rights reserved.

Microsoft Confidential Draft. Do Not Redistribute.
© 1996-97 Microsoft Corporation. All rights reserved.

