106

[image: image1.wmf]
Active DS

· Extended ErrorInfo Support
Implementing OLE Extended Error Information Support in ADSI

Raymond Mak

Version 1.0

Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 1997. All Rights Reserved

Microsoft Confidential

Printed on 9/22/97 at 10:20 AM
Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

1
Introduction
1
1.1
Level of Exception Information Support Provided by ADSI
1
2
Development Plan
1
2.1
Itemized Sub-tasks
1
2.2
Implementation Strategy
2
3
The Current Implementation
2
4
Relevant Source Files
3
5
Extending the Current Implementation
4
5.1
Adding Inserts Support to Error Description String
4
5.2
Adding Help File Support
4
5.3
Adding Run-time Multilingual Support
4
6
References
4
A
 Appendix
4
A.1 The ISupportErrorInfo Interface
4
A.2 New Internal Function
5
A.3 New Macro
5
B
Glossary
5

1 Introduction

In this document we describe the various issues associated with adding Automation Exception Information support to ADSI. In particular, we define the initial level of support provided by ADSI and the development plan.

OLE Automation (or simply Automation) defines a generic mechanism through which an Automation object can pass back extended error information to the Automation controller.

· Specifically, the Automation object pass back this extended error information through an EXCEPINFO structure provided by the controller in IDispatch::Invoke. If an Automation object supports the Automation exception mechanism, it should raise an exception by filling out the provided EXCEPINFO structure and returning DISP_E_EXCEPTION. Chapter 14 of Inside OLE by Kraig Brockschmidt has a more detail description of the Automation exception mechanism. Here, we are more interested in what this generic exception mechanism can provide while traditional error codes cannot.

· We can summarize the advantages of the Automation exception over the use of error codes as follows:

· Generic mapping of error to an error description string that can be customized for a specific locale. Note that most Automation controllers can only map a trivial subset of HRESULT’s to meaningful error messages.

· Context-sensitive help support that can be customized for a specific locale.

· Run-time multilingual support for error messages and help file.

· Controller that supports vtable binding can get extended error information through GetErrorInfo().

Note that only exception-aware automation controllers can take advantage of the extended error information provided by an automation object. Since most popular Automation controllers, including Microsoft Visual Basic and DispTest, are exception-aware, the decision to include Automation exception support in ADSI is well justified.

1.1 Level of Exception Information Support Provided by ADSI

The (initial) Automation exception support provided by ADSI will not be as ambitious as to include all the features outlined in the previous section. The main focus of ADSI Automation exception support will be on providing generic mapping of errors to error description strings customizable for a specific locale. ADSI will not support a help file and run-time multilingual error support in the near future.

2 Development Plan

In this section, we outline the development plan for adding the desired Automation exception support to ADSI. In particular, we shall identify the sub-tasks pertinent to our goal and we shall describe a preliminary strategy of approaching these tasks.

2.1 Itemized Sub-tasks

(New items may be added to the following list in the future.)

· Create adserr.rc file. (Someone else has done it already) (Completed.)

· Create adserr.mc file. (Someone else has done it already) (Completed. Maybe extended in the future.)

· Modify sources file to link binaries with MSG0001.BIN. (This may have been done already. Further investigation required.) (Completed)

· Implement ISupportErrorInfo for all ADSI implementation objects. (Completed for all the providers.)

· Modify the declarations of all ADSI implementation objects to inherit from ISupportErrorInfo. (Completed for all the providers.)

· Implement a function that raises an Automation exception given an HRESULT. (Tentatively called RaiseException(HRESULT hr)) (Completed)

· Implement a macro that encapsulates the RRETURN macros and a call to RaiseException() if an ADS error occurs. (Tentatively called RRETURN_EXP_IF_ERR(hr))

· Modify all ADSI methods to use RRETURN_EXP_IF_ERR(hr) at the highest level. (All providers are modified to use the new macro but we need to verify that the modification covers all the Automation methods.)

Implementation Strategy

Note that we don’t need to implement IErrorInfo or ICreateErrorInfo because they are for manipulating the EXCEPINFO structure only and OLE has already provided default implementations for them.

Implementing ISupportErrorInfo is trivial but adding the ISuportErrorInfo implementation to all ADS dual interface objects may involve global changes. Specifically, we have to change the QueryInterface implementation of all dual interface objects to support ISupportErrorInfo and we have to declare the ISupportErrorInfo methods in each dual interface class. Furthermore, each dual interface class should have its own implementation of ISupportErrorInfo for its own set of supported dispatch interfaces (global change!).

We shall not include extended error information support for all the pure COM interfaces such as IDirectoryObject and IDirectorySearch.

The Current Implementation

(This section will be modified once the actual implementation is completed.)

1st Attempt – Automation support only. Run-time multilingual support is possible. (Partially obsolete)

The current implementation of ADSI Automation exception support is very different from the suggested implementation outlined in chapter 14 of Inside OLE. Instead of “raising” exception from within the custom interface functions using ICreateErrorInfo and SetErrorInfo, we opt for the simpler approach of translating the HRESULT returned by ITypeInfo::Invoke into an EXCEPINFO structure. This approach frees us from the hassle of providing the DIID in ICreateErrorInfo and cascading calls to SetErrorInfo propagated from the lowest level of the call chain. Our approach also allows us to implement run-time multilingual support easily since the lcid resides in the same stack frame as the call to the error translation function. There is, nevertheless, one major drawback with our approach: it is impossible to implement help that is truly context-sensitive since the translation function is far away from the site of the error. (This paragraph is mostly obsolete.)

Only activeds.dll will be linked with the message resource. Provider modules can get access to the error messages by calling GetModuleHandle to obtain the handle of activeds.dll when it is loaded into a process’s address space. (We are assuming that activeds.dll is loaded before any provider module.) Once the module handle of activeds.dll is obtained, it can be used in FormatMessage to retrieve any error description string from activeds.dll.

We should make a note that all ADs object should have its own unique implementation of

ISupportErrorInfo and the class declaration of all ADs implementation objects should be extended to reflect that they all support the ISupportErrorInfo interface. Note that the DECLARE_ISupportErrorInfo_METHODS has been added to oleds\include\intf.hxx for the latter purpose.

2nd Attempt – Automation support and vtable binding support are included. Run-time multilingual support is not implemented.

Our first attempt at adding extended error information support to ADSI did not work as we have anticipated - Visual BASIC 4.0, a popular Automation controller, was unable to retrieve the error description string that we had put into the pExcepInfo structure before IDispatch::Invoke returned.

Furthermore, our initial implementation did not provide support for vtable binding controllers (e.g Visual BASIC 4.0 under certain conditions) which expect the extended error information to be inside the per-thread global error object. (The global error object is manipulated by the SetErrorInfo() and GetErrorInfo() functions.) In view of these limitations, we have decided to use a different approach which we will describe shortly.

Our second attempt at adding extended error information support to ADSI is a simplified version of the approach described in Inside OLE
 which is based on setting the per-thread global error object within each custom function. By using the global error object, we enable controllers that uses both IDispatch and vtable binding to obtain extended error information from ADSI. Note, however, that by using the global error object, we forego the simple run-time multilingual support implementation that we thought we could attain with our first attempt.

Initially, we intend to support error description strings for U.S. English only although context sensitive help and run-time multilingual support can be added incrementally without requiring much effort (See the section on extending the current implementation). Our biggest challenge now is to ensure that all ADSI methods are modified to set the global error object when an ADS error occurs. To further simplify the initial implementation, we have also omitted support for inserts in error description strings.
Relevant Source Files

oleds\errmsg\adserr.rc
- Error message resource file. This file includes the MSG0001.BIN file generated from adserr.mc and it should be compiled with the resource compiler. Currently, adserr.rc is compiled and linked with activeds.dll. The sources file and the makefile.inc file in oleds\errmsg are set up to generate adserr.rc and MSG0001.BIN from adserr.mc and to copy the generated files to the oleds\router directory.

oleds\errmsg\adserr.mc
- Message file. This file should be compiled with mc, the message compiler.

oleds\<provider>\libmain.cxx - Added code to DLL_PROCESS_ATTACH to obtain the module handle of activeds.dll and to store it in a global variable. This handle is used by FormatMessage to retrieve error description strings from activeds.dll. NOTE: We assume that activeds.dll is mapped to memory before any provider modules.

oleds\include\utils.hxx - Declaration of RaiseException().

oleds\utils\disputil.cxx
- Definition of RaiseException().

oleds\includes\misc.hxx - Definition of RRETURN_EXP_IF_ERRROR

Extending the Current Implementation

Adding Inserts Support to Error Description String

FormatMessage() supports inserts in the error description string that are similar to the % inserts in a printf() format string. To enable this feature in the ADSI error handling code, RaiseException() should be extended to accept variable arguments (i.e. RaiseException(HRESULT hr, …)); the variable argument list arguments should be extracted using the va_* macros and passed into FormatMessage().

Adding Help File Support

· Once the help file has been written, adding context-insensitive help should involve the following steps:

· Register the path of the help file under the appropriate registry key.

· Get the path of the help file from the registry and set the help file path in the error object whenever an exception is raised.

For context sensitive help support, RaiseException() should be extended to accept a dwHelpContext argument so that the help context can be customized at various points of the code where an exception can be raised. Details for defining and obtaining help context identifiers can be found in the MSDN library.

Adding Run-time Multilingual Support

Run-time multilingual support can be implemented using the method for managing the LCID described in Inside OLE. That method involves saving the lcid to the TLS during an IDispatch::Invoke call and retrieving it from the TLS when an exception is raised.
3 References

Brockschmidt, Kraig, Inside OLE 2nd ed., Microsoft Press, February 1994.

A
 Appendix

A.1 The ISupportErrorInfo Interface

Interface ISupportErrorInfo {

HRESULT InterfaceSupportErrorInfo(REFIID riid);

}

ISupportErrorInfo::InterfaceSupportErrorInfo

Given the IID of an interface, ISupportErrorInfo::InterfaceSupportErrorInfo will return S_OK, if the corresponding interface supports extended error information, and S_FALSE otherwise.

A.2 New Internal Function

void RaiseException(HRESULT hr)

A generic function that translates an Ads HRESULT error code to an OLE error object.

Arguments:

[hr] – the HRESULT code to be translated.

Notes:

1) Only ADs error codes are properly translated to corresponding OLE error object.

2) This function currently ignores the lcid passed into IDispatch::Invoke() and it always passes 0 to as the langid to FormatMessage().

3) This function currently fills out the source field and the description field in the error object only.

4) This function does not support inserts in the description string.

A.3 New Macro

RRETURN_EXP_IF_ERR(hr)

encapsulates the RRETURN macro and a call to RaiseException if hr is an error code.
WARNING: Don’t pass a big expression into this macro. The hr argument is expanded multiple times in the macro. For example, don’t do things like “RRETURN_EXP_IF_ERR(IAmAVeryExpensiveFunction(blah,blah,blah));”, which will be expanded to multiples calls of the expensive function.

B
Glossary

ADSI
 - Active Directory Service Interface(s)

HRESULT - Handle to a result code.

LCID - Locale Identifier.

OLE
 - Object Linking and Embedding. Microsoft’s object model.

TLS
 - Thread Local Storage.

� Chapter 14/Five Variations On the Theme of Implementing a Simple Automation Object/Variation 3: Exceptions Through Error Objects

106

