� TOC \o "1-3" �Introduction	� GOTOBUTTON _Toc367258515 � PAGEREF _Toc367258515 �1��

Accessing OLE DS objects in the Windows NT Provider	� GOTOBUTTON _Toc367258516 � PAGEREF _Toc367258516 �1��

Appendix: Overhead associated with the validation and conclusions	� GOTOBUTTON _Toc367258517 � PAGEREF _Toc367258517 �2��

Appendix II: A comparison of timings between old and new Heuristic GetObject	� GOTOBUTTON _Toc367258518 � PAGEREF _Toc367258518 �5��

�

Introduction

In this document we will describe the architecture of the Heuristic GetObject functionality for the Windows NT provider. Appendix I gives the overhead for most calls. Appendix II gives a comparison between the old and new timings.

Accessing OLE DS objects in the Windows NT Provider

OLEDS supports a container based hierarchical architecture. We support an OLEDS naming convention according to which each object is identified by

<OLEDS path> ::= <NameSpace ProgId>:// provider specific path.

For an object in an NDS tree we can simply use something like

NDS://MARSDEV,O=MS,OU=USERS,CN=Ramv,

A path such as the above uniquely identifies a way of accessing the actual object.

However in NT we don’t really have an unambiguous hierarchical naming convention. For the purposes of OLEDS we support a path such as

WinNT:// a/b/c

where a can be a domain or computer or workgroup.

Now a domain can contain computer, users and groups and a computer can contain users, groups, printers, services and fileservices.

A fileservice can contain fileshares.

A workgroup can contain computers only

Therefore in order to validate an object, it is to validate every single component along its path. Given an OLEDS path in the WinNT namespace it is not possible to say what kind of object it really is. We need to validate each component on the object’s path. Validating each component is a relatively expensive operation. If for example, it is necessary to validate an object as a domain, we need to do a NetGetDCName which searches for the Domain Controller of the Domain. Likewise validating a Computer object needs to do a NetWkstaGetInfo. Validating a Workgroup requires one to do a NetServerEnum which will enumerate all computers in the Workgroup, Depending on whether or not an object is returned, we decide if it is a valid Workgroup or not.

 All the above calls mentioned above are network calls and are time consuming especially in the failure case. Accessing OLEDS objects is usually fast. Given this inherent limitation of the NT naming convention, we do encounter certain cases (especially the failure case) which has to thread through every single possibility before it finally returns the result that the object is cache not a valid and instantiable OLEDS object.

The following are strategies to speed up the validation and instantiation process.

Cache hits. If it is determined that a certain object is a domain, then we cache this information along with the name of the Primary Domain Controller.

Likewise if we determine if a certain object is a computer or workgroup then we store that information in our cache.

Cache Misses: When a certain object is accessed and we have already tried accessing that object and we know that it does not exist. Then we fail it right away without making any net calls.

For all the above cases we need to use a time out mechanism. This is necessary necessary because we don’t want to fail or succeed a validation based on stale data.

Also please refer to the following mails that describes in detail the overhead that is associated with each validation in terms of the Net Calls made.

Appendix: Overhead associated with the validation and conclusions

Good list. some questions/suggestions:

a) we should try domains first, computers second

b) i thought we already hits for domains?

c) everytime we resolve a component [0] name (ie computer or domain), it should go into cache (with a time to live before exipring). if the cache already has max entries, the oldest should (expired entry preferred) be thrown out to make way for the new. . an entry is marked as one of: domain (and associated PDC) or computer or <unknown> and is stamped with tickcount. computers & domains expire in say 180 seconds & <unknown> in 30 seconds (we can tweak later if need). this implies a unified 'resolve component[0]' function.

d) we should remove the redundant call you mentioned.

be careful to test the case where entry is still in cache but is not longer avail (machinre went down).

thx,

C.

From: 	Ram Viswanathan

Sent: 	Tuesday, August 27, 1996 12:31 AM

To: 	Chuck Chan; Krishna Ganugapati; Danilo Almeida

Cc: 	Ram Viswanathan

Subject: 	OLEDS Heuristic GetObject performance issues.

This mail summarizes the overhead we incur when we access objects in the WinNT namespace. Suggestions to speed up Heuristic GetObject are at the end of this mail. No changes were made to the Heuristic Getobject code since we released the beta.

Captures were made in the network monitor for each of the cases we tried. You can look at them in \\ramv1\captures if interested.\

All the Net Calls made in each of the cases below is also noted.

1. Accessing a computer object (i.e) WInNT://krishnag1

This is fast because it is the first thing we try.

2. Accessing a domain object WinNT://ntwksta

This is slowed down because we try to instantiate ntwksta as a computer object first. This needs to do a NetWkstaGetInfo which tries to access a server by that name and finally fails when it receives a failure message on every transport it tries.

Possible solutions :

Cache the domain names/computer names. Note: Any form of caching will only work across a single session. This is because the cached information is only local to the process currently in execution.

3. Failure case: Accessing WinNT://foo where foo is neither a domain nor a computer.

Makes the Net Calls NetWkstaGetInfo which has to fail owing to the fact that there is no computer by that name.

Then we do a NetGetDCName which also fails. Thus this call can be expensive. Two slow net calls.

Possible solutions

Cache bad names also. Have a short time out period for this.

4. Accessing a domain/computer

 Calls NetUserGetInfo

 Calls NetGroupGetInfo

 NetLocalGroupGetInfo

 NetWkstaGetInfo

5. Accessing a domain/group

NetCalls

 NetUserGetInfo

 NetGroupGetInfo

 NetLocalGroupGetInfo

6. domain/user

 NetUserGetInfo

7. (workgroup cases)

computer/user

NetWkstaGetInfo

NetUserGetInfo

NetGroupGetInfo

NetLocalGroupGetInfo

8. computer/group

NetWkstaGetInfo

NetUserGetInfo

NetGroupGetInfo

NetLocalGroupGetInfo

NetWkstaGetInfo (redundant call)

9. workgroup\computer

NetWkstaGetInfo

10. computer/printqueue, computer/service, computer/fileservice are relatively benign calls. (as far as being time hogs is concerned).

When we have 3 components

it could be

domain\computer\user

domain\computer\group

domain\computer\printer

domain\computer\service

domain\computer\fileservice

computer\fileservice\fileshare

workgroup\computer\user

workgroup\computer\group

workgroup\computer\printer

workgroup\computer\service

workgroup\computer\fileservice

Here we perform one call to note if the first component is a parent of the second and then proceed onwards. This is relatively inexpensive irrespective of the case.

Four components

there are merely two cases

domain\computer\fileservice\fileshare

and

workgroup\computer\fileservice\fileshare

Not one of these cases is expensive.

--

Summary: The above is an exhaustive list of NetCalls made under each scenario.

What will help us in achieving good speed?

Caching hits.

 Whenever we hit an object such as a domain object, we can cache the fact under the cache list we maintain. We also periodically age this cache to ensure that the entries are age
