[image: image1.wmf]
Active DS

Proper Ldap Error Code Support
Raymond Mak

Version 1.0

Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 1997. All Rights Reserved

Microsoft Confidential

Printed on 9/29/97 at 10:57 AM
Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

Introduction

Anyone who has written code for the ADSI LDAP provider probably finds that the LDAP error codes are handled in an awkward manner. Specifically, multiple LDAP error codes are mapped to the same win32 error codes in ldapc which makes precise identification of certain LDPA errors impossible. Furthermore, most of the LDAP error codes are mapped to the same E_ADS_EXTENDED_ERROR, and in order to extract more information about the error, one has to set up a call to the ADsGetLastError() function which is rather cumbersome. At the request of KrishnaG, I undertook the task of streamlining the processing of LDAP error codes in ADSI. Our goal is to establish a set of HRESULT codes that can be mapped one-to-one onto the set of LDAP error codes thus eliminating both of the aforementioned problems.

Unfortunately, introducing the new set of HRESULT codes is not as straightforward as I have anticipated. Most of the changes that I have made are scattered throughout the LDAP provider and occasionally I have to identify portions of the code that require modifications based on heuristics. The procedure and heuristics that I used to streamline LDAP error code processing in ADSI are described in detail in the next section. I hope that other members of the ADSI development team can spend some time reviewing this document and let me know if are any flaws in the procedure I used.

Also included in this document are issues associated with the introduction of the new error codes that may affect those who work with the LDAP provider. In particular, I shall describe the naming conventions used for these new HRESULT codes and how to translate an LDAP error code into one of the new HRESULT codes.

1 Streamlining LDAP Error Code Handling

1.1 Definition of the LDAP HRESULT Codes

The LDAP HRESULT codes are temporarily defined in oleds\errmsg\adserr.mc. Source files that need the definition of these error codes should include the adserr.h file generated from adserr.mc. Note that the adserr.h file in sdk\inc does not currently include the LDAP HRESULT codes so the either the sources file or the precompiled header in both the ldap and the ldapc directory should be modified to include the private version of adserr.h. KrishnaG said that the LDAP HRESULT codes together with the existing ADs HRESULT codes will be incorporated into winerror.h. I would also like to point out that in order to maintain a one-to-one relationship between the LDAP HRESULT codes and the LDAP error codes, whenever a new LDAP error code is added to winldap.h, a corresponding LDAP HRESULT code has to be defined.

1.2 LDAP HRESULT Code Naming Conventions

The symbolic names of all the LDAP HRESULT codes are simply the symbolic names of the corresponding LDAP error code with the E_ADS_ prefix in front. For example, the symbolic name of the LDAP HRESULT code corresponding to LDAP_UNABLE_TO_PERFORM is E_ADS_LDAP_UNABLE_TO_PERFORM.

Currently, the message string corresponding to an LDAP HRESULT code is simply the symbolic name of the corresponding LDPA error code. We are probably going to change those strings to something more descriptive since those strings are visible from within Visual Basic.

1.3 Translating an LDAP Error Code To An HRESULT

All the LDAP HRESULT codes are of the form 0x800052xx(hexadecimal) where xx is the corresponding LDAP error codes. Under such an arrangement, translating an LDAP error code to an LDAP HRESULT is as simple as or’ng the LDAP error code with the value 0x80005200. In fact, the symbol E_ADS_LDAP_BASE is defined to be 0x80005200 for this purpose. Conversely, one can translate an LDAP HRESULT back to an LDAP error code by masking off the highest 24 bits of an LDAP HRESULT. Note that this translating scheme works only if all the LDAP codes are within the range from 0x0 to 0xff. It is, however, very trivial to extend the current implementation to cover LDAP error codes larger than 0xff by replacing the or operation with the plus operation.

1.4 Modifying CheckAndSetExtendedError to Support the LDAP HRESULT Codes

The CheckAndSetExtendedError function in oleds\ldapc\ldaputil.cxx is used by most of the functions in ldaputil.cxx to translate an LDAP error code. Originally designed to map LDAP error code to win32 error code, the CheckAndSetExtendedError has been re-written to map LDAP error code to the new LDAP HRESULT code. Using the simple translation scheme suggested in the previous section, the size of CheckAndSetExtendedError is reduced considerably. The exceptional case where 0x09 represents both LDAP_REFERRAL_V2 and LDAP_PARTIAL_RESULTS still needs to be handled separately however. The old translation code is commented for future reference.

1.5 Identifying Code That Relies On The Old LDAP Error To Win32 Error Mapping

Identifying code that needs to be re-written due to the introduction of the LDAP HRESULT codes is by far the most difficult task. Since most of the code in the ldap provider assumes that the functions in ldaputil.cxx (and perhaps in some other files) return a win32 error code, it takes the extra step to translate the error codes returned by these functions using the HRESULT_FROM_WIN32 macro. After the introduction of the LDAP HRESULT code, this extra translation step that appears throughout the LDAP provider will mangle the LDAP HRESULT code into something that is neither a valid win32 HRESULT code nor an LDAP HRESULT code. The RaiseException function created for extended error information support is unable to extract the proper error description string with the mangled error code.

Simply removing all the HRESULT_FROM_WIN32 macros from the LDAP provider will be incorrect because there are places where its use is legitimate. To make matters worse, functions within the ldapc layer are not consistently returning HRESULT’s. Forcing all functions in the ldapc layer to return HRESULT’s is a risky and daunting task, thus I limit myself to make sure that all the functions exported from adsldpc.dll return a valid HRESULT and that their return codes will not be mangled by HRESULT_FROM_WIN32.

To identify portions of the LDAP provider (including the adsldpc.dll) that need to be modified, I apply the following heuristics: I verified portions of the code containing the HRESULT_FROM_WIN32 macro and applied changes if necessary. To make sure that the changes is complete, I also verified portions of code containing the variable dwStatus, a typical variable used for holding return code from the ldapc functions.

Besides preventing the LDAP HRESULT code from being mangled by the HRESULT_FROM_WIN32 macro, code that used to interpret the ldapc function return code as win32 error code needs to be re-written. For this purpose, I used the original CheckAndSetExtendedError as a reference for expanding win32 error that was mapped to multiple LDAP error codes. I verify that the modification is complete by re-examining portions of code containing the ERROR_ string, a typical prefix for win32 error.

Once all of the above steps were carried out, I verified that my changes are reasonable by comparing my source files with the current version on the SLM server using windiff.

iv

