106

[image: image1.wmf]
Active DS

Search Interfaces
Description of Active Ds Search Interfaces

Felix Wong

Version 1.0

November 20, 1996

Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 1996. All Rights Reserved

Microsoft Confidential

Printed on 11/24/96 at 9:35 PM
Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

Table of Contents

11
Introduction

2
The COM Search Interface - IADsSearch
2
2.1
Interfaces
2
2.1.1
IADsSearch::OpenSearchHandle
2
2.1.2
IADsSearch::CloseSearchHandle
4
2.1.3
IADsSearch::GetNextRow
4
2.1.4
IADsSearch::GetColumn
6
2.1.5
IADsSearch::FreeColumn
6
2.1.6
IADsSearch::GetDataType
8
2.2
Structure and type definitions
8
2.2.1
ADS_SEARCHCOLUMN
8
2.2.2
HSEARCH
8
3
The implementation
9
3.1
LDAP
9
3.2
NDS
9
3.2.1
The Grammer
9
3.2.2
The LR Parser
10
3.2.2.1
The Transition Table
10
3.2.2.2
The Follow Rule:
11
3.2.2.3
LDAP Tree Generation
12
3.2.2.4
NDS Tree generation
12
The Goto Rule:
13
4
References
14
Revision History:

DATE
REVISION
AUTHOR(s)
REMARKS

11/20/96
1.0
Felix Wong
Original Document detailing Active Ds Search Interfaces

1 Introduction

This document describes the database query support for the Active Directory Interface. It concentrates on the COM interface for the Search APIs. It also describes the implementation of the LDAP and NDS search implementation.

The COM Search Interface - IADsSearch

The IADsSearch is responsible for the exposing the interface for Data Query in Active Directory Interface. It is also through this interface that the OLEDB provider is implemented.

The IADsSearch Interface is implemented by the LDAP and NDS namespace objects. It can be obtained by the AdsGetObject() with szPath pointing to the Namespace identifier and the interface pointer to IID_IADsSearch.

1.1 Interfaces

1.1.1 IADsSearch::OpenSearchHandle

HRESULT OpenSearchHandle(

/* [in] */
LPWSTR szCommand,

/* [out */
HSEARCH *phSearch

)

Description

Open a search handle.

Parameters

szCommand

The command string has the follow format

<search_context>;<search_filter>;<attrlist>;[<searchScope>]

where:

search_context
= ADsPath of the base of the search

search_filter
= search filter string in LDAP format

(see [1] for details)

attrlist
= list of the attributes to display

Default is the ADsPath and Class attribute

searchScope is one of: Base, OneLevel, or Subtree (Default)

phSearch

pointer to the Search Handle returned

Returns

S_OK

DB_S_ENDOFROWSET

End of rowset was reached -- the method didn't advance

E_FAIL

Call GetLastError for Win32 error code.

E_OUTOFMEMORY

Failed during memory allocation

IADsSearch::CloseSearchHandle

HRESULT CloseSearchHandle(

/* [in] */
HSEARCH hSearch

)

Description

Closes a search handle

Parameters

hSearch

Search Handle obtained from OpenSearchHandle

Returns

S_OK

E_FAIL

Call GetLastError for Win32 error code.

1.1.2 IADsSearch::GetNextRow

HRESULT GetNextRow(

/* [in] */
HSEARCH hSearch

)

Description

This function advances the search handle to the next row. This opaque structure will be modified to point to the next row so that the subsequent calls to ADsLdpGetColumn will get columns from this row. This function does not return or allocate anything and the only effect of this function is to change the state internal to the handle to the next row.

Parameters

hSearchHandle

The present search handle.

Returns

S_OK

DB_S_ENDOFROWSET

End of rowset was reached -- the method didn't advance

E_FAIL

Call GetLastError for Win32 error code.

E_OUTOFMEMORY

Failed during memory allocation

IADsSearch::GetColumn

HRESULT GetColumn(

 /* [in] */
HSEARCH hSearch,

/* [in] */

LPWSTR szColumnName,

 /* [out] */ ADS_SEARCHCOLUMN *pSearchColumn

)

Description

This function returns the value for the column denoted by pszColumnName for the current row. A new ADSPROVIDER_COLUMN structure will be allocated and returned. This has to be freed using the function FreeColumn.

Parameters

hSearchHandle

The present search handle.

pszColumnName

The name for the column whose value is to be obtained

pColumn

Pointer to the ADS_SEARCHCOLUMN structure; When done with using this column, this needs to be freed with FreeColumn

Returns

S_OK

E_FAIL

Call GetLastError for Win32 error code.

1.1.3 IADsSearch::FreeColumn

HRESULT FreeColumn(

 /* [in] */
ADS_SEARCHCOLUMN *pSearchColumn

)

Description

Free the column returned by GetColumn

Parameters

PSearchColumn

Pointer to the column returned by GetColumn

Returns

S_OK

E_FAIL

Call GetLastError for Win32 error code.

IADsSearch::GetDataType

HRESULT GetDataType(

 /* [in] */
LPWSTR pszBindContext,

 /* [in] */
LPWSTR pszAttrNam,

 /* [out] */
WORD *pwType,

 /* [out] */
ULONG *pulSize

)

Description

This interface is created temporarily to get the data type of an attribute from the schema. It will be taken out once the extended syntax support for the schema is available.

1.2 Structure and type definitions

1.2.1 ADS_SEARCHCOLUMN

typedef struct ADSSEARCHCOLUMN

 {

 DWORD _dbStatus;

 DWORD _dwLength;

 WORD _dwType;

 union

 {

 LONG _lVal;

 BOOL _bVal;

 LPSTR _strVal;

 LPWSTR _wstrVal;

 BYTE *_byteVal;

 } ;

 } ADS_SEARCHCOLUMN;

Description

It is the data structure returned by GetColumn to indicate the information contained in the current column

1.2.2 HSEARCH

typedef ULONG HSEARCH;
Description

The search handle type

The implementation

1.3 LDAP

The query is directly passed as strings to winldap.dll. As a result, no special parsing or conversion of the string is necessary for data queries to LDAP.

1.4 NDS

For NDS, we are supporting data queries through the format of LDAP search filters

1.4.1 The Grammer

This section describes the basic grammer of the LDAP search filters. It has been simplied to suit our needs. As a result, you may find it slightly different than the one described in [1].

1. F
->

‘(‘ FC ‘)’

2. FC
->

AND

3. FC
->

OR

4. FC
->
NOT

5. FC
->
ITM

6. AND
->
‘&’ FL

7. OR
->
‘|’ FL

8. NOT
->
‘!’ F

9. FL
->
F

10. FL
->
F FL

11. ITM
->
SMP

12. ITM
->
PRS

13. <Currently unused>

14. SMP
->
ATR FT VAL

15. FT
->
‘~=’

16. FT
->
‘>=’

17. FT
->
‘<=’

18. PRS
->
ATR ‘=*’

19. FT ->
‘=’

The LR Parser

To parse the LDAP search filter in NDS, we implemented an LR parser. It is an efficient, bottom-up syntax analysis technique that can be used to parse context-free grammers. The ‘l” is for left-to-right scanning of the input, the ‘R’ for constructing a rightmost derivation in reverse.

A detail description of the algorithm to do LR parsing can be found in [2]. The starting symbol we use is the F (Filter) symbol. The table below describes the transition state of the grammers. Each row is considered as a state that the parser is in.The algorithm also requires the definition of a Follow and Goto table which can be found below.

1.4.1.1 The Transition Table

0
F’->.F

F->.(FC)

1
F’->F.

2
F->(.FC)

FC->.AND

FC->.OR

FC->.NOT

FC->.ITM

AND->.&FL

OR->.|FL

NOT->.!F

ITM->.SMP

ITM->.PRS

SMP->.ATR FT VAL

PRS->.ATR ‘=*’

3
FC->AND.

4
FC->OR.

5
FC->NOT.

6
FC->ITM.

7
F->(FC.)

8
ITM->SMP.

9
ITM->PRS.

10

11
AND->&.FL

FL->.F

FL->.FFL

F->.(FC)

12
OR->|.FL

FL->.F

FL->.FFL

F->.(FC)

13
NOT->!.F

F->.(FC)

14
SMP->ATR.FT VAL

PRS->ATR.’=*’

FT->.’~=’

FT->.’>=’

FT->.’<=’

FT->.’=’

15
F->(FC).

16
AND->&FL.

17
FL->F.

FL->F.FL

FL->.F

FL->.FFL

F->.(FC)

18
OR->|FL.

19
NOT->!F.

20
FT->’~=’.

21
FT->’>=’.

22
FT->’<=’.

23
PRS->ATR ‘=*’

24
SMP->ATR FT. VAL

25
SMP->ATR FT VAL.

26
FT->’=’.

27
FL->F FL.

1.4.1.2 The Goto Rule:

F
FC
AND
OR
NOT
FL
ITM
SMP
FT
PRS

0.
1

1.

2.

7
3
4
5

6
8

9

3.

4.

5.

6.

7.

8.

9.

10.

11.
17

16

12.
17

18

13.
19

14.

24

15.

16.

17.
17

27

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

1.4.1.3 The Follow Rule:

Err
(
)
|
&
!
~=
=
<=
>=
=*
typ
val
end

0.

S2

1.

A

2.

S12
S11
S13

S14

3.

R2

4.

R3

5.

R4

6.

R5

7.

S15

8.

R11

9.

R12

10.

R13

11.

S2

12.

S2

13.

S2

14.

S20
S26
S22
S21
S23

15.

R1
R1

R1

16.

R6

17.

S2
R9

18.

R7

19.

R8

20.

R15

21.

R16

22.

R17

23.

R18

24.

S25

25.

R14

26.

R19

27.

R10

LDAP Tree Generation

The LDAP is the generic tree format used to represent an LDAP query string. The parser that we implemented is one-pass. The LDAP tree is generated as the expression is being parsed. However, due to the fact that some syntax supports multiple children, (e.g. (&(Object Class=User)(CN=JamesL)(Description=SDE))), the tree that we produced is not a binary tree but a tree with multiple children.

The tree generation take place whenever the grammer is reduced(by the symbol R in the table above). The generated tree is then stored on the stack, waiting to be used by the next reduction rule.

1.4.2 NDS Tree generation

The NDS tree is generated from the generic LDAP tree. One interesting thing about the LDAP query is that the search string does not contain any type information. As a result, once an attribute type is received, the schema has to be queried to find out what data type that attribute supports. In order to achieve that, all the attributes are stored in an attribute list during parsing. After the LDAP tree is genereated, the list of attributes are sent to the server to ask for their syntax types. With the LDAP tree and the attribute syntax in hand, the NDS tree is then generated and passed to the NDS search function to query for data.

 References

1. Tim Howes, A String Representation of LDAP Search Filters, RFC1960, June 1996

2. Alfred Aho, Ravi Sethi, Jeffrey Ullman, Compilers Principles, Techniques, and Tools, Addison-Wesley, March 1988

106

