Setting Up a New Developer Machine in the ADSI Group

Important Note on the responsibility of developers from the designer and Dev Lead on this project KrishnaG :

I want to explain something here very clearly.

Test is supposed to test functionality that is working and robust. While you can work to get private code of yours tested by the test team, this is NOT the standard procedure. You do not get test to sign off on every line of code that you check in. Therefore if there is a piece of functionality that you own you are responsible for making sure that it works. If it breaks after you check it in, then the responsibility is yours - you cannot point fingers and say that we had test try it out so it is not our fault.

If you need to set up complex test scenarios to test your product, it is YOUR job to test it and check it in. I would personally be very distressed if any developer were to tell me that they are sitting on a ton of code because they are waiting for test to test it for them. Please refrain from this! It is necessary sometimes as when we are in ship-mode so that we do not break anything - NOT when we are in a development cycle.

Being a developer at Microsoft is a great job - it is the highest basic commendation. you can get in this company. With that commendation however comes significant responsibility and ownership. One of the responsibilities is that the code you write works perfectly.

You cannot expect to take credit for something if you did not do it completely and got someone to help you with it!

Thanks!

Krishna

Objectives:

· Install a new build/upgrading to a new build

· Installing a development environment.

· Enlist in some useful projects

· Working, building, compiling and debugging

Step 1: Installing the new build/upgrading

1. Installing Windows NT

For this the ideal location will be c:\nt4. A stable version can be put in there and an additional one can be used for development.

The first installation has to be done using a floppy and the CD-ROM. The data on the disk is destroyed and it is done using the format disk to NTFS (usually). The computer should be made a member of the domain NTDEV. This can be achieved by using the account NTDS with a NULL password.

2. Getting the latest build

The latest build can be got by

C:\winnt> net use * \\ntbuilds\release\

That will give the logical drive say F:

C:\winnt> F:

F:\> cd usa\release\latest.idw\fre.wks\winnt32

F:\usa\release\latest.idw\fre.wks\winnt32>winnt32

This will start NT 5 installation. It will prompt for directory to pick up the files from, that will be a level higher, the fre.wks directory.

Once that is done the process is pretty much automatic. Most often it will be updating an existing build to the latest version. Selecting upgrade when the prompt arrives will take care of the process.

The entire process will take some time and will involve the machine being shutdown automatically (provided that option is chosen at the appropriate dialog (). Also, the new hardware detected window will keep popping up and that is just kept in a corner.

3. After installation, it’s a good idea to login as administrator and add your own userid to the administrator group. E.g. redmond/felixw

Step 2: Enlisting a new development environment

C:\winnt

mstools

idw

symbols

The above structure has to be created so that we can start installing the developer environment. The files have to copied into these directories (note they are copied and not just enlisted/ghosted). It is assumed that F: is still alive for the below.

C:\winnt\mstools>xcopy /chedi f:\usa\latest.idw\x86\fre.wks\mstools*.*

C:\winnt\idw>xcopy /chedi f:\usa\latest.idw\x86\fre.wks\idw*.*

C:\winnt\symbols>xcopy /chedi f:\usa\latest.idw\x86\fre.wks\symbols*.*

Environment Variables

The following are the list of environment variables to be set

1)Add the following to the existing path

%systemRoot%\mstools;%SystemRoot\idw;d:\nt\public\tools

2)Set _ntdrive to the appropriate drive where the nt build resides

Step 3: Enlisting in useful projects

Before we start, it makes sense to have a volume id for the d drive typically AJAYR1. In that drive create the hierarchy

Nt

Private

Public

(all in small letters ()

The following “ghost” the structure and essentially the process makes sure we get the projects being worked on by MARSDEV are available locally (at least the ADSI related parts).

d:\nt\private> enlist –gs \\orville\razzle –p private

d:\nt\public> enlist –gs \\orville\razzle –p public

D:\nt\public\oak> ssync –urf

D:\nt\public\tools>ssync -urf

D:\nt\public\sdk\inc> ssync -u

D:\nt\public\sdk\bin> ssync -urf

D:\nt\public\sdk\lib> ssync –u

D:\nt\public\sdk\lib\i386> ssync –urf

Then we copy the other files that are needed from the \\ntbuilds\release server. Xxxx is the build number. Please ask your mentor which build you should install.

D:\nt\public>xcopy /chedi i:

Where I points to the \\ntbuilds\release\usa\xxxx\x86\fre.pub

Picking up oleds :

D:\nt\private> md oleds

D:\nt\private> cd oleds

D:\nt\private\oleds> enlist –gs \\kernel\razzle3 –p oleds

D:\nt\private\oleds> ssync –urf

D:\nt\private> md nw

D:\nt\private\nw>enlist –gs \\orville\razzle –p minimars

D:\nt\private\nw>ssynch –urf

D:\nt\private\developr> ssynch –urf

Create a directory under developr with your userid and get the necessary files from another machine

D:\nt\private\windows>enlist –gs \\rastaman\ntwin –p windows

Synch in net\inc and also in inc6 in private windows

D:\nt\private\windows\inc>ssynch –u

D:\nt\private\windows\inc16>ssynch -u

D:\nt\private>md net

D:\nt\private\net>enlist orville\razzle –p net

D:\nt\private\net\inc>ssynch –urf

D:\nt\private\inc>ssync –u

D:\nt\private\net\svcdlls\fpnw\inc>ssync -u

Step 4: Building ADSI

This should bring the state of the machine to “build” ready. The actual build can be done by going to the oleds in private and then running build.

D:\nt\private\oleds>build –c

Step 5: Setting up Your Private Directory
Once the previous steps are completed, you should start experimenting with ADSI. There is a program called adsvw.exe which is a complete browser/editor for ActiveDirectory. You can use advw.exe to browse the directories of NTDEV domain and REDMOND domain but you don’t have permission to modify them. In order to access all the features in adsvw.exe, you need to set up your own private directory. To have your private directory you have to install Windows NT Server on your machine and it a domain controller of a completely isolated domain. You can execute the following commands to start the installation on Windows NT Server on your machine:

(Before you do the following, you should make sure that you have about 300mb of disk space somewhere on your machine.)

C:<anywhere>>net use * \\ntbuilds\release

(Assuming that the share is mounted onto logical drive e:)

C:<anywhere>>e:\usa\latest.idw\x86\fre.srv\winnt32\winnt32

The NT setup dialogue box should pop up after you have executed the command. You should choose the “Install..” option rather than the “Upgrade..” option. Alternatively, you may be able to specify an “Install” flag when you execute winnt32; you may want to check out the winnt32 documentation for details. Note that if you want to install a particular build, you can simply replace latest.idw in the last command with the build number you want.

After all the installation files have been copied over to your machine, your machine will reboot and the server setup program will start. Since your goal is to build a completely independent domain, you have to be very careful when answer certain network setup related questions. In particular, you want to adhere to the following guidelines:

· You will be asked for the target directory for your NT Server installation. Do not choose a path where one of your previous NT installations resides if you want to keep the old installation. It may not be a bad idea to choose c:\winnt.srv as the NT Server target directory.

· Make you machine a domain controller.

· Remember the name you have assigned to your computer, you will need that later on.

· Install the following protocols on your machine in addition to TCP/IP: Network Monitor Agent Driver, NetBEUI Protocol, and NWLink IPX/SPX/NetBIOS Transport Protocol. If you forget to add the protocols during setup, you can always add them later using the control panel.

· Do not join an existing domain tree. You should give your new domain a DNS name such as mydomain.ntdev.microsoft.com.
· Since your new domain is not part of an existing domain tree, you will be asked for the name of your first site. You should use the name you have assigned to your computer earlier. Do not attempt to use a DNS name with dots in it, setup will not accept the name even though the message box says you can use a DNS name for your first site. (This may change in the future.)

At the end of the networking setup phase, setup will promote your site (domain?). This process usually takes a couple of minutes. Once the promotion is completed, setup will ask you a couple more questions about time zone and display before rebooting your machine for one more time. When your machine restarts, you will have your own private domain and directory to play with.

To make your new server installation more enjoyable to use, you should add a new user with the same usrid as the one for your REDMOND account. You should also make the user as a member of the Administrators group. These two tasks can be done through User Manager for Domain. Once the new user is set up, you should log in as the new user exclusively.

In order to do some serious debugging, you have to set up the build environment again on your server installation by carrying out the procedure outlined in Step 2. You may also want to set up

Mail, IE, and some applications on your server installation again. Note that you are now completely isolated from the REDMOND domain so you have to specify explicitly that you are a REDMOND user when you access any servers in the REDMOND domain. For example, you have to add the /user:REDMOND\<your usrid> switch to the net use command when you try to mount a REDMOND file share.

You will also encounter problems when you try to use slm commands from your private domain. There seems to be no simple solutions to this problem. You can execute all your slm commands from your original NT Workstation installation or you can have another enlistment (You may not be able to do so). Having more than one enlistment can be a nightmare because it is difficult to track which enlistment you are editing.

Step 6: Tracing through ADSI Code inside a Debugger
All of ADSI runs in user mode so it is relatively easy to set up source-level debugging. If you are not familiar with debugging on NT, there are some debugging documents available on the ntstress home page (http://ntstress). When you are reading through the debugging documents, you should pay attention to how to set up your build environment for generating executables that include both the standard symbols and the source-level debugging. If you have built your executables before setting up the build environment to include the desired debugging symbols, you have to rebuild all the executables by going to the oleds directory and type “build –c”. Once you have generated executables with all the symbols you need, you have to install your binaries onto the operating system. This can be done by copying the ADSI dlls to the %windir%/system32 directory by executing the following commands:

C:<anywhere>>copy %_ntdrive%\public\sdk\lib\i386\ads*.dll %windir%\system32

C:<anywhere>>copy %_ntdrive%\public\sdk\lib\i386\activeds.dll %windir%\system32

The install.cmd script in the oleds project will also work but it will try to install files that you don’t have. You can just skip all the files that install.cmd complains about. After copying all the files, you should be able to get source-level debugging for ADSI. Now you should invoke either

Windbg adsvw.exe

OR

Msdev adsvw.exe

to start debugging adsvw.exe. Note that if you want to have source-level debugging for adsvw.exe, you have to use the executable in %_ntdrive%\private\oleds\oledsvw\obj\i386\ or you can simply copy your own adsvw.exe to %windir%\system32. When the debugger is started, you may want to set breakpoints on the following main entry points of ADSI:

adsldp!CLDAPGGenObject::Create

adsldp!CLDAPGGenObject::SetInfo

adsldp!CLDAPGGenObject::Put

adsldp!CLDAPGGenObject::Get

adsldp!CLDAPGGenObject::GetInfo

adsldp!CLDAPGGenObject::OpenSearchHandle

adsldp!CLDAPGGenObject::GetNextRow

adsldp!CLDAPGGenObject::GetNextColumn

adsldp!CLDAPGGenObject::CloseSearchHandle

adsldp!CLDAPGGenObject::Delete

Note that if you attempt to step into Ads* functions directly, the debugger may not be able to maintain source-level stepping because COM sits between the ADSI code and the client. You should experiment with creating a new ADS object, setting properties, getting properties, searching and deleting. For searching, you can create a new query with the filter “objectClass=user”.

Creating New Objects

This section details how to create a new object (class). The easiest way is to clone a set of files which are already there. One such set is the csed* cxx and hxx files in router.

1) Copy csed*.cxx and hxx to foo*.cxx and hxx. There are usaull four files foo.cxx, foo.hxx and foocf.cxx and foocf.hxx (where the cf files are the class factories).

2) Generate the new guid’s if necessary using uuidgen (think you will need 2 per class need to confirm this). Add the new guids to OLEDS_IID_IADsFoo and OLEDS_CLSID_Foo in header.h in types.

3) In the types directory create foo.odl and add to the ads.odl master odl file.

4) Build it to generate a new iads.h header file.

5) Copy iads.h to sdkinc (remember to check it in when checking in the other changes).

6) In oleds\include\intf.hxx add the macro DECLARE_IADsFoo_Methods.

7) Update the appropriate sources file where you added the four files for foo.

8) Update the new header used to generate the .pch file (oleds.hxx in the router).

9) Put the guids in the oledsiid\guid.c file.

10) Update the library entry point usually in libmain.cxx.

11) Update core.odl if necessary.

12) Build and copy activeds.tlb to system32 dir.

13) You will have to add registry entries for the new class. Looking at the setup\activeds.inf file and adding to it the appropriate entries for the created classes can do this. You can run this inf to update your registry. Note that the setup for NT5.0 registry keys is different and I am not sure how it is done.

14) Troubleshooting hint: If the code is not being called verify that the tlb has been called and that the registry entries have been set correctly.

Please update the above if you find that something is wrong or not accurate.

Building Oleds/ADSI on NT4

There are a few things to be done that need to be done to build oleds on NT4.

First you will need NT4 publics these can be picked up from \\ntbuilds\relase\usa\1381.sp1.

You will need NT4 tools also (it is not necessary to have an NT4 build installed on your machine but it is not that bad an idea as you can then debug on the machine).

You need to make sure that your env variables point to the NT4 locations. Additionally you will need to set the following :

· ADSI_NT40_BUILD=1

If you do not set this, then you will build as though it is the NT5 tree.

You will probably need an updated placefil.txt. I will update the doc once I have a location for it. I think it is worth checking into the project tree.

