Creating and Managing FRS

Replica Sets with FRSConfig

Version 1.1

By

The FRS Team

June 6, 2001

Introduction

An FRS replica set consists of two or more member computers that replicate the contents of a file folder between them. A simple replica set may consist of just two member computers sitting in the same office or it may consist of 1000 or more computers spread worldwide. Creating and managing FRS replica sets when the number of members is greater than 50 or 100 becomes very cumbersome without some scriptable tool to construct the replica set, add members, configure the topology or set the replication schedules. FRSConfig is a first attempt to do this.

As soon as you have 100+ items to manage you need to create lists to track the items, have a means for grouping the items by different properties and then use this list to drive a script to perform some management function on the items. This list becomes the master list for tracking these items and it needs to be secured and backed up appropriately. At one time it was believed that all this information could be kept in a directory service with various objects representing each of the items on this master list. However there are serious management problems that arise with this solution, the primary one being that the integrity of the list decays as multiple administrators of varying degrees of skill attempt to “manage” these items in the directory service. This is a problem for a service like FRS that gets all its configuration information from objects stored in the DS so as to provide remote administration and offline management. So, the reality is that the current state of the list in the directory service is simply the current “live” state but not necessarily the “correct” or “desired” state. Experience has shown that over time these administrative objects get miss configured and/or deleted.

To correct this problem as it relates to loss of integrity of FRS configuration information in the DS our strategy has shifted to the use of a master configuration file that contains both the membership and the topology information. The customer creates this master data file and uses it as input to scripting tools. In addition, we plan to develop monitoring tools that extract the current “live” state from the DS and compare that state to the desired state produced by the master configuration file so that the customer can correct any corruption to the live state.

1. Creating FRS Replica Sets

Considerations include: number of members, amount of data, data change rate and bandwidth needs, replication topology, replication schedule, fault tolerance, etc.

2. FRSConfig

FRSConfig can be used in a variety of ways to create replica sets. FRSConfig is built on top of Perl and provides functions for creating the various components of a replica set configuration such as the member objects, the connection objects, the schedules, etc. Since it is built on top of Perl you have flexibility of Perl scripting to build simple or very sophisticated tools to create replica sets.

FRSConfig contains support for the creation of a number of objects that are used in configuring replica sets. These include:

	Statement
	Generates

Objects
	Description

	FRS_MEMBER
	Yes
	Provides the parameters to create an FRS member object

	FRS_CONNECTION
	Yes
	Provides the parameters to create a connection object between two FRS members.

	FRS_REPLICASET
	Yes
	Creates and FRS replica set object that contains all the members

	FRS_SCHEDULE
	No
	Provides the parameters for creating replication schedules used by connection objects.

	FRS_SERVER
	No
	Provides the means to describe all the properties of a given server computer. These properties are then used when the actual member objects are created.

	FRS_SETTINGS
	No
	Describes the settings container in the DS that will contain the FRS Replica Set object.

	FRS_SET
	No
	A function for selecting a set of objects based on an identifying tag.

	FRS_COUNT_SET
	No
	A function for returning the number of objects in a set.

	FRS_ARRAY
	No
	A function for returning a set of objects in the form of an index able array.

	FRS_STAGGER
	No
	A function for advancing the state of an FRS schedule by some offset amount.

	FRS_SUB
	No
	A means for declaring a subroutine in an FRSConfig script

	FRS_SHOW
	No
	A function for displaying the contents of a set.

3. Building a Simple Two Member Replica Set

The following FRSConfig script takes three input parameters, a branch server ID number (BchID), a hub server ID number (HubID), and a value for the time zone of the branch server (BchTimeZone). This script is a bit more elaborate than it needs to be because it is based on a previous script that processed a variable number of hub and branch servers. Those elements were removed for this example to simplify the script. When this script is compiled with FRSConfig it produces a Perl program that accepts the three parameters and generates an object file for use by FRSInstall to create the FRS objects in the DS.

1 #

2 # Check the input parameters.

3 #

4 if ($CMD_VARS{"BchID"} ne '') {

5
$bchID = $CMD_VARS{"BchID"};

6 } else {

7
print STDERR "Required parameter BchID not found.\n";

8
exit;

9 }

10 if ($CMD_VARS{"HubID"} ne '') {

11
$hubID = $CMD_VARS{"HubID"};

12 } else {

13
print STDERR "Required parameter HubID not found.\n";

14
exit;

15 }

16 if ($CMD_VARS{"BchTimeZone "} ne '') {

17
$bchTimeZone = $CMD_VARS{"BchTimeZone"};

18 } else {

19
print STDERR "Required parameter BchTimeZone not found.\n";

20
exit;

21 }

22 # Restriction: script scalar variables must be prefixed with "$".

23 $domain = "mallard";

24 #

25 # Create the FRS_SERVER objects for the branch and the hub servers.

26 #

27 # The branch name ($bchName) is a concatenation (use of ".") of the

28 # branch id parameter and a constant suffix.

29 # The hub root path uses the branch name (no "." since inside dbl-quotes)

30 # so it is unique for each replica set serviced by this hub.

31 # In FRS, no two replica sets on the same server can have overlapping root paths.

32 $bchName = $bchID . "-I01";

33 $bchNt4Acct = "$domain\\$bchName\$"; # need to define outside of params due to trailing $

34 $hubName = "STL-FSNA-I" . $hubID;

35 $hubRootPath = "C:\\BRANCHES\\$bchName"; # need double slashes outside params

36 $hubNt4Acct = "$domain\\$hubName\$"; # need to define outside of params due to trailing $

37 HUB: FRS_SERVER (

38
/RP=$hubRootPath

39
/SP="C:\FRS-STAGING" # can use single slashes inside params

40
/COMPUTER=$hubNt4Acct

41
/ONAME=$hubName

42
/DNS_NAME="$hubName.$domain.coldduck.com")

43 BCH: FRS_SERVER (

44
/RP="D:\USERS"

45
/SP="C:\FRS-STAGING"

46
COMPUTER=$bchNt4Acct

47
/ONAME=$bchName

48
/DNS_NAME="$bchName.$domain.coldduck.com"

49
/time_zone=$bchTimeZone # Customer defined time zone par.

50
/rep_set_name="WD-$bchName") # Customer defined replica set name par.

51 #

52 # Restriction: Any time with a ":" must be enclosed in quotes. See

53 # /REPL_DURATION, /TIME_ZONE and /DISABLE below.

54 #

55 # Restriction: The current schedule generator does not make efficient use of

56 # daily variations in the blackout periods. Make the blackout

57 # periods the same for each day of the week.

58 #

59 SCH1: FRS_SCHEDULE (

60
/REPL_INTERVAL=24 # Once per day

61
/REPL_DURATION="2:00" # 2 hour window

62
/TIME_ZONE="-6:00" # Central time.

63
/REPL_OFFSET="18:00" # starting offset

64
/STAGGER="0:15" # successive members start at 15min deltas

65
/METHOD=1 # repeating schedule

66
/NAME='Primary Sched'

67
/DISABLE="su:05:00-su:18:00,mo:05:00-mo:18:00,

68

 tu:05:00-tu:18:00,we:05:00-we:18:00,

69

 th:05:00-th:18:00,fr:05:00-fr:18:00,

70

 sa:05:00-sa:18:00"

71
)

72 #

73 # Now that all the parameters are set begin the creation of the FRS replica set

74 # objects.

75 #

76 SETTINGS: FRS_SETTINGS (

77 /DN="cn=file replication service, cn=system, dc=mallard, dc=coldduck, dc=com"

78 /ONAME="cn=Working Dirs")

79 #

80 # Define an FRS replica set object under the settingsdn object.

81 # The object name for the FRS Replica Set object is based on the {rep_set_name}

82 # parameter from the branch server object.

83 #

84 # Restriction: References to tags that name a set of objects are

85 # surrounded by angle brackets. So "<BCH>" below refers

86 # the FRS_SERVER object just defined above.

87 # References to data components in other objects use the

88 # notation "->{...}".

89 #

90 RSET: FRS_REPLICASET (/UNDER=<SETTINGS> /TYPE=DFS /ONAME=<BCH>->{rep_set_name})

91 #

92 # Create the two FRS member objects underneath the RSET object just created.

93 # Parameters for the member object attributes come from the /SERVER argument

94 # but they can also be replaced by parameters supplied to the FRS_MEMBER command.

95 # For example, the staging and root paths come from the /SERVER argument but the

96 # root path could be changed by adding "/RP="newroot"" to the param list below.

97 #

98 #

99 MH: FRS_MEMBER (/UNDER=<RSET> /SERVER=<HUB> /COMPUTER=<HUB>->{COMPUTER})

100 MB: FRS_MEMBER (/UNDER=<RSET> /SERVER=<BCH> /COMPUTER=<BCH>->{COMPUTER})

101 #

102 # Create the connection objects between the members defined above.

103 # Again, note use of angle brackets.

104 # To use the time zone supplied on the branch's FRS_SERVER object

105 # add the following parameter to each FRS_CONNECTION object below.

106 # /TIME_ZONE=%B%->{time_zone} This overrides the time zone specified in SCH1.

107 #

108 FRS_CONNECTION (/TO=<MB> /FROM=<MH> /SCHED=<SCH1>

109

 /ONAME="FROM-".<MH>->{ONAME}."-TO-".<MB>->{ONAME})

110 FRS_CONNECTION (/TO=<MH> /FROM=<MB> /SCHED=<SCH1>

111

 /ONAME="FROM-".<MB>->{ONAME}."-TO-".<MH>->{ONAME})

3.1. Command Line Parameters

When the Perl program is invoked the three parameters are passed to it via the command line options -DBchID=xxxx –DHubID=yyyy -DBchTimeZone=nn. These parameters can have no embedded spaces (unless you use quotes) and the parameter names are case sensitive. When the Perl program starts up it automatically reads the command line parameters and takes all those with the –D option and inserts them into the predefined array $CMD_VARS. The script (lines 1-21) accesses the values of these parameters using the Perl notation “$CMD_VARS{"BchID"}”. The braces enclosed the parameter name in quotes. If the value is the null string then the parameter was not provided and the program prints a message and exits. If the value is non-null it is assigned to a local variable, in this case, $bchID. By now you realize that all of Perl’s scalar variable names are prefixed with a dollar sign. Perl also provides arrays and lookup tables as built-in variable types. These have a different prefix.

3.2. FRS_SERVER Statement

The next portion of the script (lines 23-50) defines two server objects using the FRS_SERVER statement. These are internal pre-defined FRSConfig objects that describe the relevant attributes of each replica set member. They do not produce any configuration objects directly; rather they provide input to other FRSConfig statements, which do generate configuration objects. The /RP parameter (root path) provides the location of the root of the replica tree on the given server. The /SP parameter (staging path) provides the location of the directory to contain the FRS staging files on the given server. The /COMPUTER parameter provides the NT4 account name for the given server. This is used to locate the server’s computer object in the DS. The /ONAME parameter specifies the name to use when the FRS member object for this server is created in the DS. The DNS_NAME is used to identify the replica set member when constructing a connection object. This is needed because there are situations where you may be reconfiguring the topology of a replica set and the member object names in the DS are unknown or have changed. The DNS name of each member computer is well known and is contained in the master configuration file. The /time_zone and /rep_set_name parameters that are customer specified for the BCH servers are the means of providing this information to other parts of the script when the connection object schedules and the replica set objects are created. These must be unique for each branch since a single hub server will host the replica sets of many different branches.

3.3. Grouping Objects Into Sets

The two FRS_SERVER statements are labeled HUB and BCH respectively. These labels (or tags) are used later in the script as references to the FRS_SERVER objects. The tags are not simply unique references to an FRS_SERVER object; rather they define a set (or container) that can hold many FRS_SERVER objects. For example, if you had 4 hub site servers you could work with them as a group by declaring the FRS_SERVER statement for each hub server with the tag HUB. In addition, an FRS_SERVER statement can have more than one tag. For example two of our hub site servers could have the two tags HUB and PRIMARY and the other two hub site servers could have the two tags HUB and SECONDARY. Now when you need to work with the secondary hubs you reference it with the angle bracket notation <SECONDARY>. Likewise if you need to work with all the hub servers use the tag reference <HUB>. There are methods to enumerate the contents of a set and to reference individual set elements. You could create a master input file containing 800 FRS_SERVER statements describing the properties of each branch server in an enterprise. By simply tagging each with the same tag and reading the file from the script the entire set can be processed to produce a single large hub spoke configuration. An example like this is discussed later.

3.4. Using Strings

Line 32 constructs the name of the branch by concatenating the value of $BchID with the string “-I01”. Note the use of the concatenation operator “.” and the terminating semi-colon. Line 33 constructs the NT4 (or SAM) account name for the branch server using the Perl’s variable interpolation feature, "$domain\\$bchName\$". The entire string is inside double quotes and Perl substitutes the value for the variables $domain and $bchName when it executes this statement (use single quotes around the string to suppress this substitution). The backslash is the escape (or literal next) character in Perl so two backslashes are needed to produce a single backslash between the domain and computer name parts of the NT4 account name. The trailing dollar sign of the NT4 account name is also escaped so Perl does not treat it as a variable. Lines 34-36 are building the same strings for the hub server. In addition line 35 is constructing a unique root directory path for the replica directory tree on the hub server. This is necessary because if you used this script to create another replica set between the same hub server and a different branch the replica trees on the hub have to be distinct. Each branch can use the same root directory path since the branch servers are distinct.

3.5. Predefined Parameters

Lines 37-42 declare a server object with the tag, HUB. The FRS_SERVER statement or more accurately declaration has several predefined parameters. These are RP, SP, COMPUTER, ONAME and DNS_NAME. Predefined parameters use all uppercase characters. FRSConfig processes this declaration by creating an instance of an FRS_SERVER structure and saving in it the values of each of these parameters. Since these parameters have known names other FRSConfig statements that reference this particular FRS_SERVER instance can use them. In addition to the predefined parameters you can create your own parameter and its value is also saved in this FRS_SERVER structure instance. You see an example of that in lines 49 and 50. Later on in the script we will see how these parameter values are referenced.

3.6. Statement Format

The format of each FRSConfig statement (anything with an FRS prefix) is the statement name (FRS_SERVER in this case) followed by a series of option/value elements all enclosed in parentheses. There is no terminating semi-colon and each option (or parameter) name is prefixed with a forward slash and the option name is separated from its value with an equal sign. The parameters can occur in any order. Most FRSConfig statements must have at least one tag (or label) associated with them. These tags have a colon suffix and multiple tags are separated by spaces, each with a colon suffix. FRSConfig translates these statements into Perl code making it important to follow the syntax rules carefully so FRSConfig can find the all the parts of a given statement. Those parts of the input script that are not identified as FRSConfig statements are treated as Perl code and copied directly to the Perl program being generated. This is not quite the whole story because Perl statements can include references to FRS objects so each input line also includes some pre-processing to replace the FRS object references with the appropriate Perl code to access the requested data.

3.7. FRS Schedule Statement

Like the FRS_SERVER objects the FRS_SCHEDULE object does not directly generate any configuration objects. Instead it creates an internal object, saving the values of the input parameters. FRS_MEMBER or FRS_CONNECTION objects can then reference the schedule object in order to supply them with schedule information.

3.7.1. Schedule Representation

A replication schedule is associated with each partner connection that determines when FRS can move staging files from one member to another. Connection schedules are an attribute associated with each connection object. They contain a 7x24 array of bytes, one byte for each hour in a 7 day week (UTC time zone). The low 4 bits of each byte are use to indicate during which quarter hours replication is enabled. If all 4 bits are set the replication is enabled for the entire hour, if all 4 bits are clear then no replication is attempted in that hour. The upper 4 bits in each schedule byte are reserved for future use. The example schedule below (each entry is 2 hex digits) would enable replication for 15 minutes every other hour during the week. Note that this is how the schedule information is interpreted by the services; the UI may not present the schedule in this form.

Figure 4‑1 Replication Schedule

	 Hour of the day

 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 sun= 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00

D mon= 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00

A tue= 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00

Y wed= 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00

S thu= 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00

 fri= 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00

 sat= 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00

Here FRS interprets the partner connection schedule as an "ON-OFF schedule". That is if the schedule says to replicate between 5AM and 8AM then we start replicating to the downstream partner at 5AM and stop replicating (even if not done sending all the files) at 8AM. This allows the customer to control when replication is consuming network bandwidth in the event that some user just dumped 1GB of file data into a replica set. In the future we plan to have better ways for the admin to control the amount of bandwidth that can be used on a given connection.

3.7.2. Schedule Parameters

Table 4‑1 lists the parameters to the FRS_SCHEDULE statement. There are two types of schedules you can specify, custom and periodic, using the METHOD parameter.

Custom allows you to specify a fixed schedule (GMT based) for the entire week using /OVERRIDE parameter. All other parameters except /TIME_ZONE are ignored. When the schedule is referenced it is rotated by the specified time zone amount to produce the final schedule. This way you can have a fixed schedule for connections to multiple members but tune it for the time zone for each member.

With periodic schedules you supply an interval between the start of each replication period (/REPL_INTERVAL) and the duration (/REPL_DURATION) for each period to construct the schedule. The /REPL_OFFSET parameter specifies where in the week to start generating the periodic schedule. It acts as a phase parameter so you can control amount of offset between multiple schedules.

A Time-Range is a string describing the days and times during the week when the related operation is applied. The format is dd:hh[:qq]-dd:hh[:qq] and is explained in section 5.1. As an example, mo:07:30-mo:18:00 refers to a time range starting on monday at 7:30 am and ending the same day at 6 pm. The OVERRIDE and DISABLE parameters can take multiple time-ranges separated by commas. Line 67 shows a DISABLE time-range that produces a blackout period 5AM and 6PM every day of the week. Times and time-ranges need to be in quotes because otherwise the colon character confuses Perl.

Table 4‑1 FRS_SCHEDULE Parameters

	Parameter
	Type
	Description

	/REPL_INTERVAL
	hh:qq
	The desired interval between the start of successive replication periods.

	/REPL_DURATION
	hh:qq
	The duration of a replication period.

	/TIME_ZONE
	+|-hh:qq
	The time zone offset from GMT to apply to the schedule.

	/REPL_OFFSET
	hh:qq
	The desired offset (or more accurately, the phase) where the first replication period of the week is to start.

	/STAGGER
	hh:qq
	The desired adjustment to apply to the REPL_OFFSET when their FRS_STAGGER statement executes on the schedule.

	/METHOD
	1|2
	1: Build a periodic schedule using the above parameters.

2: Build a custom schedule using the OVERRIDE parameter (see below).

	/NAME
	String
	A text string to identify the schedule in output files (this is not saved in the FRS configuration object containing this schedule).

	/OVERRIDE
	TimeRange
	The times during the week when replication is always enabled. Multiple time-ranges can be provided, separated by commas.

	/DISABLE
	TimeRange
	The times during the week when replication is always turned off. Multiple time-ranges can be provided, separated by commas.

3.7.3. Schedule Generation

Starting at the offset, the first replication period is marked off for the given duration then interval is added to the offset to mark the start of the second replication period. This continues until the entire schedule is built, stopping when we wrap back to the starting offset. If the /DISABLE parameter is supplied then it is checked during construction of each replication period. If any portion of the desired period overlaps a quarter-hour that has been disabled the replication period is advanced forward until an open space of the desired duration is found. Finally, the resulting schedule is logically or’ed to the value specified by the /OVERRIDE parameter (if supplied) and then shifted by the desired /TIME_ZONE to produce final schedule. The /STAGGER parameter is the size of the increment to be applied to the REPL_OFFSET when the FRS_STAGGER command is executed on the schedule. FRS_STAGGER is typically used in a loop to offset the schedules of successive replication partners that connect to a common hub machine. The schedule is only generated when it is referenced by the FRS_MEMBER or FRS_CONNECTION statements and only if a parameter, like stagger or time zone, has changed since the last schedule was generated.

3.8. FRS_SETTINGS Statement

The FRS_SETTINGS command is used to supply the location in the DS of an NTFRS-SETTINGS object. It is under this object that the NTFRS-REPLICA-SET object is created. The FRS_SETTINGS command does not create the actual NTFRS-SETTINGS object, you must do that using the DS Computers and Users tool. The fully qualified distinguished name (FQDN) of the settings object in the DS is formed by combining the /ONAME (object name) parameter with the /DN parameter. Line 76 shows the FRS_SETTINGS statement with a tag of “SETTINGS”.

3.9. FRS_REPLICASET Statement

The FRS_REPLICASET statement (line 90) is the first FRSConfig statement that generates a configuration object in the DS. It creates (or updates) an NTFRS-REPLICA-SET object. The replica set object is created underneath the settings object referenced by the /UNDER=<SETTINGS> parameter. The angle brackets tell FRSConfig this is a reference to an object tag, in this case the object tag of the FRS_SETTINGS statement above. The /ONAME parameter defines the name of the replica set object, in this case the value of the /rep_set_name parameter supplied to the “BCH” FRS_SERVER object at line 50. Again the angle brackets tell FRSConfig that this is a tag reference and in addition the value of the rep_set_name component of the FRS_SERVER object is accessed with the notation “->{…}.” The braces are required. The other parameters that can be specified in the FRS_REPLICASET statement are described in Table 4‑2.

Note that /PRIMARY_MEMBER is different from all the rest in that the member object must already exist the setting to take effect. When creating a replica set for the very first time this will not be the case because the replica set container won’t exist. So to set this attribute you have to execute a second FRS_REPLICASET statement at some point after the FRS_MEMBER statement of the primary member has been executed. The effect of this second execution will be just to update the primary member attribute while leaving all other attributes unmodified if there is no change.

Table 4‑2 FRS_REPLICASET Parameters

	Parameter
	Type
	Description

	/UNDER
	Set Element
	Object tag of replica set object.

	/ONAME
	String
	Object name of the replica set object.

	/SCHED
	Schedule ref
	Object tag of a schedule object.

	/FLAGS
	Integer
	Flags dword.

	/TYPE
	Type Code
	Replica set type (DFS, OTHER).

	/FILE_FILTER
	String
	Comma list of file wildcard strings to exclude.

	/DIR_FILTER
	String
	Comma list of directory wildcard strings to exclude.

	/PRIMARY_MEMBER
	String
	DN of the replica set primary member. The member object must exist before using this parameter or the DS will not allow this attribute on the replica set object to be set. See /MAKE_PRIMARY_MEMBER on the FRS_MEMBER_OBJECT for an alternative way to do this.

	/BINDDC
	String
	Computer name of DC on which to create this object.

3.10. FRS_MEMBER Statement

The FRS_MEMBER statement (lines 99, 100) creates or updates an NTFRS-MEMBER object in the DS. The member object is created underneath the replica set object referenced by the /UNDER=<RSET> parameter, the FRS_REPLICASET statement on line 90. The /ONAME parameter defines the name of the member object, in this case the ONAME parameter comes from the FRS_SERVER object referenced by the /SERVER=<HUB> parameter (line 37). If the /ONAME parameter had been supplied on the FRS_MEMBER statement then its value would override the value provided on the FRS_SERVER object. In addition to the ONAME parameter the member object requires a root path, a staging path, and a DNS name. All these values are supplied from the referenced FRS_SERVER object. The COMPUTER name (which is the SAM account name used to locate the computer object in the DS) could also have been provided by the FRS_SERVER object but instead /COMPUTER=<HUB>->{COMPUTER} was supplied. This is a tag reference to the COMPUTER component of the FRS_SERVER object with the tag of HUB (line 37).

NOTE: If you plan to administer this replica set via the FRS UI that is part of the DFS GUI in WIN2K (not necessary for WINXP) then the member object name must be the GUID of the related computer object (converted to a string form). The UI relies on this to work properly. To make this happen, specify /ONAME="ComputerObjectGuid" as a parameter on the FRS_MEMBER statement. The literal string “ComputerObjectGuid” must be specified exactly, i.e. it is case sensitive. FRS_CONFIG will then get the GUID of the computer object and make that the DN of the FRS_MEMBER object it creates.
The other parameters that can be specified in the FRS_MEMBER statement are described in Table 4‑3.

Table 4‑3 FRS_MEMEBER Parameters

	Parameter
	Type
	Description

	/UNDER
	Set Element
	Object tag of replica set object.

	/ONAME
	String
	Object name of the member object.

	/SERVER
	Set Element
	Reference to FRS_SERVER object.

	/RP
	String
	The full path name to the root of the replica tree on this member.

	/SP
	String
	The full path name to the root of the staging area on this member.

	/COMPUTER
	SAM Acct Name
	“Domain_name\computer_name$” to find computer object of this member.

	/DNS_NAME
	String
	The DNS name of this computer, used to find member object if it already exists.

	/MAKE_PRIMARY_MEMBER
	Flag
	Make this member the primary for the replica set. That is, the DN of this member is assigned to the primary member attribute of the associated replica set. This is often easier than using the PRIMARY_MEMBER parameter on the FRS_REPLICASET statement because the member object must exist before you can update the attribute. Note: This parameter is specified as a flag on the FRS_MEMBER statement, it does not take a value.

	/BINDDC
	String
	Computer name of DC on which to create this object.

3.11. FRS_CONNECTION Statement

The FRS_CONNECTION statement (lines 108, 110) creates or updates an NTDS-CONNECTION object in the DS. The connection object is created underneath the member object referenced by the /TO=<MB> parameter, the FRS_MEMBER statement on line 100. The /ONAME parameter constructs an object name composed of object names of the /TO and /FROM member references. The /FROM=<MB> parameter contains a reference to the member object that will be the source of the replication data.

The schedule information is supplied by the /SCHED=<SC1> parameter which is the schedule object defined on line 59. Different replica set members can be in different time zones so the /TIME_ZONE parameter can be used here to override the value supplied in the schedule object. Typically the time zone value would be associated with a given FRS_SERVER object, which supplied the parameter to the FRS_MEMBER that referenced it. In this case if a time zone parameter such as /member_time_zone=”-6:00” was supplied to the FRS_SERVER statement then that parameter is inherited by the FRS_MEMBER object and could be specified as

“/TIME_ZONE=<MB>->{member_time_zone}”

in the FRS_CONNECTION statement.

An FRS_CONNECTION statement only specifies replication in a single direction between two members. Line 110 contains the connection statement to produce a connection object for replication in the opposite direction. It uses the same schedule so the two members will replicate any changed files they have during the same replication period.

There may be some performance benefit in some topologies to offset in time the outbound replication from the hub machine from the inbound replication to the hub. You might get better file cache utilization during outbound hub replication if at the same time you didn’t have inbound replication active. In this case you would have the branches schedule their replication to the hub first and then when that completes all updated files are on the hub which can then send them back to all the other branch servers.

The other parameters that can be specified in the FRS_CONNECTION statement are described in Table 4‑4.

Table 4‑4 FRS_CONNECTION Parameters

	Parameter
	Type
	Description

	/TO
	Set Element
	Object tag of the destination member object.

	/FROM
	Set Element
	Object tag of the source member object.

	/ONAME
	String
	Object name of the connection object.

	/SCHED
	Schedule ref
	Object tag of a schedule object.

	/TIME_ZONE
	+|-hh:qq
	The time zone offset from GMT to apply to the schedule.

	/FLAGS
	Integer
	Flags dword.

	/OPTIONS
	Integer
	Options dword.

	/ENABLED
	0|1
	0: Connection is disabled, 1: connection is enabled.

	/BINDDC
	String
	Computer name of DC on which to create this object.

4. Parameter Types

There are several different types of parameter values that can be passed to FRSConfig statements and to FRS_SUB defined subroutines.

4.1. Schedule Times

A schedule time specifies a specific quarter hour in a 7-day week. It has the format '[dd:]hh[:qq'], where dd is first 2 letters of the day of the week, hh is the hour (24 hour format) and qq is the quarter-hour. For the quarter-hour field, 00 means on the hour, 15 means quarter past, 30 means half past and 45 means 3/4 past. These are the only valid alternatives for the quarter-hour field. A time range consists of two times, a beginning time and an ending time, separated by a dash. The beginning time in a range must be before the ending time. Some examples are:

	Su:00:00
	Sunday – midnight.

	0
	Sunday – midnight.

	Tu:6:45
	Tuesday, 6:45 AM.

	Mo:8-Mo:18:30
	Time range starting Monday,8AM and ending Monday,6:30PM.

Times and time-ranges need to be in quotes because the colon character confuses Perl.

Some time parameters like /DURATION and /STAGGER utilize only the hour and quarter-hour fields. In addition /TIME_ZONE takes an optional plus or minus sign along with the hour and quarter-hour fields.

5. Building a Hub-Spoke Replica Set

This example illustrates how to use FRSConfig to create and configure a replica set containing M hub site computers that balance the replication load between N branch site computers with a hub-spoke topology. This is a common configuration used by companies with computers a central data center that communicate with computers in a large number of branch offices.

use Time::Local;

printf "Configuration generated at %s\n\n", scalar localtime;

$stage = "D:\\staging"; ## NOTE: double slash needed when variable is used.

$DC_OU_DN = "ou=domain controllers,dc=mallard,dc=coldduck,dc=com";

#

The server table // ## note use of single quote because of $ //

#

HUB: FRS_SERVER (/RP="E:\RSB" /SP="$stage" /COMPUTER='frs1221\test1$'

 /DNS_NAME="hub0.mallard.coldduck.com" /MNAME="hub0")

HUB: FRS_SERVER (/RP="E:\RSB" /SP="$stage" /COMPUTER='frs1221\test2$'

 /DNS_NAME="hub1.mallard.coldduck.com" /MNAME="hub1")

HUB: FRS_SERVER (/RP="E:\RSB" /SP="$stage" /COMPUTER='frs1221\test3$'

 /DNS_NAME="hub2.mallard.coldduck.com" /MNAME="hub2")

HUB: FRS_SERVER (/RP="E:\RSB" /SP="$stage" /COMPUTER='frs1221\test1$'

 /DNS_NAME="hub3.mallard.coldduck.com" /MNAME="hub3")

HUB: FRS_SERVER (/RP="E:\RSB" /SP="$stage" /COMPUTER='frs1221\test1$'

 /DNS_NAME="hub4.mallard.coldduck.com" /MNAME="hub4")

for $b (0 .. 199) {

 $bchname = "Branch-$b";

 $Nt4Acct = "mallard\\$bchname\$";

 BCH: FRS_SERVER (/RP="D:\RSB" /SP="D:\staging"

 /COMPUTER=$Nt4Acct

 /id="-$bchname"

 /DNS_NAME="$bchname.mallard.coldduck.com"

)

}

The FRS_SCHEDULE command does not actually create any FRS objects in the DS,

Rather it defines the parameters to use when creating a schedule.

#

Restriction: Any time with a ":" must be enclosed in quotes. See /REPL_DURATION,

/TIME_ZONE and /DISABLE below.

#

PRIMARY_SCH: FRS_SCHEDULE (/REPL_INTERVAL=4 /REPL_DURATION="1:30"

 /TIME_ZONE="+1" /REPL_OFFSET=0 /STAGGER=2

 /METHOD=1 /NAME='Primary Sched'

 /DISABLE="mo:07:30-mo:18:00,tu:07:30-tu:18:00,we:07:30-we:18:00,th:07:30-th:18:00,fr:07:30-fr:18:00"

)

#

The following function creates the connection objects for a hub spoke topology.

#

FRS_SUB CREATE_HUB_SPOKE_CONN(/HUBSET=SET_REF_SET # Hubs

 /BCHSET=SET_REF_SET # Branches

 /SC1=SCHEDULE)

 $Hx = 0;

 $NHub = FRS_COUNT_SET(/SET=%HUBSET%);

 print " NHUB = $NHub\n\n";

 #

 # RESTRICTION: don't PUT FRS FUNCTION REFS INSIDE A QUOTED STRING.

 #

 print " NBCH FRS _COUNT_SET(/SET= % BCHSET %) ", FRS_COUNT_SET(/SET= %BCHSET%), "\n" ;

 #

 # Create the topology

 #

 foreach $bch (FRS_ARRAY(/SET=%BCHSET%)) {

 print "working on branch: $bch->{ONAME}\n";

 $hubsrv = %HUBSET%[$Hx];

 #

 # RESTRICTION: need braces around ONAME and MNAME.

 #

 FRS_CONNECTION (/TO=$bch /FROM=%HUBSET%[$Hx] /SCHED=%SC1%

 /ONAME="FROM-".$hubsrv->{MNAME}."-TO-".$bch->{ONAME})

 FRS_CONNECTION (/TO=%HUBSET%[$Hx] /FROM=$bch /SCHED=%SC1%

 /ONAME="FROM-".$bch->{ONAME}."-TO-".$hubsrv->{MNAME})

 $Hx=($Hx+1) % $NHub;

 if ($Hx == 0) {

 FRS_STAGGER (/SCHED=%SC1%)

 }

 }

FRS_END_SUB

#

The following function creates the connection objects for a ring topology.

#

FRS_SUB CREATE_RING_CONN(/HUBSET=SET_REF_SET)

 FRS_SHOW(/SET=%HUBSET%)

 $Ringx = 0;

 $RingCount = FRS_COUNT_SET(/SET=%HUBSET%);

 print " RingCount = $RingCount\n\n";

 #

 # Create the topology

 #

 for ($Ringx=0; $Ringx < $RingCount-1; $Ringx++) {

 $RM1 = %HUBSET%[$Ringx];

 $RM2 = %HUBSET%[($Ringx+1) % $RingCount];

 #

 # RESTRICTION: need braces around ONAME and MNAME.

 #

 FRS_CONNECTION (/TO=$RM1 /FROM=$RM2 /SCHED=ON

 /ONAME="FROM-".$RM2->{MNAME}."-TO-".$RM1->{MNAME})

 FRS_CONNECTION (/TO=$RM2 /FROM=$RM1 /SCHED=ON

 /ONAME="FROM-".$RM1->{MNAME}."-TO-".$RM2->{MNAME})

 }

FRS_END_SUB

#

The following function builds the member objects for a hub spoke topology

and creates the connection objects.

#

FRS_SUB CREATE_HUB_SPOKE(/HUBSET=SET_REF_SET # Hubs

 /BCHSET=SET_REF_SET # branches

 /SC1=SCHEDULE

 /REPSETDN=SET_ELEMENT)

 FRSSUP::PrintHash(\%__args);

 FRS_SHOW(/SET=%HUBSET%)

 #

 # Create the hub member objects

 #

 # Restriction: All subroutine argument refs are surrounded by "%".

 # References to parameters in other objects use the

 # notation "->{...}". e.g. COMPUTER, MNAME, id

 #

 foreach $hub (FRS_ARRAY(/SET=%HUBSET%)) {

 MOBJHUB: FRS_MEMBER (/UNDER=%REPSETDN%

 /SERVER=$hub

 /COMPUTER=$hub->{COMPUTER}

 /ONAME=$hub->{MNAME})

 }

 #

 # create the branch member objects.

 #

 foreach $bch (FRS_SET(/SET=%BCHSET%)) {

 MOBJBCH: FRS_MEMBER (/UNDER=%REPSETDN%

 /SERVER=$bch

 /COMPUTER=$bch->{COMPUTER}

 /ONAME="B".$bch->{id})

 }

 CREATE_RING_CONN(/HUBSET=<MOBJHUB>)

 CREATE_HUB_SPOKE_CONN(/HUBSET=<MOBJHUB> # Hubs

 /BCHSET=<MOBJBCH> # Branches

 /SC1=%SC1%)

FRS_END_SUB

#

Create the replica set under the FRS Settings object.

#

SETTINGS: FRS_SETTINGS (/DN="cn=services,cn=configuration,dc=mallard,dc=coldduck,dc=com"

 /ONAME="cn=ntfrs test settings")

SET: FRS_REPLICASET (/UNDER=<SETTINGS> /TYPE=DFS /ONAME="HubSpokeRepSet")

CREATE_HUB_SPOKE(/HUBSET=<HUB> # Hubs

 /BCHSET=<BCH> # backup hub

 /SC1=<PRIMARY_SCH>

 /REPSETDN=<SET>)

6. Revision History

1.1 – June 6,2001 –

1 Add ComputerObjectGuid distinguished parameter value to the /ONAME parameter on the FRS_MEMBER statement. This allows the WIN2K FRS UI to properly interpret the generated configuration.

2 Add /MAKE_PRIMARY_MEMBER parameter to FRS_MEMBER statement.

1.0 – April 7,2001 – Original version.
PAGE
1

