ADL Language Specification

Following is the BNF spec for the ADL language, for different locales, only the ACRULE production needs to be changed in order to fit any international grammar.
ADL:

ACRULE_LIST TK_EOF ;

ACRULE_LIST:

ACRULE

|
ACRULE_LIST ACRULE ;

ACRULE:

SEC_PRINCIPAL_LIST EX_SEC_PRINCIPAL_LIST TK_ALLOWED

PERMISSION_LIST TK_ON OBJECT_SPEC TK_SEMICOLON

|
SEC_PRINCIPAL_LIST TK_ALLOWED PERMISSION_LIST TK_ON

TK_SEMICOLON OBJECT_SPEC ;

SEC_PRINCIPAL_LIST:
SEC_PRINCIPAL

|
SEC_PRINCIPAL_LIST TK_COMMA SEC_PRINCIPAL

|
SEC_PRINCIPAL_LIST TK_AND SEC_PRINCIPAL ;

EX_SEC_PRINCIPAL_LIST:
TK_OPENPAREN TK_EXCEPT SEC_PRINCIPAL_LIST TK_CLOSEPAREN ;

PERMISSION_LIST:

PERMISSION

|
PERMISSION_LIST TK_AND PERMISSION

|
PERMISSION_LIST TK_COMMA PERMISSION ;

PERMISSION:

IDENTIFIER ;

OBJECT_SPEC:

OBJECT

|
OBJECT TK_AND SUB_OBJECT ;

SEC_PRINCIPAL:

SUB_PRINCIPAL

|
SUB_PRINCIPAL TK_AS SUB_PRINCIPAL ;

SUB_PRINCIPAL:

IDENTIFIER TK_AT DOMAIN

|
DOMAIN TK_SLASH IDENTIFIER

|
IDENTIFIER ;

DOMAIN:

IDENTIFIER

|
DOMAIN TK_PERIOD IDENTIFIER ;

OBJECT:

IDENTIFIER ;

SUB_OBJECT:

IDENTIFIER ;

IDENTIFIER:

TK_IDENT

|
TK_ALLOWED

|
TK_AND

|
TK_AS

|
TK_EXCEPT

|
TK_ON ;

The following tokens are locale-independent:
TK_EOF: End-of-file, returned by lexer upon reaching end of input

TK_ERROR: Returned by lexer upon unterminated quote.

TK_IDENT: Any valid string not matched to one of the keywords.

The following tokens may be changed depending on locale:

TK_AT: ‘@’ sign used in English

TK_SLASH: ‘\’ in English, used for DOMAIN\USER

TK_PERIOD: ‘.’ in English, used for DOMAIN.DOMAIN

TK_COMMA: ‘,’ in English, used as separator for lists

TK_OPENPAREN: ‘(‘ in English, used for the Except list

TK_CLOSEPAREN: ‘)‘ in English, used for the Except list

TK_SEMICOLON: ‘;’ in English, used to indicate the end of a single ACRULE in an ACRULE_LIST

The following tokens must be specified by locale:

TK_ALLOWED: “allowed” in English, indicates permission list follows

TK_AND: “and” in English, used interchangeably with commas as list delimiters

TK_AS: “as” in English, indicates impersonation

TK_EXCEPT: “except” in English, indicates beginning of Except list

TK_ON: “on” in English, indicates the target object spec follows

Error checking:

The DOMAIN, OBJECT, and SUB_PRINCIPAL productions will use existing windows checks for valid names, without going over the network. The parse tree will verify the actual name validity when it attempts conversion to SID.

Resource manager:

The resource manager will supply a mapping function from PERMISSION identifier to access mask bits. It will also specify a list of valid OBJECT and SUB_OBJECT identifiers. It may need to supply callbacks which directly modify the security descriptor based on OBJECT and SUB_OBJECT.

Lexer:

The lexer is hand-written (to support unicode), and does not verify the identifiers. It uses the known delimiters and whitespace to separate tokens. A quote character (which can be externally specified) allows any literal strings (no escape sequences are supported). Newlines and tabs inside quoted strings are not allowed. Whitespace outside quoted strings is ignored. Token positions are stored for error reporting. The lexer will match any language-specific tokens it can, and return everything else as TK_IDENT. Quotes are allowed as parts of a single identifier, as in a”n”d would be equivalent to “and”. However, if quotes are part of an identifier, the lexer will not attempt to match the token to one of the externally defined keywords.

Parser:

The parser will be generated by YACC, with a C++ wrapper around it. It will produce an AdlStatement structure after verifying as much as possible about the tokens without going over the network (NetpNameValidate).

AdlStatement:

This class will contain the parse tree from the parser. It will be able to generate an optimized (optimization specified by flag, least number of rules, etc) ADL statement, or a security descriptor. It will also have a constructor from a security descriptor.

