Key Archival and Recovery Support

1. XEnroll.Dll

To cause the cert server to archive a key, construct a CMC request with the private key encrypted to the CA certificate and attached to the CMC request as an unauthenticated attribute.

Generating a Key Archival Certificate Request

XEnroll interfaces will be modified to support CMC request generation and key archival.

For standard dual-mode COM clients, ICEnroll4 will inherit from ICEnroll3. For static linking to minimize COM overhead and force use of XEnroll.Dll from the system32 directory, IEnroll3 IEnroll4 will inherit from IEnroll2. Similar methods will be added to both interfaces, except that COM callers will pass in and accept BSTR strings, and static linking clients will pass in and accept Crypto API data structures.

Compatibility notes for old methods defined by the C only interface, IEnroll:

a. AddNameValuePairToSignatureWStr – This obsolete method adds a name value pair to the PKCS7 authenticated attributes only (including renewal requests constructed by CreatePKCS7RequestFromRequest). Name value pairs added via this method will be ignored when constructing PKCS10 or Full CMC requests. Use addNameValuePairToRequestWStr instead.

b. AddExtensionsToRequest -- This obsolete method adds an array of extensions to a PKCS10 request only. Extensions added via this method will be ignored when constructing PKCS7 or Full CMC requests. Use addExtensionToRequestWStr instead.

c. AddAuthenticatedAttributesToPKCS7Request – This obsolete method adds an array of attributes to the PKCS7 authenticated attributes only (including renewal requests constructed by CreatePKCS7RequestFromRequest). Attributes added via this method will be ignored when constructing PKCS10 or Full CMC requests. Use addNameValuePairToRequest instead.

Compatibility notes for old methods defined by the dual interface, ICEnroll2:

d. AddNameValuePairToSignature – This obsolete method adds a name value pair to the PKCS7 authenticated attributes only (including renewal requests constructed by CreatePKCS7RequestFromRequest). Name value pairs added via this method will be ignored when constructing PKCS10 or Full CMC requests. Use addAttributeToRequest instead.

ICEnroll4 will inherit from ICEnroll3, and add the following:

Property:

PrivateKeyArchiveCertificate

Access: Read/Write

Data Type: BSTR – NULL or base64 encoded X509 Certificate

Used when constructing PKCS7 and CMC requests. If this property is set, the private key is encrypted to the specified certificate and added to the request as an unauthenticated attribute.

HRESULT encodeBlobbinaryToString(

 [in] LONG Flags,

 [in] BSTR strBinary,

 [out,retval] BSTR *pstrEncoded
);

Flags – DECF_BASE64 (1): encode as base64 text string. Use dwFlags defined in CryptBinaryToString (a new API defined in wincrypt.h and built in crypt32.dll)

strBinary – binary data blob

pstrEncoded – the returned encoded data

EncodeConverts a binary data blob in the requested format.

HRESULT decodeBlobstringToBinary(

 [in] LONG Flags,

 [in] BSTR strEncoded,

 [out,retval] BSTR *pstrBinary
);

Flags – DECF_BASE64 (1): decode as base64 text string Use dwFlags defined in CryptStringToBinary (a new API defined in wincrypt.h and built in crypt32.dll)

strEncoded – encoded data

pstrBinary – the returned binary data blob

Decodes a binary data blob from the requested format. Converts formatted string to binary data blob.

HRESULT addExtensionToRequest(

 [in] LONG Flags,

 [in] BSTR strName,

 [in] BSTR strValue
);

Flags – fCritical (1)

strName – extension Object Id name string

strValue – base64 encoded extension value

Add an extension to the request.

HRESULT addAttributeToRequest(

 [in] LONG Flags,

 [in] BSTR strName,

 [in] BSTR strValue
);

Flags – Unused; must be zero

strName – attribute Object Id name string

strValue – base64 encoded attribute value string
Add an attribute to the request.

HRESULT addNameValuePairToRequest(

 [in] LONG Flags,

 [in] BSTR strName,

 [in] BSTR strValue
);

Flags – Unused; must be zero

pwszName – name string

pwszValue – value string
Add a name-value string pair to the request.

HRESULT resetExtensions(

);

Clear out all saved extensions for the request.

HRESULT resetAttributes(

);

Clear out all saved attributes for the request.

HRESULT resetNameValuePairs(

);

Clear out all saved name-value string pairs for the request.

HRESULT createRequest(

 [in] LONG Flags,

 [in] BSTR strDNName,

 [in] BSTR strUsage,
 [out,retval] BSTR *pstrRequest

);

Flags – create PKCS10, PKCS7 or Full CMC request

strDNName – same as ICEnroll::createPKCS10 – may be NULL

strUsage – same as ICEnroll::createPKCS10

pstrRequest – the returned base64 encoded request

HRESULT createFileRequest(

 [in] LONG Flags ,

 [in] BSTR strDNName,

 [in] BSTR strUsage,

 [in] BSTR strRequestFileName
);

Flags – create PKCS10, PKCS7 or Full CMC request
strDNName – same as ICEnroll::createPKCS10 – may be NULL

strUsage – same as ICEnroll::createFilePKCS10
strRequestFileName – the base64 encoded request is stored in this file

Walk the end user through the process of generating a key pair, which either will or will not be required to use some form of hardware private key management, per the fRequireHardware parameter. Build a request of the type specified by the Flags parameter including the resulting generated public key, the passed subject name, any added extensions, attributes, name-vaue string pairs, and the encrypted private key if PrivateKeyArchiveCertificate was set.

Note: Creating a Full CMC request will fail if the underlying crypto APIs do not support ASN.1 encoding of CMC structures.

HRESULT acceptResponse(

 [in] BSTR strResponse
);

strResponse – the base64 encoded response.
HRESULT acceptFileResponse(

 [in] BSTR strResponseFileName
);

strResponseFileName – the base64 encoded response is read from this file.

The response contains the credentials that are to be stored; it may be either a PKCS7 or a Full CMC Response. There must be precisely one certificate with no child in the response. This method accepts delivery of the credentials that correspond to a previous call to createRequest. It puts the credentials wherever they are supposed to go for easy subsequent access by the user.

Note: Accepting a Full CMC response will fail if the underlying crypto APIs do not support ASN.1 encoding of CMC structures.

HRESULT getCertFromResponse(

 [in] BSTR strResponse,

 [out,retval] BSTR *pstrCert
);

strResponse – the base64 encoded response.

pstrCert – the returned base64 encoded certificate.
HRESULT getCertFromFileResponse(

 [in] BSTR strResponseFileName,

 [out,retval] BSTR *pstrCert
);

strResponseFileName – the base64 encoded response is read from this file.

pstrCert – the returned base64 encoded certificate.
The response may be either a PKCS7 or a Full CMC Response. There must be precisely one certificate with no child in the response.

Note: Parsing a Full CMC response will fail if the underlying crypto APIs do not support ASN.1 encoding of CMC structures.

HRESULT createPFX(

 [in] BSTR strPassword,

 [out] BSTR *pstrPFX
);

pwszPassword – may be empty or NULL

pstrPFX – the returned PFX blob

HRESULT createFilePFX(

 [in] BSTR strPassword,

 [in] BSTR strPFXFileName
);

strPassword – may be empty or NULL

strPFXFileName – the base64 encoded PFX is stored in this file

Save the accepted certificate chain and private key in a PFX.

HRESULT setPendingRequestInfo(

 [in] LONG lRequestID,

 [in] BSTR strCADNS,

 [in] BSTR strCAName,

 [in] BSTR strFriendlyName

);

IRequestID – request ID

strCADNS – CA DNS name

strCAName – CA name

strFriendlyName – CA friendly name

Set the pending request properties.

HRESULT enumPendingRequest(

 [in] LONG lIndex,

 [in] LONG lDesiredProperty,

 [out, retval] VARIANT *pvarProperty

);

IIndex – index for enumerating pending requests

IDesiredProperty – can be XE_PENDINGREQUEST_CADNS, or XE_PENDINGREQUEST_CANAME, or XE_PENDINGREQUEST_CAFRIENDLYNAME (defined in new xenroll.h, we may add more properties, TDB)

pvarProperty – a pointer to a VARIANT data to hold return property

Get the pending request properties.

HRESULT removePendingRequest(

 [in] LONG lRequestID,

 [in] BSTR strCADNS,

 [in] BSTR strCAName

);

IRequestID – request ID

strCADNS – CA DNS name

strCAName – CA name

Remove a pending request.

HRESULT GetKeyLenEx(

 [in] LONG lSizeSpec,

 [in] LONG lKeySpec,

 [out] LONG *plKeySize

);

ISizeSpec – can be XEKL_KEYSIZE_MIN or XEKL_KEYSIZE_MAX or XEKL_KEYSIZE_INC

lKeySpec – can be XEKL_KEYSPEC_KEYX or XEKL_KEYSPEC_SIG

plKeySize – a pointer to LONG to hold returned key size

retrieve key size information on the current key and CSP. The same key size information can be obtained from the old method GetKeyLen if XEKL_KEYSIZE_MIN and XEKL_KEYSIZE_MAX are used. If XEKL_KEYSIZE_INC is passed, key size increment is returned. See PP_SIG_KEYSIZE_INC usage in CryptGetProvParam.
IEnroll3 IEnroll4 will inherit from IEnroll2, and add the following:

HRESULT SetPrivateKeyArchiveCertificate(

 [in] PCCERT_CONTEXT pPrivateKeyArchiveCert

);

pPrivateKeyArchiveCert – pointer to a certificate context used to encrypt private key for archive
PCCERT_CONTEXT GetPrivateKeyArchiveCertificate(

 void

);

HRESULT encodeBlobbinaryToStringBlob(

 [in] LONG Flags,

 [in] PCRYPT_DATA_BLOB pblobBinary,

 [out] PCRYPT_DATA_BLOB pblobEncoded
);

Flags – DECF_BASE64 (1): encode as base64 text string Use dwFlags defined in CryptBinaryToString (a new API defined in wincrypt.h and built in crypt32.dll)

pblobBinary – binary data blob

pblobEncoded – the returned encoded data

Encodes a binary data blob in the requested format.

HRESULT decodeBlobstringToBinaryBlob(

 [in] LONG Flags,

 [in] PCRYPT_DATA_BLOB pblobEncoded,

 [out] PCRYPT_DATA_BLOB pblobBinary
);

Flags – DECF_BASE64 (1): decode as base64 text string Use dwFlags defined in CryptStringToBinary (a new API defined in wincrypt.h and built in crypt32.dll)

pblobEncoded – encoded data

pblobBinary – the returned binary data blob

Decodes a binary data blob from the requested format.

HRESULT addExtensionToRequestWStr(

 [in] LONG Flags,

 [in] LPCWSTR pwszName,

 [in] PCRYPT_DATA_BLOB pblobValue
);

Flags – fCritical (1)

pwszName – extension Object Id name string

pblobValue – extension value blob

Add an extension to the request.

HRESULT addAttributeToRequestWStr(

 [in] LONG Flags,

 [in] LPCWSTR pwszName,

 [in] PCRYPT_DATA_BLOB pblobValue
);

Flags – Unused; must be zero
pwszName – attribute Object Id name string

pblobValue – attribute value blob
Add an attribute to the request.

HRESULT addNameValuePairToRequestWStr(

 [in] LONG Flags,

 [in] LPCWSTR pwszName,

 [in] LPCWSTR pwszValue
);

Flags – Unused; must be zero

pwszName – name string

pwszValue – value string
Add a name-value string pair to the request.

HRESULT resetExtensionsWStr(

);

Clear out all saved extensions for the request.

HRESULT resetAttributesWStr(

);

Clear out all saved attributes for the request.

HRESULT resetNameValuePairsWStr(

);

Clear out all saved name-value string pairs for the request.

HRESULT createRequestWStr(

 [in] LONG Flags,

 [in] LPCWSTR pwszDNName,

 [in] LPCWSTR pwszUsage,

 [out] PCRYPT_DATA_BLOB pblobRequest
);

Flags – create PKCS10, PKCS7 or Full CMC request

pwszDNName – same as IEnroll::createPKCS10WStr – may be NULL

pwszUsage – same as IEnroll::createPKCS10WStr

pblobRequest – the returned request blob

HRESULT createFileRequestWStr(

 [in] LONG Flags,

 [in] LPCWSTR pwszDNName,

 [in] LPCWSTR pwszUsage,

 [in] LPCWSTR pwszRequestFileName
);

Flags – create PKCS10, PKCS7 or Full CMC request

pwszDNName – same as ICEnroll::createFilePKCS10WStr – may be NULL

pwszUsage – same as IEnroll::createFilePKCS10WStr
pwszRequestFileName – the base64 encoded request is stored in this file

Walk the end user through the process of generating a key pair, which either will or will not be required to use some form of hardware private key management, per the fRequireHardware parameter. Build a request of the type specified by the Flags parameter including the resulting generated public key, the passed subject name, any added extensions, attributes, name-vaue string pairs, and the encrypted private key if PrivateKeyArchiveCertificate was set.

Note: Creating a Full CMC request will fail if the underlying crypto APIs do not support ASN.1 encoding of CMC structures.

HRESULT acceptResponseBlob(

 [in] PCRYPT_DATA_BLOB pblobResponse
);

pblobResponse – the ASN.1 encoded response blob.
HRESULT acceptFileResponseWStr(

 [in] LPCWSTR pwszResponseFileName
);

pwszResponseFileName – the base64 encoded response is read from this file.

The response contains the credentials that are to be stored; it may be either a PKCS7 or a Full CMC Response. There must be precisely one certificate with no child in the response. This method accepts delivery of the credentials that correspond to a previous call to createRequest. It puts the credentials wherever they are supposed to go for easy subsequent access by the user.

Note: Accepting a Full CMC response will fail if the underlying crypto APIs do not support ASN.1 encoding of CMC structures.

HRESULT getCertContextFromResponseBlob(

 [in] PCRYPT_DATA_BLOB pblobResponse,

 [out,retval] PCCERT_CONTEXT *ppCertContext
);

pblobResponse – the ASN.1 encoded response blob.

ppCertContext – the returned certificate context.
HRESULT getCertContextFromFileResponseWStr(

 [in] LPCWSTR pwszResponseFileName,

 [out,retval] PCCERT_CONTEXT *ppCertContext
);

pwszResponseFileName – the base64 encoded response is read from this file.

ppCertContext – the returned certificate context.
The response may be either a PKCS7 or a Full CMC Response. There must be precisely one certificate with no child in the response.

Note: Parsing a Full CMC response will fail if the underlying crypto APIs do not support ASN.1 encoding of CMC structures.

HRESULT createPFXWStr(

 [in] LPCWSTR pwszPassword,

 [out] PCRYPT_DATA_BLOB pblobPFX
);

pwszPassword – may be empty or NULL

pblobPFX – the returned PFX blob

HRESULT createFilePFXWStr(

 [in] LPCWSTR pwszPassword,

 [in] LPCWSTR pwszPFXFileName
);

pwszPassword – may be empty or NULL

pwszPFXFileName – the base64 encoded PFX is stored in this file

Save the accepted certificate chain and private key in a PFX.

HRESULT setPendingRequestInfoWStr(

 [in] LONG lRequestID,

 [in] LPCWSTR pwszCADNS,

 [in] LPCWSTR pwszCAName,

 [in] LPCWSTR pwszFriendlyName

);

IRequestID – request ID

pwszCADNS – CA DNS name

pwszCAName – CA name

pwszFriendlyName – CA friendly name

Set the pending request properties.

HRESULT enumPendingRequest(

 [in] LONG lIndex,

 [in] LONG lDesiredProperty,

 [out, retval] VARIANT *pvarProperty

);

IIndex – index for enumerating pending requests

IDesiredProperty – can be XE_PENDINGREQUEST_CADNS, or XE_PENDINGREQUEST_CANAME, or XE_PENDINGREQUEST_CAFRIENDLYNAME (defined in new xenroll.h, we may add more properties, TDB)

pvarProperty – a pointer to a VARIANT data to hold return property

Get the pending request properties.

HRESULT removePendingRequestWStr(

 [in] LONG lRequestID,

 [in] LPCWSTR pwszCADNS,

 [in] LPCWSTR pwszCAName

);

IRequestID – request ID

pwszCADNS – CA DNS name

pwszCAName – CA name

Remove a pending request.

extern "C" IEnroll3 IEnroll4 * WINAPI PIEnroll4GetNoCOM(void); will be added to XEnroll.Dll to support static linking clients.

2. Constructing Certificate Requests

Certificate Templates

A new flag will be added to certificate templates that will control whether the private key should be archived. The private key archive flag must be provided for enrollment clients by scrdenrl.dll via the ISCrdEnr interface, or CAGetCertTypeFlags and related certificate template APIs must be exposed via a dual mode COM interface.

ICertRequest2

ICertRequest2 will allow the Full CMC response to be returned.

ICertRequest2 will allow the CA’s Key Exchange certificate to be returned, if the CA has been enabled for private key archival. When an enabled server receives a request for its Key Exchange certificate, and the server has not generated a Key Exchange certificate or the certificate will expire in less than one week, the server will generate a new Key Exchange certificate and key. The registry will be used to control the lifetime and overlap period of the server’s Key Exchange certificates.

Web Enrollment

The web pages must be modified to test the certificate template key archival flag. When key archival is required, use the new XEnroll methods to construct Full CMC key archival requests and expect a Full CMC Response, and fall back to using PKCS7 key archival requests and responses if the client’s crypt32.dll does not support encoding CMC requests.

Certificate Enrollment Wizard

The certificate enrollment wizard must be modified to test the certificate template key archival flag, and use the new XEnroll methods to construct Full CMC key archival requests and expect a Full CMC Response.

Auto Enrollment

The auto enrollment code must be modified to test the certificate template key archival flag, and use the new XEnroll methods to construct Full CMC key archival requests and expect a Full CMC Response.

3. Processing Certificate Requests

The server will strip the encrypted private key from the PKCS7 or Full CMC request unauthenticated attributes prior to storing the raw request in the database. The private key will be decrypted using the CA’s key exchange keys, and verified against the public key in the request. Once verified, the private key will be re-encrypted to the Recovery Agent certificate(s) specified when the CA was enabled for private key archival, then written to a new column, Certificates.RawEncryptedPrivateKey.

4. Enrolling for Recovery Agent Certificates

A new certificate template for Cert Server Private Key Recovery will be necessary, specifying a new Policy (and EKU) Object Id to be added to Key Recovery certificates. The template will also set a new flag, indicating the certificate should be published in a global Recovery Agent certificate repository. ACLs on the new template will control who can enroll for Key Recovery certificates.

The DS setup code will be changed to create a new container, CN=Recovery, under the Public Key Services container. When a CA is installed, a new user object, named with the CA’s Sanitized Short Name, will be created under the Recovery container. When notified of an issued recovery certificate, the exit module will publish the Key Recovery certificate by appending it to the current CA’s user object, under the Recovery container, in the userCertificate attribute. This minimizes DS replication conflicts, yet still allows a simple LDAP query to find all available Recovery Agent certificates when enabling a CA for private key archival.

5. Enabling a CA for Private Key Archival

A new MMC verb will be added to Enable Private Key Archival, or modify the list of Recovery Agent Certificates used to encrypt private keys for archival.

A list of Recovery Agent certificates for Cert Server key recovery will be collected by querying the DS for all userCertificate attributes on objects directly contained under the DS’ Recovery container. HKEY_LOCAL_MACHNE and HKEY_CURRENT_USER certificate stores will also be searched for Recovery Agent certificates. The list will be filtered to eliminate certificates that do not contain the necessary Cert Server-specific Policy or EKU Object Id, and the certificate selection U/I will be presented to select zero or more certificates to be used by the CA to encrypt private keys for archival. The chosen Recovery Agent certificates will be stored in the HKEY_LOCAL_MACHINE “CA” certificate store, and the SHA1 hashes of the chosen certificates will be converted to text strings and stored in a REG_MULTI_SZ registry value.

If more than one Recovery Agent certificate is selected, the U/I should also present a check box to indicate whether all newly archived private keys should be encrypted to all specified Recovery Agent certificates, or whether one Recovery Agent certificate should be picked from the specified list (in round-robin sequence) for each newly archived key. The resulting Boolean will be stored in the registry.

6. Recovering Private Keys

Certutil [-config ConfigString] –GetKey UserNameOrSerialNumber [RecoveryBlobOutFile]
Find the encrypted private key material and the associated user and Recovery Agent certificate chains, and write the data out as a blob in preparation for key recovery. The private key material in the resulting file is not decrypted by this command.

ICertView and related interfaces are used to search CAs for recovery candidates, and to extract the certificate chains and encrypted private key material.

If multiple recovery candidates are found, or if RecoveryBlobOutFileis not specified, the output file is not written. Instead, the ConfigString, Common Name and Serial Number are displayed for each candidate. The displayed ConfigString and Serial Number can be used to construct an unambiguous certutil -GetKey command.

If the output file is written, Common Names from the Recovery Agent certificate(s) are displayed, to help determine who will be needed to recover the private key.

If ConfigString is provided, only the specified CA is searched. Otherwise, ICertConfig is used to search all available on-line CAs for recovery candidates.

UserNameOrSerialNumber specifies the certificate Common Name string or Serial Number string to be matched in the search. Specifying a Common Name may result in multiple recovery candidates. Specifying a Serial Number along with a particular CA’s ConfigString should result in only one candidate. A UPN cannot be specified; it must be translated to a Common Name.

Certutil [-q] –RecoverKey RecoveryBlobInFile [PFXOutFile [PFXPassword]]

Decrypt the private key material using an available Recovery Agent certificate and its associated private key. An appropriate Recovery Agent certificate is found automatically by searching the machine and user “My” certificate stores. If no such certificate and key are available, or if PFXOutFile is not specified, the output file is not written, and Common Names from the Recovery Agent certificate(s) are displayed, to help determine who will be needed to recover the private key.

This command will also cryptographically verify the key, unless the –q command line option is used.

RecoveryBlobInFile contains the encrypted private key, and the associated user and Recovery Agent certificate chains. It should have been created by a previous certutil -GetKey command.

If the output file is written, PFXOutFile will be a PFX file (PKCS 12) containing the recovered private key and certificate chain, encrypted only to the specified PFXPassword. If PFXPassword is not specified, it will be collected interactively from the console.

