m
Internet Securities Catalog Security File Project Outline and Specifications

Microsoft(
Internet Securities

Catalog Security File Project Outline and Specifications

Table of Contents

11.
Development and Test Schedule

2.
Catalog File Project Deliverables
2
2.1.
MAKECAT.EXE (create the Unsigned Catalog file):
2
2.2.
CHKTRUST.EXE (verify the Signed Catalog file and its members):
2
2.3.
CRYPT32.DLL (CryptSIPRetrieveSubjectGuid):
2
2.4.
MSSIP32.DLL (Catalog file SIP addition):
2
2.5.
MSCAT32.DLL (CDF and Catalog File Functions):
2
3.
Create the Unsigned Catalog File
2
3.1.
Define/develop the CDF API Set:
2
3.2.
Define/develop the Catalog API Set:
2
3.3.
Develop Command-line Tool (MAKECAT.EXE):
2
4.
Create the Signed Catalog File
3
4.1.
Catalog SIP (PutSignedMessage):
3
5.
Verification of the Signed Catalog File
3
5.1.
Catalog SIP (GetSignedMessage):
3
5.2.
Catalog SIP (VerifyIndirectData):
3
6.
Verification of the Catalog file Members
3
6.1.
Trust Provider(GenTrust):
3
6.2.
Modification to Existing SIPs (Memory Blob):
3
7.
Dependencies
3
7.1.
Certificate Trust List Project:
3
7.2.
Assumptions:
3
8.
Technical Specifications
4
8.1.
Additions to IExpress (*.CDF) file format:
4
8.2.
MAKECAT.EXE Parameters:
6

1. Catalog File Project Deliverables

1.1. MAKECAT.EXE (create the Unsigned Catalog file):

This will be the utility that creates the intermediate Catalog file (unsigned). It will follow the new command-line format that the ISPU Group has agreed to.

1.2. CHKTRUST.EXE (verify the Signed Catalog file and its members):

This will verify both the signed Catalog file itself, as well as, its individual members. This is an existing utility – the changes include adding a command-line parameter to pass in the Catalog file name and “Member Tag” to enable the verification of the Catalog file’s Members, additions to MSSIP32.DLL, and a new installable Trust Provider.

1.3. CRYPT32.DLL (CryptSIPRetrieveSubjectGuid):

This function will be modified to identify the Catalog file. These files will be full PKCS#7’s.

1.4. MSSIP32.DLL (Catalog file SIP addition):

The Catalog SIP will be used for both the Signing and Verifying process of the actual Catalog file.

1.5. MSCAT32.DLL (CDF and Catalog File Functions):

This library will contain all of the Catalog CDF Parsing and Catalog API sets.

2. Create the Unsigned Catalog File

2.1. Define/develop the CDF API Set:

These APIs will be part of MSCAT32.DLL. They are specific to parsing the IExpress (*.CDF) file for the Catalog specific entries. These include Catalog Header information, Member information, and Attribute information. These APIs are strictly for extracting the information from the IExpress file (*.CDF).

2.2. Define/develop the Catalog API Set:

These APIs will be part of MSCAT32.DLL. They are specific to creating, in memory, the format needed by the “Certificate Trust List” APIs. They will also take the output from the “Certificate Trust List” and store it in the Catalog file.

2.3. Develop Command-line Tool (MAKECAT.EXE):

This utility will use the CDF, SIP, and Catalog API sets to create the P7U. Initial internal release (May 19th) will just have a consistent command-line parameter set, correctly parse the CDF file, and be callable from a build-script file. This is to allow the build labs to start creating the necessary entries in the CDF file and the build scripts.

3. Create the Signed Catalog File

3.1. Catalog SIP (PutSignedMessage):

This is part of the new Catalog SIP. It is designed to add the signature to the Catalog file – creating the P7S file. The PutSignedMessage will take a SIP_INDIRECT_DATA structure and call the CryptMsgSignCTL (“Certificate Trust List” API). This operation will add the SignerInfo structure to create the P7S file – this is the final Catalog file that would be distributed.

4. Verification of the Signed Catalog File

4.1. Catalog SIP (GetSignedMessage):

This is part of the new Catalog SIP. It is designed to extract the signature from the Catalog file. The GetSignedMessage will return a SIP_INDIRECT_DATA structure. The Trust Provider (CATTrust) will call this function.

4.2. Catalog SIP (VerifyIndirectData):

This is part of the new Catalog SIP. This function will always return TRUE as the content of the PKCS#7 (the entire Catalog file) has already been verified by the trust provider (Gentrust).

5. Verification of the Catalog file Members

5.1. Trust Provider(GenTrust):

GenTrust will need to be modified to accept a Catalog file and Catalog Members. This will enable the Trust List search and verification of a member contained in the Catalog file.

5.2. Modification to Existing SIPs (Memory Blob):

The existing SIPs (PE, Cabinet, JAVA, and Flat) need to be modified to accept a memory pointer with start and length instead of a file handle/name. This can be done at a later date once we start site signing, or similar operations.

6. Dependencies

6.1. Certificate Trust List Project:

This project is depending on the “Certificate Trust List” API set for the Creating, Signing, and Verifying of Catalog files and its members.

6.2. Assumptions:

· The IExpress utility will IGNORE unknown sections within the CDF file.

· All re-basing and “Legoizing” of PE’s will be done BEFORE the Catalog file is created.

· The Team using these features will write the Policy Module (e.g.: the Memphis Team).

7. Technical Specifications

7.1. Additions to IExpress (*.CDF) file format:

The current limit on each complete line in a CDF file is 512 characters (unicode). The following are the new sections and options for generating a Catalog file:

[CatalogHeader]

Name=Catalog file name

ResultDir=directory to create “Name” in (default: current)

PublicVersion=0x00000001 (default: 1)

EncodingType=0x00010001 (default: PKCS_7_ASN|X509_ASN)

[CatalogFiles]

{reference tag}=file path and name (required)

{reference tag}ALTSIPID={guid} (optional)

{reference tag}ATTR1={type}:{oid}:{value} (optional)

{reference tag}ATTR2={type}:{oid}:{value} (optional)

…

Where:

[CatalogHeader]

Defines information about the entire Catalog file.

[CatalogFiles]

Is the section defining each member of the Catalog file. Each set of {file tag}’s MUST be grouped together. Each set of ATTRx’s MUST be grouped together.

{reference tag}

Is the text reference to the file. This can be any ASCI text string. However, this is how it will be referenced upon verification, so, the system must be able to reproduce this tag after installation. This name can NOT contain an “=” sign. The first occurrence of this entry (physical file path and name) is REQUIRED. All other entries for the tag are optional.

ALTSIPID

Is the SIP GUID that is to be used for hashing instead of the standard SIP based on file type. This entry is OPTIONAL. If this entry is omitted, the member will be hashed using the default SIP. If no default installed SIP is found, the “Flat” SIP will be used.

{guid}

Is a text representation of an Global Unique Identifier (GUID).

ATTRx

Is an attribute or statement about the file or content. There can be any number of these including NONE.

{attr type}

Defines what type of attribute is being added in the format 0x00000000 (text). The following are the available values – they can be “Or’d” to specify more than one:

0x10000000:
This is an Authenticated Attribute (signed – included in the hash).

0x20000000:
This is an Unauthenticated Attribute (unsigned – not included in the hash – not verifyable).

0x00010000:
The value is represented in plain text. No conversion will be done.

0x00020000:
The value is represented in base64 encoding. Used to represent binary data.

0x00000001:
This attribute is a Name-Value-Pair. Use the “oid” parameter for the name. This option should have LIMITED USE. It will be slow.

0x00000002:
This attribute is referenced by an OID.

{attr oid}

Is the text representation of the Attribute’s reference key. It is an Object Identifier (this is a text string in “dotted” notation) or a text Name.

{attr value}

Is the text representation (depending on the type value) of the attribute content (value). The EOL character(s) will determine the length.

MAKECAT.EXE Parameters:

The following are the command-line parameters for MAKECAT.EXE and their usage:

MAKECAT.EXE [-m -v -e] iexpress.cdf
Where:

-m:
Move/merge all certs from the individual files into the Catalog file.

-v:
Verbose – display all progress and error messages including minor errors.

-r:
If a recoverable error occurs, FAIL and return an error to the shell. The default is to just display the error and continue on. If this switch is NOT set, MAKECAT.EXE will not stop the build process (e.g.: returning 0).

File:
This is the IExpress file that has the Catalog extensions filled in.

Last Revised: June 16, 1997 (PBerkman)
F:\DOCS\microsoft\projects\Authenticode\catalog.doc

Microsoft(Confidential
5

