m
Internet Securities Subject Interface Package Specification

Microsoft(
Internet Securities

Subject Interface Package Specification

Table of Contents
11.
Introduction

1.1
Subject Interface Package
1
1.2
Tasks Performed by the SIP
1
1.3
The Microsoft SIP (MSSIP32.DLL)
2
2.
Technical Specifications
2
2.1
Architecture Flowchart
2
2.2
Include Files and Libraries
3
2.3
Common Functions Definitions (SIPBASE.H)
3
2.4
Common Structure Definitions (SIPBASE.H)
4

1. Introduction

1.1 Subject Interface Package

A SIP is the software layer that enables applications to create, store, retrieve, and verify a file or data stream’s (subject’s) signature and, hence, verify its integrity. The SIP is the layer in the Trust Model that is specific to the subject and allows the other components in the model to remain generic.

For each different type of subject, there can be a different set of rules that must be followed when storing the information needed to verify the subject’s integrity. Therefore, each subject that requires a unique rule(s) must have a unique SIP.

Some examples are PE Images (EXEs), CAB Images, JAVA Scripts, and Flat or End-To-End subjects. Each of the proceeding requires different handling when it comes to storing and retrieving the signature, as well as, what pieces of the subject are actually used in the calculation or hash. Each requires a different SIP.
1.2 Tasks Performed by the SIP

· Hash the required areas of the subject

· Create indirect data information

· Verify indirect data information

· Store signatures

· Retrieve signatures

· Remove signatures

1.3 The Microsoft SIP (MSSIP32.DLL)

The Microsoft SIP includes SIPs utilizing this new format that Microsoft will utilize for Trust Verification. These subjects will initially include PE Images, CAB Images, Flat (End-to-end) Images, and Catalog Files.
The MSSIP32.DLL definition file will be included in the standard SDK (MSSIP.H).
2. Technical Specifications

2.1 Architecture Flowchart

2.2

2.3

3.
3.1

3.2

4.
4.1 Include Files and Libraries

Generic/common and global SIP definitions are contained in SIPBASE.H. This file is required to compile both applications that use SIPs and SIPs themselves.

Applications that will be handling subjects included in the Microsoft SIP (MSSIP32.DLL) must include MSSIP.H to compile.

To link SIPs, CRYPT32.LIB is required.

4.2

4.3 Common Functions Definitions (SIPBASE.H)

Prior to calling any of the SIP functions, all data structures must be initialized to binary zero. After initializing, set all required members to valid values.

BOOL WINAPI CryptSIPLoad(

IN const GUID

*pgSubject,

IN DWORD

dwFlags,

IN OUT SIP_DISPATCH_INFO
*pSipDispatch);

If successful, it fills in the pSipDispatch structure. This function does the actual loading of the SIP’s DLL and the assigning of the function pointers.

BOOL WINAPI CryptSIPAddProvider(IN SIP_ADD_NEWPROVIDER *psNewProv);
If successful, adds the provider to the list of registered SIP providers.
BOOL WINAPI CryptSIPRemoveProvider(IN GUID *pgProv);
If successful, removes the provider from the list of registered SIP providers.
BOOL WINAPI CryptSIPRetrieveSubjectGuid(IN OPTIONAL LPCWSTR FileName,

IN OPTIONAL HANDLE hFileIn,
OUT GUID *pgSubject);
If successful, it returns the correct subject QUID for the file. This is done by calling the SIP’s “IsMyFileType” function.
BOOL CryptSIPGetSignedDataMsg(

IN
SIP_SUBJECTINFO
*pSubjectInfo,

OUT
DWORD

*pdwEncodingType,

IN
DWORD

dwIndex,

IN OUT
DWORD

*pcbSignedDataMsg,

OUT
BYTE

*pbSignedDataMsg);

If successful, it returns the message specified by the index. Data specific to the subject is passed in the SIP_SUBJECTINFO structure. The pbSignedDataMsg pointer is user allocated. To retrieve the size of the signature, set pbSignedDataMsg to NULL.

BOOL CryptSIPPutSignedDataMsg(

IN
SIP_SUBJECTINFO
*pSubjectInfo,

IN
DWORD

dwEncodingType,

OUT
DWORD

*pdwIndex,

IN
DWORD

cbSignedDataMsg,

IN
BYTE

*pbSignedDataMsg);

If successful, adds a signature to the subject. The index that the signature was stored with is returned in pdwIndex.

BOOL CryptSIPCreateIndirectData(

IN
SIP_SUBJECTINFO
*pSubjectInfo,

IN OUT
DWORD

*pcbIndirectData,

OUT
SIP_INDIRECT_DATA
*pIndirectData);

If successful, returns the pIndirectData filled with the digest algorithm, the resulting hash, and, if applicable, the encoded attribute(s). The pIndirectData pointer is user allocated. To retrieve the size of the indirect data, set pIndirectData to NULL.

BOOL CryptSIPVerifyIndirectData(

IN
SIP_SUBJECTINFO
*pSubjectInfo,

IN
SIP_INDIRECT_DATA
*pIndirectData);

Verifies the hash of the subject passed in pIndirectData. Returns TRUE if the subject is valid, FALSE if it is not.

BOOL CryptSIPRemoveSignedDataMsg(

IN
SIP_SUBJECTINFO
*pSubjectInfo,

IN
DWORD

dwIndex);

If successful, the signature indicated by dwIndex is removed from the subject. This function returns TRUE if a message was found to delete, FALSE if not.
4.4 Common Structure Definitions (SIPBASE.H)

SIP_SUBJECTINFO:

DWORD cbSize: (required)
Used for extensibility. Set by the calling application to sizeof(SIP_SUBJECTINFO).

GUID *pgSubjectType: (required)
GUID representing the subject type. Set by the calling application.

HANDLE hFile: (optional)
A handle to the open file of the subject, if applicable. Set by the calling application
LPCWSTR pwsFileName: (required – if file based subject)
Set to the file path and name of the file representing the subject, if applicable. Set by the application
LPCWSTR pwsDisplayName: (required)

Set to the display name of the subject. This will be used when displaying to the user. Set by the application.
DWORD dwIntVersion:
The internal version number of the SIP. Set by the SIP. This member should NOT be modified by the application.

HCRYPTPROV hProv: (optional)
Set to an open HCRYPTPROV handle. Set by the application. If required by the SIP and the application does not set it, the SIP will open and close its own.

CRYPT_ALGORITHM_IDENTIFIER DigestAlgorithm:
Set to the OID of the digest algorithm for the SIP to use when creating/verifying the message.

DWORD dwFlags:
Flags used by the SIP. The SIP writer defines the available flags that the application can set.

DWORD dwEncodingType:
The application sets this member to the message and certificate encoding type to use. The standard for PKCS#7 is PKCS_7_ASN_ENCODING | X509_ASN_ENCODING.

DWORD fdwCAPISettings:
Policy settings from CAPI – SetReg.EXE utility. These are defined in WINTRUST.H. The application sets this member.

DWORD fdwSecuritySettings:
Security settings of Internet Explorer. The application sets this member.

DWORD dwIndex:
The message index of the last SIP Get function. The SIP Get function sets this member.

DWORD dwUnionChoice:
Indicates what type of structure is pointed to for the ADDINFO member. The application sets this member to one of the following:
MSSIP_ADDINFO_NONE

MSSIP_ADDINFO_FLAT

MSSIP_ADDINFO_CATMEMBER
MSSIP_ADDINFO_BLOB
MSSIP_ADDINFO_NONMSSIP
union

{

struct MS_ADDINFO_FLAT_

*psFlat:
struct MS_ADDINFO_CATALOGMEMBER_
*psCatMember:
struct MS_ADDINFO_BLOB

*psBlob;
}
LPVOID pClientData: (optional)

Data that the client can set which gets passed through to the SIP.
MS_ADDINFO_FLAT:

DWORD cbStruct:
Used for extensibility. Set by the calling application to sizeof(MS_ADDINFO_FLAT).

struct SIP_INDIRECT_DATA_ *pIndirectData:
Set to the indirect data structure that represents the object. For flat SIPs, there is no place within the object to store the signed message.
MS_ADDINFO_CATALOGMEMBER:

DWORD cbStruct:
Used for extensibility. Set by the calling application to sizeof(MS_ADDINFO_CATALOGMEMBER).

struct CRYPTCATSTORE_ *pStore:
Set to the Catalog File Store structure that the object is contained in. See MSCAT.H for definition.
struct CRYPTCATMEMBER_ *pMember:
Set to the Catalog File Member structure that represents the object. See MSCAT.H for definition.
MS_ADDINFO_BLOB:

DWORD cbStruct:

Used for extensibility. Set by the calling application to sizeof(MS_ADDINFO_BLOB).

DWORD cbMemObject: (required)

Set by the application to the number of bytes to be verified.

BYTE *pbMemObject: (required)

Set by the application to the starting byte in memory to be verified.

DWORD cbMemSignedMsg: (required)

Set by the application to the number of bytes pointed to by pbMemSignedMsg.

BYTE *pbMemSignedMsg: (required)

Set by the application to the starting byte in memory of the signed message that represents the object.

SIP_INDIRECT_DATA:

CRYPT_ATTRIBUTE_TYPE_VALUE Data:
This member is set to the SIP defined data structure. This data is used by the SIP internally to store any information that needs to be persisted with the signed message.

CRYPT_ALGORITHM_IDENTIFIER DigestAlgorithm:
This member is set to the algorithm OID that was used to hash the object’s bits.

CRYPT_HASH_BLOB Digest:
This member is the digest, or hash, of the object’s bits.
SIP_DISPATCH_INFO:

DWORD cbSize:
Used for extensibility. Set by the calling application to sizeof(SIP_DISPATCH_INFO).

HANDLE hSIP:
Used internally. This member is set to the handle of the DLL of the SIP.

pCryptSIPGetSignedDataMsg pfGet:
Set to the SIP’s GET function by the call to CryptSIPLoad() function.
pCryptSIPPutSignedDataMsg pfPut:
Set to the SIP’s PUT function by the call to CryptSIPLoad() function.
pCryptSIPCreateIndirectData pfCreate:
Set to the SIP’s CREATE function by the call to CryptSIPLoad() function.
pCryptSIPVerifyIndirectData pfVerify:
Set to the SIP’s VERIFY function by the call to CryptSIPLoad() function.
pCryptSIPRemoveSignedDataMsg pfRemove:
Set to the SIP’s REMOVE function by the call to CryptSIPLoad() function.
SIP_ADD_NEWPROVIDER:

DWORD cbStruct:
Used for extensibility. Set by the calling application to sizeof(SIP_ADD_NEWPROVIDER).

GUID *pgSubject:
The GUID representing the subject/type that the SIP is adding itself for.

WCHAR *pwszDLLFileName:
The file name only of the SIP’s DLL.

WCHAR *pwszMagicNumber: (optional)
If the subject/type’s first four bytes of data represents a unique magic number or text, this member should be filled with that text. If it is a magic number (not text), this member should be set to the ten digit hex value (eg: 0xCAFEBABE – in the case of a JAVA class file).

WCHAR *pwszIsFunctionName:
If the subject/type can NOT be represented by a magic number, this member is set to the function name that will be called to check if this SIP supports the file type being verified.
WCHAR *pwszGetFuncName:

Required. Name of the “Get” function exported from the SIP’s DLL.

WCHAR *pwszPutFuncName;

Required. Name of the “Put” function exported from the SIP’s DLL.

WCHAR *pwszCreateFuncName;

Required. Name of the “Create” function exported from the SIP’s DLL.

WCHAR *pwszVerifyFuncName;

Required. Name of the “Verify” function exported from the SIP’s DLL.

WCHAR *pwszRemoveFuncName;

Required. Name of the “Remove” function exported from the SIP’s DLL.

4.5

4.6
5.

1.	The application calls CryptSIPLoadSip().

4.	Crypt32 fills in the function pointers and returns them to the application.

CRYPT32.DLL

Application

SIP(s)

3.	Crypt32 calls CryptSIPGetInfo() to retrieve all valid subject types. This is a double-check.

2.	CryptSIPLoadSip() loads the correct SIP DLL as indicated in the system registryby calling the SIP’s “IsMyFileType” function.

5.	 Perform signature and indirect data operations using the function pointers assigned.

By Peter C. Berkman

Last Revised: July 7, 1997
F:\DOCS\MICROS~1\projects\sip\sip.doc

Microsoft(Confidential
4

