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1 Introduction

This document is the specification of the Microsoft Windows Smart Card Data Cache.  Deliverables in this project are owned by Windows NT Security team.  
2 Motivation

As methods for strong authentication are increasingly widely deployed, the efficiency and performance of these methods undergo greater scrutiny.  Smart card logon is an example of an authentication method currently subject to such focus.  Smart cards provide the strong cryptographic strength of Public Key-based authentication, but the current implementations are generally much slower than password-based logon.  Two primary reasons for the relatively poor performance of smart card based solutions are the low bandwidth available for communications between the PC and card and the limited processing power of the card itself.  Both of these deficiencies are likely to steadily improve, but greater and more timely improvements can be made to PC-based software in the meantime.

Smart Card Cryptographic Service Providers (CSP’s) are responsible for implementing the functionality exposed by Crypto API.  Many, if not most, smart card vendors who have written a CSP have recognized the importance of caching data in order to minimize the number of times it must be read from the card.  Two types of solutions to this problem can be readily found in existing vendor software.  The first type, a per-process data cache owned and implemented by the CSP, appears to be the most common.  The main problem with the per-process cache is that data cached by any given process is inaccessible to the others.  Therefore, the same data tends to be re-read from the card many times over the course of a given session.  Although many vendors flirt with a shared memory section as a solution, that exposes unacceptable security risks.  The second type of caching solution is the addition of a system service to handle caching for a given vendor’s CSP.  This solution is also undesirable.  Each added system service negatively impacts overall system performance.  Further, the expertise available for implementing such a solution safely and securely is frequently not available outside Microsoft.
An improved CSP architecture in Windows Longhorn will provide an opportunity to greatly improve upon the caching attempts outlined above.  In the new architecture, smart card vendors are no longer responsible for a complete CSP implementation in the traditional sense.  Instead, each must provide a card-specific module, much like a mini-driver, that is responsible only for communicating directly with the vendor’s card(s).  Thus, the generic “Base CSP,” which controls the card-specific modules, bears the responsibility of card data caching.   The Base CSP provides a single code base in which a data caching solution can be properly made, rather than relying on multiple vendors to each solve a difficult problem – a problem for which the vendor should not even be responsible – well.
The first step to solving current card data caching problems is to introduce a high-quality caching solution into the Base CSP.  This provides a good solution which is compatible with the current platform (Windows XP and .NET Server), although it does not solve the second problem described above – a central data repository available to all processes.  The second step of the caching solution is to expose data caching functionality from the Smart Card Resource Manager.  This solutions solves both problems described above, and will be accomplished in Windows Longhorn.
3 Requirements and Goals

3.1 Goals of this spec

· Define the goals and non-goals of the Smart Card Data Cache.
· Define requirements and a subsequent architecture for these components:  a “static lib” version of the data cache and a “machine-global” version of the data cache.
· Define requirements for “local” processes accessing the cache via the Smart Card Resource Manager.

· Define requirements for “remote” processes accessing the cache via Terminal Server.

3.2 General Requirements

· Performance.  The data cache is a crucial feature for maximizing the performance of smart card operations.  The data cache should not delay smart card operations when the cache is empty.  The data cache should eliminate the delay of smart card operations when cached data is available.

· Security.  The data cache will be available as part of the Windows NT Smart Card Service.  Access to the data cache must be appropriately governed.  The data cache must not expose any security risks.

· Robustness.  The data cache must be able to gracefully handle a reasonable load of simultaneous incoming requests.  If the cache is bogged-down, or even attacked, its processing rate for those requests should be governed.  

· The cache functionality must be initially available in the form of a static library.  This library will be linked into the Smart Card Base CSP.

3.3 Longhorn Requirements

· The cache must be accessible via the Smart Card Resource Manager.  The code change necessary to migrate the cache from library to service-form should be minimal.

· The cache should be accessible to processes running on a Terminal Server session when cached data is present on the Server.  This should be an administrator-configurable option.
· The cache should be accessible to processes running on a Terminal Server session when cached data is present on the Client.  This should be an administrator-configurable option.
3.4 General Non-Requirements

· [TBD]
3.5 Functional Requirements

[TBD]

4 Global Caching
4.1.1 System-Wide Caching

To cache card data system-wide, a new API set will be introduced to Winscard.  This interface will allow any application to contribute to and utilize the data cache.   The benefits of system-wide caching would include Terminal Server Smart Card Logon scenarios involving a single client accessing multiple servers. 
4.1.2 Cross-System Caching

The benefit of cross-system caching is the minimization of “card reads” – the number of times that data must be read from the card.
5 Cache Client
In Longhorn, the Smartcard Data Caching Client will be exposed by winscard.dll.  The following registry settings will be checked by the caching API.
SCardCacheMinimumDataBytes

SCardEnableLocalCaching

SCardEnableRemoteUpdates

SCardEnableRemoteCaching

5.1 Smartcard Cache API

5.1.1 SCardCacheLookupItem

typedef LPVOID (WINAPI *PFN_CACHE_ITEM_ALLOC)(

IN SIZE_T Size);

#define SCARD_CACHE_LOOKUP_ITEM_INFO_CURRENT_VERSION 1

typedef struct _SCARD_CACHE_LOOKUP_ITEM_INFO

{


IN DWORD dwVersion;


IN PFN_CACHE_ITEM_ALLOC pfnAlloc;


IN DATA_BLOB *rgdbCacheKey;

IN DWORD cCacheKey;


OUT DATA_BLOB dbItem;

} SCARD_CACHE_LOOKUP_ITEM_INFO, *PSCARD_CACHE_LOOKUP_ITEM_INFO;

typedef DWORD (WINAPI *PFN_SCARD_CACHE_LOOKUP_ITEM) (


IN PSCARD_CACHE_LOOKUP_ITEM_INFO pInfo);

DWORD SCardCacheLookupItem(


IN PSCARD_CACHE_LOOKUP_ITEM_INFO pInfo);

The SCardCacheLookupItem function will allocate the buffer to be used by the pInfo->dbItem.pbData member using the allocator provided by the caller in pInfo->pfnAlloc.  The caller is responsible for freeing that memory.
5.1.2 SCardCacheAddItem

typedef DWORD (WINAPI *PFN_SCARD_CACHE_ADD_ITEM) (

IN DATA_BLOB *rgdbCacheKey,

IN DWORD cCacheKey,


IN DATA_BLOB *pdbItem);

DWORD SCardCacheAddItem(
IN DATA_BLOB *rgdbCacheKey,

IN DWORD cCacheKey,


IN DATA_BLOB *pdbItem);

The SCardCacheAddItem function will make a “flat” copy the caller’s data blob and attempt to add it to the cache.  The SCardCacheMinimumDataBytes registry setting specifies a minimum data size to allow to be cached.  If, for performance reasons, smaller pieces of data are determined not to be worth the overhead of holding in the cache, they will be rejected.
5.2 Remote Data Caching

The following user scenarios are considered in the Remote Caching model.
1.  A user enrolls for a new certificate while at work and uses the cert to login.  When the cert and other data are read from the card, they are cached in the card data cache.  If the user then takes the same smart card home and uses it to logon remotely to the machine at work, the cert and other data must again be read from the card. 
6 Cache Service
The winscard client caching API’s will forward requests to the Smart Card Resource Manager via the named pipe mechanism currently in use. 
The following registry settings will be checked by the cache service.

SCardCacheMaximumSizeBytes

SCardCacheStaleSeconds

SCardEnableLocalCaching

Note that no API is provided for directly deleting data from the cache.  The cache server will handle the deletion of stale items by periodically purging all cached data that has reached a certain age.  The age of a cache item is defined as the amount of time that elapsed since that item was last referenced by either of the below API’s.  Data beyond that age is considered stale.  A registry entry will provide the number of seconds that must elapse before an item is considered stale.

The data cache will have a maximum size.  That is, there will be a limit to the total amount of data that can be cached on a single machine.  The maximum number of bytes allowed in the data cache will be defined by a registry entry.  If the data cache has reached its maximum size and a subsequent client call to SCardCacheAddItem is made, the two following options should be considered.

1. Run the cache stale-purging algorithm described above.  Then attempt to cache the item again.  If there is still insufficient space, the reply to the SCardCacheAddItem call will indicate failure.  An entry should be made in the application event log.

2. Begin deleting the oldest items in the cache (including those that might not yet be stale).  Delete as many items as necessary to create sufficient space for the item being added.
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