[image: image1.wmf]
Windows NT

Security
Windows Smart Card Data Cache
SCCache.doc

Windows NT Design Team—Dan Griffin, Klaus Schutz, Eric Perlin, Glenn Pittaway
Version .1
January 18, 2002
© Copyright Microsoft Corporation, 1998 - 2002. All Rights Reserved

Printed on 1/24/02 at 10:12 AM
Microsoft Corporation Product Design Information License Agreement (Standard)

READ THIS! This is a legal agreement between Microsoft Corporation (“Microsoft”) and the recipient of this document, whether an individual or an entity (“You”). BY ACCESSING, USING OR PROVIDING FEEDBACK ON THE ATTACHED DOCUMENT (“this document”), YOU AGREE TO BE BOUND BY THESE TERMS.

1. This document is Microsoft confidential information under Your most recent Non-Disclosure Agreement with Microsoft. However, Your only rights to use this document are as described in Paragraph 2 below.

2. You may review the material in this document only (a) to provide feedback to Microsoft; or (b) as a reference to assist You in planning and designing your product, service or technology (“Your Product”) to interface with a Microsoft product, technology or service (“Microsoft Product”) as described in this document. All other rights are retained by Microsoft; You have no other rights to use the intellectual property in this document. You may not (i) duplicate any part of this document, (ii) remove this Agreement or any notices from this document, or (iii) give any part of this document, or assign or otherwise provide Your rights under this Agreement, to anyone else.

3. You have no obligation to give Microsoft any suggestions, comments or other feedback. If You do give Microsoft feedback on any version of this specification, You agree that:

· Microsoft may freely use, disclose, reproduce, license or otherwise distribute, and exploit Your feedback in its products, services, technologies, specifications and other documentation (“Microsoft Offerings”), without any intellectual property restrictions, payments or other obligations;

· You also grant Microsoft’s customers and other third parties, without charge, any patent or other rights necessary to use, and to enable their products, services or technologies to interface with, your feedback that has been incorporated into any Microsoft Product; and

· You will not give Microsoft any feedback (i) which You have reason to believe is subject to any patent, copyright or other intellectual property claim or right of any third party; or (ii) which is subject to license terms that seek to require any Microsoft Offering incorporating or derived from such feedback, or any Microsoft intellectual property, to be licensed or otherwise shared with any third party.

4. This document contains preliminary information that may change prior to release of any associated Microsoft Product, and is provided entirely “AS IS.” To the extent permitted by law, MICROSOFT MAKES NO WARRANTY OF ANY KIND, DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, AND SHALL HAVE NO LIABILITY TO YOU FOR ANY DAMAGES, IN CONNECTION WITH THIS DOCUMENT OR ANY INTELLECTUAL PROPERTY IN IT.

5. If You are acquired, or if more than a 20% of your ownership changes, this Agreement automatically terminates and You must destroy this document.

6. This Agreement is governed by the laws of the State of Washington. Any dispute involving it must be brought in the federal or state courts located in King County, Washington, and you waive any defenses allowing the dispute to be litigated elsewhere. If there is litigation, the loser must pay the other party’s reasonable attorneys’ fees, costs and other expenses. If any part of this Agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the remainder shall remain in effect. This Agreement is the entire agreement between You and Microsoft concerning this document; it may be changed only by a written document signed by both You and Microsoft.

Contents

31
Introduction

2
Requirements and Goals
3
2.1
Goals of this spec
3
2.2
General Requirements
3
2.3
Longhorn Requirements
4
2.4
General Non-Requirements
4
2.5
Functional Requirements
4
2.6
Global Caching
4
2.6.1
System-Wide Caching
4
2.6.2
Cross-System Caching
4
2.6.3
Winscard Caching API
4
2.6.3.1
SCardCacheLookupItem
5
2.6.3.2
SCardCacheAddItem
5

1 Introduction

This document is the specification of the Microsoft Windows Smart Card Data Cache. Deliverables in this project are owned by Windows NT Security team.
2 Motivation

As methods for strong authentication are increasingly widely deployed, the efficiency and performance of these methods undergo greater scrutiny. Smart card logon is an example of an authentication method currently subject to such focus. Smart cards provide the strong cryptographic strength of Public Key-based authentication, but the current implementations are generally much slower than password-based logon. Two primary reasons for the relatively poor performance of smart card based solutions are the low bandwidth available for communications between the PC and card and the limited processing power of the card itself. Both of these deficiencies are likely to steadily improve, but greater and more timely improvements can be made to PC-based software in the meantime.

Smart Card Cryptographic Service Providers (CSP’s) are responsible for implementing the functionality exposed by Crypto API. Many, if not most, smart card vendors who have written a CSP have recognized the importance of caching data in order to minimize the number of times it must be read from the card. Two types of solutions to this problem can be readily found in existing vendor software. The first type, a per-process data cache owned and implemented by the CSP, appears to be the most common. The main problem with the per-process cache is that data cached by any given process is inaccessible to the others. Therefore, the same data tends to be re-read from the card many times over the course of a given session. Although many vendors flirt with a shared memory section as a solution, that exposes unacceptable security risks. The second type of caching solution is the addition of a system service to handle caching for a given vendor’s CSP. This solution is also undesirable. Each added system service negatively impacts overall system performance. Further, the expertise available for implementing such a solution safely and securely is frequently not available outside Microsoft.
An improved CSP architecture in Windows Longhorn will provide an opportunity to greatly improve upon the caching attempts outlined above. In the new architecture, smart card vendors are no longer responsible for a complete CSP implementation in the traditional sense. Instead, each must provide a card-specific module, much like a mini-driver, that is responsible only for communicating directly with the vendor’s card(s). Thus, the generic “Base CSP,” which controls the card-specific modules, bears the responsibility of card data caching. The Base CSP provides a single code base in which a data caching solution can be properly made, rather than relying on multiple vendors to each solve a difficult problem – a problem for which the vendor should not even be responsible – well.
The first step to solving current card data caching problems is to introduce a high-quality caching solution into the Base CSP. This provides a good solution which is compatible with the current platform (Windows XP and .NET Server), although it does not solve the second problem described above – a central data repository available to all processes. The second step of the caching solution is to expose data caching functionality from the Smart Card Resource Manager. This solutions solves both problems described above, and will be accomplished in Windows Longhorn.
3 Requirements and Goals

3.1 Goals of this spec

· Define the goals and non-goals of the Smart Card Data Cache.
· Define requirements and a subsequent architecture for these components: a “static lib” version of the data cache and a “machine-global” version of the data cache.
· Define requirements for “local” processes accessing the cache via the Smart Card Resource Manager.

· Define requirements for “remote” processes accessing the cache via Terminal Server.

3.2 General Requirements

· Performance. The data cache is a crucial feature for maximizing the performance of smart card operations. The data cache should not delay smart card operations when the cache is empty. The data cache should eliminate the delay of smart card operations when cached data is available.

· Security. The data cache will be available as part of the Windows NT Smart Card Service. Access to the data cache must be appropriately governed. The data cache must not expose any security risks.

· Robustness. The data cache must be able to gracefully handle a reasonable load of simultaneous incoming requests. If the cache is bogged-down, or even attacked, its processing rate for those requests should be governed.

· The cache functionality must be initially available in the form of a static library. This library will be linked into the Smart Card Base CSP.

3.3 Longhorn Requirements

· The cache must be accessible via the Smart Card Resource Manager. The code change necessary to migrate the cache from library to service-form should be minimal.

· The cache should be accessible to processes running on a Terminal Server session when cached data is present on the Server. This should be an administrator-configurable option.
· The cache should be accessible to processes running on a Terminal Server session when cached data is present on the Client. This should be an administrator-configurable option.
3.4 General Non-Requirements

· [TBD]
3.5 Functional Requirements

[TBD]

4 Global Caching
4.1.1 System-Wide Caching

To cache card data system-wide, a new API set will be introduced to Winscard. This interface will allow any application to contribute to and utilize the data cache. The benefits of system-wide caching would include Terminal Server Smart Card Logon scenarios involving a single client accessing multiple servers.
4.1.2 Cross-System Caching

The benefit of cross-system caching is the minimization of “card reads” – the number of times that data must be read from the card.
5 Cache Client
In Longhorn, the Smartcard Data Caching Client will be exposed by winscard.dll. The following registry settings will be checked by the caching API.
SCardCacheMinimumDataBytes

SCardEnableLocalCaching

SCardEnableRemoteUpdates

SCardEnableRemoteCaching

5.1 Smartcard Cache API

5.1.1 SCardCacheLookupItem

typedef LPVOID (WINAPI *PFN_CACHE_ITEM_ALLOC)(

IN SIZE_T Size);

#define SCARD_CACHE_LOOKUP_ITEM_INFO_CURRENT_VERSION 1

typedef struct _SCARD_CACHE_LOOKUP_ITEM_INFO

{

IN DWORD dwVersion;

IN PFN_CACHE_ITEM_ALLOC pfnAlloc;

IN DATA_BLOB *rgdbCacheKey;

IN DWORD cCacheKey;

OUT DATA_BLOB dbItem;

} SCARD_CACHE_LOOKUP_ITEM_INFO, *PSCARD_CACHE_LOOKUP_ITEM_INFO;

typedef DWORD (WINAPI *PFN_SCARD_CACHE_LOOKUP_ITEM) (

IN PSCARD_CACHE_LOOKUP_ITEM_INFO pInfo);

DWORD SCardCacheLookupItem(

IN PSCARD_CACHE_LOOKUP_ITEM_INFO pInfo);

The SCardCacheLookupItem function will allocate the buffer to be used by the pInfo->dbItem.pbData member using the allocator provided by the caller in pInfo->pfnAlloc. The caller is responsible for freeing that memory.
5.1.2 SCardCacheAddItem

typedef DWORD (WINAPI *PFN_SCARD_CACHE_ADD_ITEM) (

IN DATA_BLOB *rgdbCacheKey,

IN DWORD cCacheKey,

IN DATA_BLOB *pdbItem);

DWORD SCardCacheAddItem(
IN DATA_BLOB *rgdbCacheKey,

IN DWORD cCacheKey,

IN DATA_BLOB *pdbItem);

The SCardCacheAddItem function will make a “flat” copy the caller’s data blob and attempt to add it to the cache. The SCardCacheMinimumDataBytes registry setting specifies a minimum data size to allow to be cached. If, for performance reasons, smaller pieces of data are determined not to be worth the overhead of holding in the cache, they will be rejected.
5.2 Remote Data Caching

The following user scenarios are considered in the Remote Caching model.
1. A user enrolls for a new certificate while at work and uses the cert to login. When the cert and other data are read from the card, they are cached in the card data cache. If the user then takes the same smart card home and uses it to logon remotely to the machine at work, the cert and other data must again be read from the card.
6 Cache Service
The winscard client caching API’s will forward requests to the Smart Card Resource Manager via the named pipe mechanism currently in use.
The following registry settings will be checked by the cache service.

SCardCacheMaximumSizeBytes

SCardCacheStaleSeconds

SCardEnableLocalCaching

Note that no API is provided for directly deleting data from the cache. The cache server will handle the deletion of stale items by periodically purging all cached data that has reached a certain age. The age of a cache item is defined as the amount of time that elapsed since that item was last referenced by either of the below API’s. Data beyond that age is considered stale. A registry entry will provide the number of seconds that must elapse before an item is considered stale.

The data cache will have a maximum size. That is, there will be a limit to the total amount of data that can be cached on a single machine. The maximum number of bytes allowed in the data cache will be defined by a registry entry. If the data cache has reached its maximum size and a subsequent client call to SCardCacheAddItem is made, the two following options should be considered.

1. Run the cache stale-purging algorithm described above. Then attempt to cache the item again. If there is still insufficient space, the reply to the SCardCacheAddItem call will indicate failure. An entry should be made in the application event log.

2. Begin deleting the oldest items in the cache (including those that might not yet be stale). Delete as many items as necessary to create sufficient space for the item being added.

Microsoft Confidential
Microsoft Confidential. © 2002 Microsoft Corporation. All rights reserved. This document is confidential to and maintained as a trade secret by Microsoft Corporation. Information in this document is restricted to Microsoft authorized recipients only. Any use, distribution or public discussion of, and any feedback to, the material in this specification is subject to the terms of the attached license. By providing any feedback on this specification to Microsoft, you agree to the terms of that license. If the license agreement has been removed, review the terms at http://www.microsoft.com/licensing/specs/agrmt01.asp before using the specification.

