[image: image1.wmf]
Windows NT

Security
Windows Smart Card CSP

WinPwrdSC.doc

Windows NT Design Team—Dan Griffin, Klaus Schutz, Eric Perlin, Glenn Pittaway
Version .5

October 31, 2001
© Copyright Microsoft Corporation, 1998 - 2001. All Rights Reserved

Printed on 11/8/01 at 6:45 PM
Microsoft Corporation Product Design Information License Agreement (Standard)

READ THIS! This is a legal agreement between Microsoft Corporation (“Microsoft”) and the recipient of this document, whether an individual or an entity (“You”). BY ACCESSING, USING OR PROVIDING FEEDBACK ON THE ATTACHED DOCUMENT (“this document”), YOU AGREE TO BE BOUND BY THESE TERMS.

1. This document is Microsoft confidential information under Your most recent Non-Disclosure Agreement with Microsoft. However, Your only rights to use this document are as described in Paragraph 2 below.

2. You may review the material in this document only (a) to provide feedback to Microsoft; or (b) as a reference to assist You in planning and designing your product, service or technology (“Your Product”) to interface with a Microsoft product, technology or service (“Microsoft Product”) as described in this document. All other rights are retained by Microsoft; You have no other rights to use the intellectual property in this document. You may not (i) duplicate any part of this document, (ii) remove this Agreement or any notices from this document, or (iii) give any part of this document, or assign or otherwise provide Your rights under this Agreement, to anyone else.

3. You have no obligation to give Microsoft any suggestions, comments or other feedback. If You do give Microsoft feedback on any version of this specification, You agree that:

· Microsoft may freely use, disclose, reproduce, license or otherwise distribute, and exploit Your feedback in its products, services, technologies, specifications and other documentation (“Microsoft Offerings”), without any intellectual property restrictions, payments or other obligations;

· You also grant Microsoft’s customers and other third parties, without charge, any patent or other rights necessary to use, and to enable their products, services or technologies to interface with, your feedback that has been incorporated into any Microsoft Product; and

· You will not give Microsoft any feedback (i) which You have reason to believe is subject to any patent, copyright or other intellectual property claim or right of any third party; or (ii) which is subject to license terms that seek to require any Microsoft Offering incorporating or derived from such feedback, or any Microsoft intellectual property, to be licensed or otherwise shared with any third party.

4. This document contains preliminary information that may change prior to release of any associated Microsoft Product, and is provided entirely “AS IS.” To the extent permitted by law, MICROSOFT MAKES NO WARRANTY OF ANY KIND, DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, AND SHALL HAVE NO LIABILITY TO YOU FOR ANY DAMAGES, IN CONNECTION WITH THIS DOCUMENT OR ANY INTELLECTUAL PROPERTY IN IT.

5. If You are acquired, or if more than a 20% of your ownership changes, this Agreement automatically terminates and You must destroy this document.

6. This Agreement is governed by the laws of the State of Washington. Any dispute involving it must be brought in the federal or state courts located in King County, Washington, and you waive any defenses allowing the dispute to be litigated elsewhere. If there is litigation, the loser must pay the other party’s reasonable attorneys’ fees, costs and other expenses. If any part of this Agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the remainder shall remain in effect. This Agreement is the entire agreement between You and Microsoft concerning this document; it may be changed only by a written document signed by both You and Microsoft.

Contents

51
Introduction

2
Requirements and Goals
6
2.1
Goals of this spec
6
2.2
General Requirements for V1
6
2.3
General Non-Requirements for V1
6
2.4
Functional Requirements
7
2.4.1
Level I – SmartCard Logon
7
2.4.2
Level II – Multiple Certificates and Keys
7
2.4.3
Level III – One Root Certificate
7
2.4.4
Level IV – Certificate Stores
7
2.4.5
Level V – Data Redirection
7
3
Crypto API Behavior
8
3.1
Card Usage Scenarios
8
3.1.1
Logon
8
3.1.2
Pin Change
8
3.1.3
Pin Submittal
8
3.1.4
Card Un-block
8
3.1.5
User Enrollment
8
3.1.6
Digital Signature
8
3.1.7
Pin Cache
8
3.2
Capi Implementation
8
3.2.1
CPAcquireContext
8
3.2.1.1
Card Selection Heuristics
9
3.2.1.1.1
Container Specification Levels
9
3.2.1.1.2
Container Operations
9
3.2.1.1.3
Context Flags
9
3.2.1.2
Card Selection Behavior
10
3.2.1.3
Making a Reader Match
11
3.2.1.4
Making a Card Match
11
3.2.1.4.1
Open Existing Default Container, No Reader Specified
11
3.2.1.4.2
Open Existing GUID-Named Container, No Reader Specified
11
3.2.1.4.3
Create New Container, No Reader Specified
11
3.2.1.4.4
Delete a Container
12
3.2.1.5
API Definition
12
3.2.2
CPGenKey
13
3.2.2.1
Key Pair Creation
13
3.2.2.2
API Definition
13
3.2.3
CPSetKeyParam
13
3.2.3.1
Present User Pin
13
3.2.3.2
Write Certificate
13
3.2.3.3
API Definition
13
3.2.4
CPGetKeyParam
14
3.2.4.1
Read Certificate
14
3.2.4.2
API Definition
14
4
Card Interface Layer
14
4.1
Requirements
14
4.2
Card Interface Operations
14
4.2.1
Card Capabilities
15
4.2.1.1
CSPQueryCapabilities
15
4.2.2
Key Container
15
4.2.2.1
CSPEnumContainers
15
4.2.2.2
CSPDeleteContainer
15
4.2.2.3
CSPCreateContainer
15
4.2.2.4
CSPGetContainerInfo
15
4.2.3
Pin
15
4.2.3.1
CSPSubmitPin
15
4.2.3.2
CSPChangePin
16
4.2.4
Public Data
16
4.2.4.1
CSPReadFile
16
4.2.4.2
CSPWriteFile
16
4.2.4.3
CSPDeleteFile
16
4.2.4.4
CSPEnumFiles
16
4.2.4.5
CSPQueryFreeSpace
16
4.2.5
Cryptographic Operations
17
4.2.5.1
CSPRsaDecrypt
17
4.2.5.2
CSPQueryKeySizes
17
4.3
Card Interface Caching
17
4.3.1
Caching Example I
18
4.3.2
Caching Example II
18
4.3.3
Initialization
18
4.3.4
Transactions and Caching in Data Writing
18
4.3.5
Transactions and Caching in Data Reading
19
4.3.6
Transactions and Caching in Cryptographic Operations
20
4.3.7
Card Caching Scenarios
20
4.3.7.1
Scenario #1 – Initial CryptAcquireContext for User Logon
20
4.3.7.2
Scenario #2 – Second CryptAcquireContext for User Logon
21
4.3.8
Card Specific Layer Cache Mechanism
21
4.3.9
Cache State Management
22
4.3.9.1
Matching Cached Cards
23
4.3.9.2
Card Cache Case I.A.
24
4.3.9.3
Card Cache Case I.B.
24
4.4
Global Caching
25
4.4.1
System-Wide Caching
25
4.4.2
Cross-System Caching
25
4.4.3
Winscard Caching API
25
4.4.3.1
SCardCacheLookupItem
25
4.4.3.2
SCardCacheAddItem
26
4.5
File Format
26
4.5.1
Logical Directory Names
26
4.5.2
Logical File Names
26
4.5.3
Certificates
27
4.5.4
Well Known Files
27
4.5.4.1
Cache File
27
4.5.4.2
Serial Number File
27
4.5.4.3
Default Container File
28
4.5.5
Access Control Lists
28
4.5.5.1
Identities
28
4.5.5.2
Access levels
28
4.5.5.3
ACL’s Applied to Well Known Card Data
28
4.5.5.3.1
Data Created During Personalization
28
4.5.5.3.2
Data Created During Deployment
29
4.6
Card Removal
29
4.7
CSP User Interface
29
4.7.1
Requirements
29
4.7.2
Scenarios
30
4.7.3
Implementation
30
4.7.3.1
Card Insertion Dialog
30
4.7.3.2
Pin Dialog
30
5
Card Specific Module
30
5.1
Requirements
30
5.2
Caching
30
5.3
Card Specific Operations
31
5.3.1
Card Module Context
31
5.3.1.1
CardAcquireContext
31
5.3.1.2
CardDeleteContext
31
5.3.2
Card Capabilities
31
5.3.2.1
CardQueryCapabilities
32
5.3.3
Key Container
32
5.3.3.1
CardEnumContainers
32
5.3.3.2
CardDeleteContainer
33
5.3.3.3
CardCreateContainer
33
5.3.3.4
CardGetContainerInfo
34
5.3.4
Pin
34
5.3.4.1
CardSubmitPin
34
5.3.4.2
CardChangePin
35
5.3.4.3
CardUnblockPin
35
5.3.5
Public Data
36
5.3.5.1
CardReadFile
36
5.3.5.2
CardCreateFile
37
5.3.5.3
CardGetFileInfo
37
5.3.5.4
CardWriteFile
38
5.3.5.5
CardDeleteFile
38
5.3.5.6
CardEnumFiles
39
5.3.5.7
CardQueryFreeSpace
39
5.3.6
Cryptographic Operations
39
5.3.6.1
CardRsaDecrypt
40
5.3.6.2
CardQueryKeySizes
40
5.3.7
Data Structures
40
5.4
Card Module Management
41
5.4.1
Card Module Registration
41
5.4.2
Card Module Lookup
42
5.5
Card Layout
42
6
Appendix A – Scenarios
44
6.1
Smart Card Logon
44
6.1.1
CSP Trace
44
6.1.2
Crypto API Behavior
44
6.2
Certificate Enrollment
45
6.2.1
CSP Trace
45
6.2.2
Crypto API Behavior
46
6.3
Code Signing
47
6.3.1
CSP Trace
47
6.3.2
Crypto API Behavior
47

1 Introduction

This document is the specification of the Microsoft Windows for Smart Cards (WFSC) Cryptographic Service Provider (CSP). Deliverables in this project are shared by the Windows NT Security team and a Smart card vendor.

2 Requirements and Goals

2.1 Goals of this spec

· Define the goals and non-goals of version 1 of the Windows for Smart Cards CSP.

· Define post-V1 goals of the WFSC CSP.

· Define requirements and a subsequent architecture for these components: a Smart Card CSP, an underlying Card Specific module, and possible additional top-level card management API’s.

2.2 General Requirements for V1

· Performance/Security/Robustness. This component should be the best available user experience in those three categories for any smart card on the NT platform.

· Vendor Framework. This CSP should be designed as a framework that vendors may use to build their own smart card CSP, reducing the burden of building a CSP from scratch, and reducing the likelihood of behavioral variations.

· Multiple Certificates. Explicit provision must be made in the below architecture for the correct handling of multiple certificates on a single smart card.

· CSP availability (RTW) by end of Q3 2001 (9/30/2001) via Windows Update. This is loosely tied to the availability of Whistler Client to customers.

· Card Management Utilities. The necessary utilities for personalizing and un-blocking cards must be available for the first release. Vendor
· Correct plumbing for card management utilities. Pin handling and card customization utilities (among others) must be available for this release. The CSP and other aspects of the architecture must address the needs of these utilities.

· PKCS #15. Must be addressed by this spec, Pro/Con. The extent to which PKCS #15 will be supported is TBD, but an attempt should be made to provide the necessary abstraction to support this card file format.

· Simultaneous support of multiple card layouts. For example, V1 should be targeted to support the WFSC Version 1 format in addition to the PKCS #15 format. This framework is also necessary for external smart card vendors who will likely have to handle this scenario. There is a Vendor dependency for determining V1 card format supportability issues.

· Support for RSA key pairs.

· Abstract Crypto API out of the smart-card-specific functionality. Capi forms the first level, or application level, of the Smart Card CSP. Determine if additional API’s are needed at this level to fully support card usage scenarios.

· A Card Interface must be provided for the Capi implementation to interact with the underlying smart card in a general way. The Card Interface forms the second level of the Smart Card CSP.

· Plugability of a card-specific implementation module. The Card Interface, mentioned above, must be abstracted out of vendor- and card- specific implementation dependencies. The Card Interface will rely on vendor-supplied card-dependant modules. These modules will be defined by a Card Specific API, which forms the third level of the Smart Card CSP.

2.3 General Non-Requirements for V1

· Support for alternate Public Key technologies, such as ECC.

· Availability of CSP source code to vendors.

· On-card Certificate (Root) Store.

2.4 Functional Requirements

The following functional levels should be considered when specifying and implementing each version of this CSP. Functional levels are listed below in order of highest to lowest importance – the list is apt to change as requirements evolve. Each succeeding functional level includes the functionality of the previous levels. The first and most common scenario to be addressed by this project is SmartCard logon, so that usage encompasses the first functional level.

At the lowest levels of the behavior to be specified in the subsequent sections of this document (especially in the Card Specific section), generic support should be included for all of the functionality described in this section. That is, all of the following functional requirements should be supported by the Card Specific implementation layer in the first release. The primary goals are to make the Card Specific layer general, and the CSP extensible.

2.4.1 Level I – SmartCard Logon

This is the main target scenario for the Windows SmartCard, V1. The basic card functionality requirements are as follows.

· One private key stored and pin-protected, presumably in a “default” key container. If only one key is permitted/required, it must be of type Key Exchange.

· One smart card logon certificate stored. The cert is public-readable, and pin write-protected.

2.4.2 Level II – Multiple Certificates and Keys

· Multiple private keys may be stored.

· Each private key has an associated key container name, although there should also be a “default” key container.

· Each private key has some set of properties, such as the key type (Signature or Key Exchange). Other example key properties include a key lifetime and identifying information for the associated certificate and public key.

· Multiple certificates may be stored, possibly with different usages.

· It seems desirable to support multiple certificates per private key, although that functionality is not a base requirement for this level. Each cert will have identifying information linking it to its private key.

2.4.3 Level III – One Root Certificate

· One root certificate can be stored in the public data portion of the card. Access to this root should be the same as access to the user’s public certificate data.

· The root cert would ideally be the user’s main trust point, such as the Microsoft Root, or the Visa Root, etc.

· This functionality is useful in an environment in which the user profile, and therefore the user’s Root Store, is not available or not modifiable by the user. E.g. Server auth at a kiosk?

2.4.4 Level IV – Certificate Stores

· Generic certificate store functionality is available on the card.

· This is more useful as general card storage grows. A user may decide to keep the entire Root Store on the card, for instance.

2.4.5 Level V – Data Redirection

· Public data portion of card includes an URL to the remainder of the user’s personal data.

· Interesting uses for this functionality include centralized storage for user data. This could include the user’s certificates, “lesser” private keys encrypted with a key stored on-card, address book data, etc.

3 Crypto API Behavior

3.1 Card Usage Scenarios

The following card usage scenarios are based on CSP traces from performing each SmartCard user operation on a Whistler client. The two comprehensive scenarios to be first considered are SmartCard Logon and SmartCard User Enrollment. Each trace below consists of the Crypto API calls used in the given scenario, followed by the low-level card operation, if any, that would result from the API call. The Crypto API calls are listed in the order they occurred, although some have been left out to avoid redundancy.

3.1.1 Logon

See the full CSP trace of a Smart Card domain logon in the Appendix. Required calls to support this scenario are listed there, as well.
3.1.2 Pin Change

<TBD>

3.1.3 Pin Submittal

CryptAcquireContext for card access (likely using CRYPT_SILENT)

CryptSetProvParam KP_ADMIN_PIN, KP_KEYEXCHANGE_PIN, or KP_SIGNATURE_PIN

3.1.4 Card Un-block

<TBD>

3.1.5 User Enrollment

See the full CSP trace of a Smart Card certificate enrollment in the Appendix. Required calls to support this scenario are listed there, as well.
3.1.6 Digital Signature

See the full CSP trace of a code signing scenario with a Smart Card certificate in the Appendix. Required calls to support this scenario are listed there, as well.
3.1.7 Pin Cache

<TBD>

3.2 Capi Implementation

3.2.1 CPAcquireContext

In the below scenarios, once a card with the specified container is found, create a new HCRYPTPROV with the following data. This is the user’s context data.

1) Context flags

2) Container name

3) Serial number of the corresponding card

4) Pointer to the Card State structure
3.2.1.1 Card Selection Heuristics

3.2.1.1.1 Container Specification Levels

In response to a CryptAcquireContext call, the CSP will attempt to match the container specified by the caller to a specific card/reader. The caller can provide a container name with varying levels of specificity, shown in the following list, sorted from more-specific to less-specific requests.

I. Reader name and Container name

II. Reader name and Default container (NULL)

III. Container name only

IV. Default container (NULL) only

In general, for the first two cases, in which a reader name is provided, the CSP will search for the specified reader and perform the requested operation on the card inserted in that reader. For the second two cases, in which a reader name is not provided, the CSP search for a card/reader suitable for the current request, beginning with cards already known to the CSP and continuing to all card/readers available via the SmartCard subsystem.
For each of the above cases, the CSP will first search for a matching card in its list of cached card data. This cache will be a list of cards and associated card state information that the CSP has encountered in the current session (where the session will typically be the lifetime of the current process). In general, if a matching card is found in the cache, the card handle associated with the cache item should be refreshed. This is a means to determine if the card is still in the reader, since the card may have been removed since the cache item was created.
If a matching card is found cached, but the cached card handle is no longer valid, the SCardUIDlg API should be used to refresh the card handle. Additional information, such as the serial number of the matching card, should be provided to SCardUIDlg to facilitate fast filtering of candidate cards.
3.2.1.1.2 Container Operations

There are three main container operations that can be requested via CryptAcquireContext. They are listed below.

A. Create new container (CRYPT_NEWKEYSET)
B. Open existing container

C. Delete container (CRYPT_DELETEKEYSET)
The heuristics used to associate a user context with a particular card and reader are based mainly on the Container Operation requested and level of Container Specification used.

The container creation operation should have the following restrictions.

· No Silent context. Key container creation must always be able to show UI, such as the Pin prompt.

· No overwriting existing containers. If the specified container already exists on the chosen card, either chose another card or Fail the operation (depending on the Card Specification level).

3.2.1.1.3 Context Flags

CRYPT_SILENT – no UI may be displayed during this operation.

CRYPT_MACHINE_KEYSET – no cached data should be used during this operation.

CRYPT_VERIFYCONTEXT – only public data may be accessed on the card
In addition to Container Operations and Container Specification, other user options must be considered during card selection, such as the above CryptAcquireContext flags.
The CRYPT_SILENT flag cannot be used with Container Operation A (create new container). See above.

Issue: The behavior of CRYPT_MACHINE_KEYSET does not still make sense. Why would an app want to disregard all of our cached data? That would be a big perf sacrifice. A goal of this design is to guarantee cache consistency.
3.2.1.2 Card Selection Behavior

In some of the below scenarios, the user can be prompted to insert a card. If the user context is Silent, this operation Fails and no UI is displayed. Otherwise, in response to the UI, the user may either insert a card, or click Cancel. If the user Cancels, the operation Fails.

[image: image2]
In general, card selection behavior will be handled by the SCardUIDlgSelectCard API. The CSP will interact with this API by calling it directly in addition to passing callback functions whose purpose is to filter and match candidate cards. In general, card matching information is provided by callers of CryptAcquireContex. Internally, the CSP can use card serial numbers, reader names, and container names to find specific cards.
Each call to SCardUI* may result in additional information read from a candidate card. This information should be cached by the CSP card selection callbacks.

The ScardUI* API will be used to refresh card handles, since a target card may be removed or re-inserted after a card handle has been cached. Since the matching serial number is discovered by FindCachedCard(), it will be passed out to FindCard() along with a status indicating that the search was successful but that the card handle needs to be re-acquired. (Or, the corresponding Card State structure could be returned, instead of just the serial number. This would prevent the callback from having to search the list of cards again.) FindCard will provide the serial number to the appropriate card-matching callback via SCardUI*.
3.2.1.3 Making a Reader Match

For Container Specification levels I and II, the complexity of the card selection process is reduced since only the card in the named reader can be considered a match.
1. Find the requested reader. If it cannot be found, Fail. [This requires a cache search by Reader Name.]
2. If there is no card in the reader, prompt the user to insert a card.
3. For level II only, determine the name of the default container on the chosen card.

4. For Container Operations B (open existing) and C (delete), find the specified container. If the specified container cannot be found on this card, prompt the user to insert a card.

5. For Container Operation A (create new), if the specified container already exists on this card, Fail.
3.2.1.4 Making a Card Match

For Container Specification levels III and IV, a broader method should be used to match an appropriate card with a user context since there may be multiple cached cards that meet the provided criteria.
3.2.1.4.1 Open Existing Default Container, No Reader Specified
1) For each card already known by the CSP, look for a valid default container. An operation should be attempted on the cached SCARDHANDLE to verify its freshness. If the card handle is not valid, continue searching for a new card.
2) If a matching card is not found in the CSP cache, call into the Smart Card subsystem. Use SCardUIDlgSelectCard() with an appropriate callback filter to find a matching card with a valid default container.
3.2.1.4.2 Open Existing GUID-Named Container, No Reader Specified

1) For each card already known by the CSP, look for the requested container. An operation should be attempted on the cached SCARDHANDLE to verify its freshness. If the card handle is not valid, pass this card’s serial number to the SCardUI* API to continue searching for this specific card (rather than just a general match for the container name).

2) If a matching card is not found in the CSP cache, call into the Smart Card subsystem. Use SCardUIDlgSelectCard() with an appropriate callback filter to find a matching card with the requested container. Or, if a card serial number resulted from the search in Step 1, the callback filter need only attempt to match the serial number, not the container name.
3.2.1.4.3 Create New Container, No Reader Specified
No CRYPT_SILENT is allowed on container creation, since, at the minimum, the user must be prompted for a Pin. Additionally, card selection UI may be necessary.
Issue: It may be possible to support CRYPT_SILENT in the container creation case via the CryptSetProvParam PP_CONTEXT_INFO call, which could pass in the user Pin.

For other operations, the caller may be able to acquire a “verify” context against the default container and then make a CryptSetProvParam call to cache the user Pin for subsequent operations. However, in the container creation case there may not already be a container against which to perform such an operation.
1) For each card already known by the CSP, refresh the stored SCARDHANDLE and make the following checks.
a. If the card has been removed, continue the search.
b. If the card is still present but already has the named container, continue the search.

c. If the card is available, but a call to CSPQueryCardFreeSpace indicates that the card has insufficient storage for an additional key container, continue the search.

d. Otherwise, the first available card meeting the above criteria should be used for the container creation.

2) If a matching card is not found in the CSP cache, call into the Smart Card subsystem. The callback used to filter enumerated cards should verify that a candidate card does not already have the named container and that CSPQueryFreeSpace indicates that the card has sufficient space for an additional container. If no suitable card is found, display UI prompting the user to insert a card.

3.2.1.4.4 Delete a Container

1. If the specified container name is NULL, Fail. This should be considered an ambiguous case since a particular reader was not specified.

2. For each card already known by the CSP, refresh the stored SCARDHANDLE and make the following checks.
a. If the card does not have the named container, continue the search.
b. If the card does have the named container, but the card handle is no longer valid, store the serial number of the matching card and pass it to SCardUI*.
3. If a matching card is not found in the CSP cache, call into the Smart Card subsystem. The callback used to filter enumerated cards should verify that a candidate card has the named container. If a serial number was provided as a result of the above cache search, the callback should filter enumerated cards on serial number rather than container matches. If the context is non-Silent and no suitable card is found, display UI prompting the user to insert a card.
3.2.1.5 API Definition

BOOL CPAcquireContext(

HCRYPTPROV *phProv,

CHAR *pwszContainer,

DWORD dwFlags,

PVTableProvStruc pVTable);

phProv

Initialize as a PCSP_PROV_CTX.

pwszContainer

Callers can specify either a Fully Qualified container location or a simple container name. The former is composed per scardcsp.doc, and includes both a reader name and a container name. The CSP will use different semantics for locating a suitable card depending on the presence of a fully qualified container.
dwFlags

CRYPT_NEWKEYSET, CRYPT_VERIFYCONTEXT, CRYPT_MACHINE_KEYSET, etc.

pVTable

Defined in wincrypt.h.

typedef struct _VTableProvStruc {

 DWORD Version;

 CRYPT_VERIFY_IMAGE_A FuncVerifyImage;

 CRYPT_RETURN_HWND FuncReturnhWnd;

 DWORD dwProvType;

 BYTE *pbContextInfo;

 DWORD cbContextInfo;

 LPWSTR pwszProvName;

} VTableProvStruc, *PVTableProvStruc;

3.2.2 CPGenKey

3.2.2.1 Key Pair Creation
Verify that the caller’s request is valid.

Key Type – Supported key types are AT_SIGNATURE and AT_KEYEXCHANGE.

Key Size – Call CSPEnumKeySizes() and verify that the specified key size is valid. If no key size is specified, use the default key size returned by that function.

Key Container – If the container specified in the user context already exists and has a key of the requested type and the context is SILENT, Fail. Otherwise, display UI for the user to confirm the key replacement.

Then call CSPCreateContainer(), specifying the key-creation flag, container name, and key size.
3.2.2.2 API Definition

BOOL CPGenKey(

 HCRYPTPROV hProv, // in

 ALG_ID Algid, // in

 DWORD dwFlags, // in

 HCRYPTKEY *phKey // out

);

3.2.3 CPSetKeyParam

3.2.3.1 Present User Pin

KP_KEYEXCHANGE_PIN

KP_SIGNATURE_PIN

KP_ADMIN_PIN

3.2.3.2 Write Certificate

KP_CERTIFICATE
3.2.3.3 API Definition

BOOL CPSetKeyParam(

 HCRYPTPROV hProv, // in

 HCRYPTKEY hKey, // in

 DWORD dwParam, // in

 BYTE *pbData, // in

 DWORD dwFlags // in

);

3.2.4 CPGetKeyParam

3.2.4.1 Read Certificate

KP_CERTIFICATE

3.2.4.2 API Definition

BOOL CPGetKeyParam(

 HCRYPTPROV hProv, // in

 HCRYPTKEY hKey, // in

 DWORD dwParam, // in

 BYTE *pbData, // out

 DWORD *pdwDataLen, // in, out

 DWORD dwFlags // in

);
Issue: For the non-AcquireContext Capi functions, consider how to handle the case where the card has been withdrawn and possibly re-inserted. The card handle will need to be refreshed in a smooth manner, such that processing can continue.

Issue: Is there a need for a CRYPT_SILENT toggle? For example, the user context could be acquired as non-silent, to facilitate card selection. The context could be subsequently toggled to Silent and card operations would have to fail rather than show UI.
4 Card Interface Layer

4.1 Requirements

· All of the PCSC and Cryptographic associations should be abstracted to this level.

· Handle card data caching

· Handle logical card file-system format

4.2 Card Interface Operations

The purpose of the Card Interface operations is to create a tight coupling between the Card Specific operations and the function calls to be made directly by the CSP. The Card Interface operations should meet the following goals.

· Remove as much general code from the Card Specific operations as possible.

· Serve as a caching layer for Card data. In general, any data that can be read off the card should be stored in the CSP process. On subsequent requests for that data, the cached copy will be checked for freshness and then used, if possible. The Card Interface operations will only call the Card Specific operations if cached data is not available.

4.2.1 Card Capabilities
4.2.1.1 CSPQueryCapabilities

DWORD CSPQueryCapabilities(

IN OUT PCARD_STATE pCardState,

IN OUT PCARD_CAPABILITIES pCardCapabilities);
4.2.2 Key Container
Key container names are specified at the Card Interface level as logical card filenames only. That is, Fully Qualified container names, those that specify both a reader name and a container name, should not be passed to the Card Interface functions. Only the container name portion of a fully qualified name should be passed, since each API will receive card context information.

4.2.2.1 CSPEnumContainers

DWORD CSPEnumContainers(

IN OUT PCARD_STATE pCardState,

IN DWORD dwFlags,

OUT LPWSTR pwszContainerName);

4.2.2.2 CSPDeleteContainer

DWORD CSPDeleteContainer(

IN OUT PCARD_STATE pCardState,

IN DWORD dwReserved,

IN LPWSTR pwszContainerName);

4.2.2.3 CSPCreateContainer

DWORD CSPCreateContainer(

IN OUT PCARD_STATE pCardState,

IN LPWSTR pwszContainerName,

IN DWORD dwFlags,

IN DWORD dwKeySize,

IN PBYTE pbKeyData);

4.2.2.4 CSPGetContainerInfo

DWORD CSPGetContainerInfo(

IN OUT PCARD_STATE pCardState,

IN LPWSTR pwszContainerName,

IN DWORD dwFlags,

OUT PCONTAINER_INFO pContainerInfo);

4.2.3 Pin
4.2.3.1 CSPSubmitPin

DWORD CSPSubmitPin(

IN OUT PCARD_STATE pCardState,

IN LPWSTR pwszUserId,

IN DATA_BLOB *Pin);

4.2.3.2 CSPChangePin

DWORD CSPChangePin(

IN OUT PCARD_STATE pCardState,

IN LWPSTR pwszUserId,

IN DATA_BLOB *CurrentPin,

IN DATA_BLOB *NewPin);

4.2.4 Public Data
4.2.4.1 CSPReadFile

DWORD CSPReadFile(

IN OUT PCARD_STATE pCardState,

IN LPWSTR pwszFileName,

IN DWORD dwFlags,

IN OUT DATA_BLOB *FileContents);

4.2.4.2 CSPWriteFile

DWORD CSPWriteFile(

IN OUT PCARD_STATE pCardState,

LPWSTR pswzFileName,

DWORD dwFlags,

IN DATA_BLOB *FileContents);

4.2.4.3 CSPDeleteFile

DWORD CSPDeleteFile(

IN OUT PCARD_STATE pCardState,

IN DWORD dwReserved,

IN LPWSTR pwszFileName);

4.2.4.4 CSPEnumFiles

DWORD CSPEnumFiles(

IN OUT PCARD_STATE pCardState,

IN DWORD dwFlags,

IN OUT LPWSTR pwszFileName);

4.2.4.5 CSPQueryFreeSpace
DWORD CSPQueryFreeSpace(

IN OUT PCARD_STATE pCardState,

IN DWORD dwReserved,

IN OUT PCARD_FREE_SPACE pCardFreeSpace);

4.2.5 Cryptographic Operations
Issues: Will data padding be handled at this layer? Some sort of RsaEncrypt function is needed – whether to simply handle data padding and dispatch to the card or to extract the requested public key from the card. If the card supports exporting the public key, then the software CSP’s could be used for RSA encrypt operations. Public keys could then be cached with their respective container data.

For V1, if the public key is needed, use CSPGetContainerInfo to retrieve it from the card and then pass it to the software CSP for use. For V2, it may be desirable for card vendors to implement public key operations on-card; use CSPQueryCapabilities to determine this.
4.2.5.1 CSPRsaDecrypt
DWORD CSPRsaDecrypt(

IN OUT PCARD_STATE pCardState,

IN LPWSTR pwszContainerName,

IN DWORD dwReserved,

IN OUT PBYTE pbData);
4.2.5.2 CSPQueryKeySizes

DWORD CSPQueryKeySizes(

IN OUT PCARD_STATE pCardState,

IN DWORD dwKeySpec,

IN DWORD dwReserved,

OUT PCARD_KEY_SIZES pKeySizes);

4.3 Card Interface Caching

Use a “write-through” caching scheme, since the card is removable. This will be last writer wins, since the CSP should not fail write operations due to data inconsistency. For example, Process A may have written an item X to the card since Process B last read X.. Process B may subsequently write X, which will render the cached X in Process A inconsistent. To mitigate, each cache item will be associated with a counter (see below).
Cache implementation is based on a set of Freshness Counters stored in a well-known on-card location. The counters will be incremented by the CSP which is doing the write operation. The value of the counter will identify the last modification to the state of the card correctly reflected by cached data. If the Freshness Counter of a cached data item is equal to the counter stored on the card, the cached data may be considered fresh and does not need to be re-read from the card. For simplicity, modifications to card data will be tracked with limited granularity. The following card areas, each as a whole, will be tracked by the cache.

[image: image3]
The well-known on-card cache location should be a special data file with a pre-determined name. Thus, cache state updates will be via CardReadFile and CardWriteFile operations using this well-known file name. To minimize the amount of card interaction required to correctly maintain the cache state, the cache data should be stored in its own logical file without any other data. This will allow the CSP to read and write the minimum necessary amount of data from the card to maintain the cache state.

The contents of the card cache file will be a pre-defined structure. See the Well Known Files section, below, for the definition of this structure.

Upon card removal, card cache can safely be persisted in the process that has loaded the CSP if the card has been initialized with a serial number. Upon card reinsertion, the already cached data may be considered fresh if the card serial number matches and the cache file indicates no change.

Issue: V2: Consider cross-process caching of card public data.

Issue: How should cache item enumeration be handled?

· Treat cache searching and enumeration separately.

· All cache lists are of uniform data type. For example, Card Capabilities information should not be cached in a list with Card Container data. Since the list is of uniform type, enumeration is fairly easy, though not necessarily thread safe.

· Searching the cache list can be accomplished via a callback which receives each list data item until a positive match is signaled.
4.3.1 Caching Example I

When a process modifies any card data file (that is, general card storage, as opposed to a key container or pin), the on-card “Data Files” cache counter will be incremented. Any subsequent read operation for a different data file in the same process will be a cache miss, since the Freshness Counter for each item is now lower than the counter on the card.
4.3.2 Caching Example II

When a process modifies any card data file, any subsequent read operation from any other process for any data file will be a cache miss. This means that the requested file will have to be read directly from the card, even if it is already correctly cached, if another on-card file has been modified since the last operation. One possible solution to avoiding the wasted cached data would be to compare the file’s checksum in the event that the Freshness check fails.
4.3.3 Initialization

As an optimization to improve response time during important operations such as Logon, certain data may be pre-read from the card and cached. This caching will happen during calls to CryptAcquireContext. Examples of card data to pre-read include the contents of any well-known card data files, which might contain the card serial number and default container name.
Card clients such as Winlogon should judiciously use this mechanism to pre-load a user’s card data while the user is entering a PIN, for example. That is, as soon as the logon process has been notified of a card insertion, a CryptAcquireContext should be triggered against the default container of the inserted card. This will cause appropriate container information to be pre-cached and result in better logon performance.
4.3.4 Transactions and Caching in Data Writing

Cache updates must be transaction based, and must occur in the same transaction as the card operation which is necessitating the cache update. “Transaction” is technically a misnomer in this case, since the implementation is typically simply a mutex; however, both the cache state update and the card data update, in that order, should occur before the mutex is released. The transacting of cache updates is an operation that can be abstracted as follows. An example of this follows, in which the CSP is writing a general data file called Foo to the card.
Let FreshnessLocation be the counter in the cache file corresponding to the card data location being updated. For example, if a general data file is being written to the card, FreshnessLocation will correspond to the GeneralData cache counter.

Let CardChangeDataOperation be the card operation that is necessitating the cache update. In this example, the operation would be something like:

CardWriteFile(pCardData, “GeneralData\Foo”, 0, file_contents)

1. EnterCriticalSection(CardStateCS)

2. Begin Transaction

a. CardReadFile(pCardData, CacheFile, 0, pCacheData)

b. dwFreshness = ++pCacheData->FreshnessLocation
c. CardWriteFile(pCardData, CacheFile, 0, pCacheData)

d. Do CardChangeDataOperation()
3. End Transaction
4. Cache the new data that was just written to the card (in this example, “GeneralData\Foo”)
5. Associate dwFreshness with the updated data (“Foo”)
6. LeaveCriticalSection(CardStateCS)

Note that there are multiple Card Specific layer operations taking place in step two, inside the scope of the Card Transaction. It would seem desirable for each Card Specific operation to transact itself, but that is not possible in this case. However, it does appear possible in this case for each Card Interface layer operation to regulate the use of the CardState critical section, since the above sequence of calls would all take place in a single call to CSPWriteFile.

4.3.5 Transactions and Caching in Data Reading

At each read request from the CSP to the card, the CacheFile will first be read from the card. If the data area in question has not been modified (this is established by comparing Freshness Counters; see above), the read request will be satisfied with cached data, if possible. If the data area in question is not Fresh, or the requested data is not cached, the card-read will actually take place, and its result cached.
Every function in the Card Interface layer (the CSP* functions) will perform the following steps when called. These steps serve the purpose of ensuring cache integrity and minimizing the number of call to the Card Specific layer that must be made.

Let FreshnessLocation be the counter in the cache file corresponding to the card data location being read. For example, if a general data file is being read from the card, FreshnessLocation will correspond to the GeneralData cache counter.

Let CardReadDataOperation be the card operation that is necessitating the cache update. In this example, the operation would be something like:

CardReadFile(pCardData, “GeneralData\Foo”, 0, file_contents)

1. EnterCS(CardStateCS)
2. Look up the cached item.
a. If no such item exists, fIsCached = False.

b. Otherwise, fIsCached = True. Get the item’s Freshness Counter, and call it myFreshness.
3. Begin Transaction

a. Read the Cache File using CardReadFile().

b. The caller should specify FreshnessLocation (Containers, General Data, or Pins). Call the current value of FreshnessLocation in the cache file “currentCacheFreshness.”
i. If fIsCached is False OR currentCacheFreshness > myFreshness, then do CardReadDataOperation().
ii. Otherwise, if fIsCached is True, use the cached data. The caller should provide the currently cached value; the transaction function will simply return this data if it’s determined to be up to date.
4. End Transaction

5. If the item had to be read from the card, update the cache with the new data and associate currentCacheFreshness with it.
6. LeaveCS(CardStateCS)
4.3.6 Transactions and Caching in Cryptographic Operations

1. EnterCS(CardStateCS)

2. Begin Transaction

a. Read the Cache File using CardReadFile()

b. Compare the Pin cache counter in the file to the Freshness value of the cached pin.

i. If currentPinFreshness > myPinFreshness and the context is silent, return SCARD_W_WRONG_CHV. Otherwise, prompt the user to enter the Pin.

ii. Otherwise, proceed with the currently cached pin.

c. The Card Specific layer will access the pin cache directly via PinCachePresentPin.
d. Perform the crypto operation.

3. End Transaction

4.3.7 Card Caching Scenarios
Goals:

· Across a session, the minimum amount of data should be read from the card. That means that no unchanged data should be read from the card twice. Rather, unchanged data should always be retrieved from the CSP card data cache. A session is defined as the lifetime of a process that loads the CSP and performs operations on a given card.
· Throughout a session, the card cache stays consistent. That is, when the CSP is used correctly, it is not possible to read incorrect, out of date, data from the cache. This is true even when other processes are accessing the same card.

4.3.7.1 Scenario #1 – Initial CryptAcquireContext for User Logon

Inputs:

Named Reader

Default Container

1. Search the list of cached cards. None are found.

2. Enumerate cards via SCardUIDlgSelectCard(). The callback passed to this API will filter on the reader name.

3. A CARD_DATA structure is created for this card and added to the list of cards known by the CSP.

4. Call CSPReadFile() for the Serial Number of this card. This results in a call to CardReadFile() since no serial number is already cached.

5. Call CSPReadFile() for the name of the default container of this card. This results in a call to CardReadFile() since no container information is already cached.

6. Call CSPGetContainerInfo() for this container. This results in a call to CardGetContainerInfo() since the only container information currently cached is the name of the container.
4.3.7.2 Scenario #2 – Second CryptAcquireContext for User Logon
Inputs:
Named Reader

Named Container

1. Search the list of cached cards for the named reader. It is found in the cache. Verify that the named container is also present. These calls will also ensure that the SCARDHANDLE for this card is still valid. If the cached SCARDHANDLE is not valid, fallback to the SCardUI.
2. Call CSPReadFile() for the Serial Number. A cached value is found. The cache read process will verify that the cached data is up to date based on the cache stamp for this item. The serial number should be associated with the user context.
3. Call CSPGetContainerInfo() for the specified container name. Cached data is found. The cache read process will verify that the cached data is up to date.

4.3.8 Card Specific Layer Cache Mechanism

There needs to be a mechanism for the Card Specific layer to cache certain data that is opaque to the Card Interface layer. An example of data that needs to be cached this way is the file used by the card to map logical files names to physical card locations. If such data is not cached, every request by the Card Interface layer to read a card data file would result in at least two actual reads from the card; one to read the data that maps the logical filename known by the Card Interface layer to a physical filename known only by the Card Specific layer, and one to read the actual file being requested.
This can be accomplished via a callback that the Card Interface provides when calling Card Specific layer functions. The Card Specific layer can invoke the callback to retrieve cached data. When interacting with the Card Interface cache, the Card Specific layer will need to provide the following information.

1. The data to cache.

2. The cache Freshness location (e.g. General Data or Containers), or combination of locations, that should be used to stale the cached data. For example, the cached physical filename mapping file is invalid if either the General Data or Containers areas have registered a change.

In response, the cache will return an Identifier (could be a GUID or a pointer) that the Card Specific must provide for subsequent lookup operations.

CacheListAddOpaqueItem()

Input: data to cache, Freshness location

Output: ID for subsequent lookup

CacheListLookupOpaqueItem()

Input: ID, callback for retrieving data is cached value is invalid

Output: cached data

The Card Specific layer must have a mechanism for ignoring its cached data when necessary. The primary example of why this is necessary is reading the cache file from the card:
1) CardReadFile(CacheFreshnessFile)

a. CallbackGetCachedData(ID); for the cached Card Specific data item, which is the card file map in this case

i. CardReadFile(CacheFreshnessFile); to verify the validity of the cached data, the cache will need to read the card cache file. Note there is a loop at this point.
4.3.9 Cache State Management

The CSP has multiple levels of state information that must be managed correctly.

I. Information global to the CSP in the current process.

a. A list of cached cards. This is a list of known cards that have been inserted at any time during the current session. In Version 1.0, session is defined as the lifetime of the process that has loaded the CSP. In future versions, the cache implementation may be cross-process, so a session may be the duration of a user’s login (LUID)

b. A context handle to the software CSP, used for offloading certain operations.

II. Information pertaining to a specific Smart Card. This is a list of cached data for each known card.
a. Card serial number.

b. Cached data for the card.

III. Card Specific data.

a. The SCARDHANDLE for this card.

b. A Pin Cache handle.

c. Callbacks to the Card Interface for retrieving cached data.

[image: image4]
At any time, the data contained in Level Ia, the list of known cards (above), is a partial description of the CSP’s state from the perspective of the current process. The list of known cards is the main data structure upon which top-level CSP operations (Crypto API) will take place. The main operations performed on the CSP State data structure are as follows.

A. Add a new card to the list. Thread safe.
B. Find the appropriate card in the list (i.e. search the list based on some card-identifying data such as a container name or card serial number) and pass the matching Card State set of data to lower-level operations (the Card Interface layer). Thread safe.
The data contained in Level II is a partial description of a Card’s State from the perspective of the current process. The data that composes the Card State is retrieved from the Card Specific layer operations by the Card Interface operations – this includes key container names, general data file contents, etc. The main operations performed on the Card State data are as follows.
A. Find a specific item in the list. This is different from the Enumeration case below, since the list search is internal to the primitives defined to operate on the list data structure – the caller only specifies the specific item sought. Thread safe.
B. If an item cannot be found in the list, or if the item is found but is not Fresh, retrieve the item from the Card Specific layer and add it to the list (or replace the existing non-fresh item in the list).

C. Enumerate all items in the list. This case is an “external” enumeration, performed in response only to certain Crypto API calls (e.g. CryptGetProvParam PP_ENUM_CONTAINERS). The CSP will not use the enumeration functionality internally. Not thread safe.
4.3.9.1 Matching Cached Cards

Calls to CryptAcquireContext will result in a search by the CSP for a smart card that matches the user’s request. The CSP will first try to find a card based on cached information. If the cache lookup is not successful, the CSP will call the Smart Card subsystem to find a matching card. For searching cached information, a CSP-internal function should be provided, called FindCachedCard.

typedef struct _CARD_MATCH_DATA
{

DWORD dwCtxFlags;

LPWSTR pwszReaderName;

LPWSTR pwszContainerName;

LPWSTR pwszSerialNumber;

} CARD_MATCH_DATA, *PCARD_MATCH_DATA;

DWORD FindCachedCard(
IN PCSP_STATE pCspState,

IN OUT PCARD_MATCH_DATA pCardMatchData,

OUT PCARD_STATE *ppCardState);
Input:

The CSP State structure, which contains the list of cached cards.

A structure describing the criteria for finding a matching card in the list of cached cards.

Caller’s pointer-pointer to a Card State structure, which will point to a valid matching Card State structure if the cache search is successful. If the search is not successful, the output pointer will be NULL.

Output:

Status

A card serial number will be set in the CARD_MATCH_DATA structure if a matching card was found in the cache, but the card handle needs to be refreshed (meaning that the card match could not be confirmed).
Purpose:

Search the list of cached cards in the CSP for a card that matches a new user request (via CryptAcquireContext, to associate a specific key container with a context handle). The match will be made based on the data passed to CryptAcquireContext: flags and a container and/or reader name. If a matching card is found in the cache, give the user a pointer to that card.
4.3.9.2 Card Cache Case I.A.

This is a flow description of a user request that cannot be satisfied by a card in the CSP cache list. The matching card is added to the cache list after it’s found by the Smart Card subsystem.

1. Look for a matching card based on the supplied container name, reader name, etc. – the matching card is not found in this case. That is, FindCachedCard fails.
2. Pass the current CSP State and search criteria (container name, etc.) to SCardUIDlgSelectCard. The search criteria will then be passed to a callback into the CSP.

3. When the callback is invoked, Begin Transaction on this card. For performance, it will probably make sense to transact the entire card matching process for a given card in the callback, rather than transacting each call into the Card Interface layer.
4. Read the appropriate data from the card, based on the search criteria. This will probably be a container name match, in this case.

5. Once a match is made, read the Serial Number from the card.

6. Lookup the serial number in the CSP State list – it’s not found in this case.

7. End Transaction.

8. EnterCS(CSPState)

9. Create a new Card State structure with this serial number and container information and add it to the CSP State list.

10. LeaveCS(CSPState)
4.3.9.3 Card Cache Case I.B.

This is a flow description of a user request that is satisfied from cached data.
1. Look for a matching card based on supplied search criteria via FindCachedCard.

2. FindCachedCard performs the following operations.

3. EnterCS(CSPState)

4. For each card in the CSP cache, perform the following operations.

a. EnterCS(CardState)

b. Invoke Card Interface operations on this card to determine if it matches.

c. LeaveCS(CardState)

d. If a matching card was not found, repeat for the next cached card.

5. LeaveCS(CSPState)

6. In this case, a matching card has been found.
4.4 Global Caching
4.4.1 System-Wide Caching

The card data caching method discussed in the Card Interface Caching section above does not minimize the amount of data that must be read from the card on a system-wide basis. This is due to card data only being cached per-process in that model. An desirable alternative is to provide a scheme for caching data in such a way that other processes can use that data while still maintaining cache consistency.

To cache card data system-wide, a new API set could be introduced to Winscard. This interface would allow any application to contribute to and utilize the data cache. The benefits of system-wide caching would include Terminal Server Smart Card Logon scenarios involving a single client accessing multiple servers.
4.4.2 Cross-System Caching

The benefit of cross-system caching is the minimization of “card reads” – the number of times that data must be read from the card.
4.4.3 Winscard Caching API
The following registry settings will be checked by the caching API.
SCardCacheStaleSeconds

SCardCacheMinimumDataBytes

SCardEnableLocalCaching

SCardEnableRemoteUpdates

SCardEnableRemoteCaching

Note that no API is provided for directly deleting data from the cache. The cache will handle the deletion of stale items by periodically purging all cached data that has reached a certain age. The age of a cache item is defined as the amount of time that elapsed since that item was last referenced by either of the below API’s. Data beyond that age is considered stale. A registry entry will provide the number of seconds that must elapse before an item is considered stale.

The data cache will have a maximum size. That is, there will be a limit to the total amount of data that can be cached on a single machine. The maximum number of bytes allowed in the data cache will be defined by a registry entry. If the data cache has reached its maximum size and a subsequent call to SCardCacheAddItem is made, the two following options should be considered.

1. Run the cache stale-purging algorithm described above. Then attempt to cache the item again. If there is still insufficient space, the SCardCacheAddItem call fails. An entry should be made in the application event log.
2. Begin deleting the oldest items in the cache (including those that might not yet be stale). Delete as many items as necessary to create sufficient space for the item being added.

4.4.3.1 SCardCacheLookupItem

typedef DWORD (WINAPI *PFN_SCARD_CACHE_LOOKUP_ITEM) (

IN DATA_BLOB *rgdbCacheKey,

IN DWORD cCacheKey,

OUT DATA_BLOB *pdbItem);

DWORD SCardCacheLookupItem(

IN DATA_BLOB *rgdbCacheKey,

IN DWORD cCacheKey,

OUT DATA_BLOB *pdbItem);

The SCardCacheLookupItem will allocate the buffer to be used by the pdbItem->pbData member. The caller is responsible for freeing that memory by calling SCardFreeMemory.

4.4.3.2 SCardCacheAddItem

typedef DWORD (WINAPI *PFN_SCARD_CACHE_ADD_ITEM) (

IN DATA_BLOB *rgdbCacheKey,

IN DWORD cCacheKey,

IN DATA_BLOB *pdbItem);

DWORD SCardCacheAddItem(
IN DATA_BLOB *rgdbCacheKey,

IN DWORD cCacheKey,

IN DATA_BLOB *pdbItem);

4.5 File Format

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-15/pkcs-15v1_1.doc
A fully-qualified logical file name, the type that will be based between the CSP and the Card Specific functions, consists of a logical directory name followed by a logical file name. The pattern is “DirName/FileName.” The Card Specific layer is responsible for mapping logical file names to physical card locations.

4.5.1 Logical Directory Names

The following logical directory names are pre-defined.

RootCert

UserCert

GeneralData

4.5.2 Logical File Names

A well-formed logical file name adheres to the following rules.

For user certificates, the logical file name is composed of a Guid, plus a few bytes of identifying information. That comes to about 37 + 3 = 40 bytes maximum.

For root certificates, the logical file name is composed of the hash of the public key. This facilitates fast queries against user trust information.

For general on-card data, the logical file name is composed of a serial number. Common general data files, such as the master file that indicates the user default container name, will have pre-defined serial numbers.
4.5.3 Certificates

Certificates should be stored on the card in the form of the following data structure.
#define CARD_CERT_FILE_CURRENT_VERSION 1
typedef struct _CARD_CERT_FILE_CONTENTS

{

DWORD dwVersion;

PBYTE pbEncodedCert

DWORD cbEncodedCert;

} CARD_CERT_FILE_CONTENTS, *PCARD_CERT_FILE_CONTENTS;
4.5.4 Well Known Files

4.5.4.1 Cache File

The well known name of the cache file should be:

“GeneralData\CacheFile”

#define CARD_CACHE_FILE “GeneralData\CacheFile”

The contents of the cache file will consist only of the following structure.

#define CARD_CACHE_FILE_CURRENT_VERSION 1

typedef struct _CARD_CACHE_FILE_CONTENTS

{

DWORD dwVersion;

DWORD cContainers;

DWORD cGeneralData;

DWORD cPins;

}
4.5.4.2 Serial Number File
The Serial Number file contains the card serial number. The well known name should be:
“GeneralData\SerialNumberFile”

#define CARD_SERIAL_NUMBER_FILE “GeneralData\ SerialNumberFile”

The contents of the serial number file will consist only of the following structure.

typedef struct _CARD_SERIAL_NUMBER_FILE_CONTENTS

{

LPWSTR pwszSerialNumber;

}
4.5.4.3 Default Container File
The Default Container File contains the Guid of the card’s default container. The well known name should be:
“GeneralData\DefaultContainerFile”

#define CARD_DEFAULT_CONTAINER_FILE “GeneralData\DefaultContainerFile”

The contents of the default container file will consist only of the following structure.

#define CARD_DEFAULT_CONTAINER_FILE_CURRENT_VERSION 1

typedef struct _CARD_DEFAULT_CONTAINER_FILE_CONTENTS

{

DWORD dwVersion;

LPWSTR pwszDefaultContainer;

}

The Guid specified in the pwszDefaultContainer should be formatted in such a way that it can be used directly in calls to CardGetContainerInfo(), CardRsaDecrypt(), etc. The stored Guid also indicates the name of the default user certificate, if any, corresponding with the default key container. To access the specified certificate file, call CardReadFile, for instance, and specify a file name composed of the returned Guid pre-pended with “UserCert\”.

4.5.5 Access Control Lists

The card storage areas should be configured with sensible default ACL’s.

4.5.5.1 Identities
Everyone

User

Admin

4.5.5.2 Access levels
Read

Write

4.5.5.3 ACL’s Applied to Well Known Card Data
4.5.5.3.1 Data Created During Personalization

Serial Number File

- Everyone Read

Cache File

- Everyone Read

- User Write

Default Container File

- User Write

- Everyone Read

Map File (used by CSP)

- Everyone Read

- User Write

4.5.5.3.2 Data Created During Deployment

Root Certificate File

- Admin Write

- Everyone Read

User Certificate File

- User Write

- Everyone Read

4.6 Card Removal
The Card Interface layer must be able respond robustly to notification of Card Removal from the Card Specific layer. If the Card Specific layer detects a card removal, an appropriate status should be returned. In response, the Card Interface should attempt to reconnect to the card. If the reconnect is successful, the Card Specific operation should be re-attempted. If the reconnect fails, the status notification should be propagated out of the CSP.

An SCARDHANDLE is included in the data always passed from a Card Interface to a Card Specific operation. Calls on that handle may result in SCARD_W_REMOVED_CARD being returned to the Card Interface. Included in the list of calls for which this case must be handled are all Card Specific operations plus Begin Transaction.
· In response to SCARD_W_REMOVED_CARD, the Card Interface should attempt to recover. Reconnect and re-try, per above. This is to check if the card has been re-inserted.
· If the CSP re-initialization of the card handle fails, and the current user context is not Silent, the CSP should display UI to the user prompting for the card to be inserted.

· If the current user context is Silent, or if the user Cancels in the UI operation, the current CryptoAPI function should fail with SCARD_W_REMOVED_CARD.
4.7 CSP User Interface

4.7.1 Requirements

The CSP may be required to interact with the user in certain situations. The User Interface provided by this CSP has the following requirements.

· The CSP may display UI only if the current user context was not acquired as Silent.
· The Card Specific layer should never display UI. Only the Card Interface layer should display UI.

· All dialogs displayed by the CSP should have a Cancel button. When the user presses Cancel, an appropriate error code should be returned by the affected CryptoAPI.
· All dialogs should be as specific as possible regarding which card, which operation, etc.
4.7.2 Scenarios

If the user context is not Silent, the CSP may display UI only in the following situations.
· If card initialization fails, prompt the user to insert the requested card.

· If a CryptoAPI operation is requested on a user context associated with a card other than the one currently inserted, prompt the user to insert the requested card.
· When a Card Specific operation makes a Pin Cache request, the cached pin may be incorrect for the current operation. The status SCARD_W_WRONG_CHV should be returned to the Card Interface. In response, prompt the user to enter the correct pin. Then update the Pin Cache and re-attempt the Card Specific operation.
4.7.3 Implementation

If possible, cards should be given friendly names which can be included in the UI message text. The friendly name could be delivered during card personalization and could be relatively generic, such as “NTDev domain user logon,” etc. Otherwise, consider displaying the card serial number, although it may be difficult for users to associate a given serial number with the actual card.
Since cryptographic signing of CSP packages is still required for export regulation, CSP resource strings should be delivered in a separate package from the CSP itself. This is per requirements of the International Build Labs to not localize PRS-signed binaries. Currently, the Microsoft software CSP’s use crypt32.dll as the delivery vehicle for localized strings. That method is not suitable since the SmartCard CSP is not in sync with the crypt32 ship schedule and modifications to crypt32 are risky. As a result, the SmartCard CSP should be delivered as two dll’s.

Two separate dialog boxes are required for this CSP. Descriptions of each follow.

4.7.3.1 Card Insertion Dialog

This dialog will consist of a title bar, text box, and Cancel button.
4.7.3.2 Pin Dialog

This dialog will consist of a title bar, text box, edit box, OK button, and Cancel button.
5 Card Specific Module

The Card Specific Module is the lowest logical interface layer in the SmartCard CSP. This module will allow the Card Interface layer to speak directly with a specific type of card.
5.1 Requirements

· Must implement a standardized set of macro-level operations

· Map logical card file-system objects to physical card locations.

· Each Card Specific operation should implement a single, atomic transaction.

· Implement “best behavior” – not responsible for reproducing the incorrect behavior of existing platforms.

5.2 Caching
In general, the Card Interface layer is responsible for supporting caching to minimize the amount of data that must be read from the card. However, to ensure cache consistency and good performance, some cache functionality must be provided at the Card Specific layer.

· The map file for the card file system should be cached

· In the future, the card operating system needs to provide a mechanism to guarantee cross-process file consistency. Essentially, this means that the card operating system should provide an intrinsic cache counter, rather than requiring each client process (via the CSP) to do this manually. Vendor
There are limitations in the Windows Smart Card environment that complicate cache consistency across processes.

1) It is not reasonable to trust user processes to correctly manage card data. Not all write operations will originate from the CSP. For example, card personalization tools or any other 3rd party tool can write data directly to the card and not correctly update the cache file.

2) The Smart Card subsystem cannot discern card data read operations from write operations. Because of this, the subsystem cannot be relied on to invalidate cached data.

3) Current Smart Card operating systems do not supply a file consistency/caching mechanism. Such a mechanism would need to, at the minimum, automatically increase a certain on-card counter in response to write operations. Applications could then read this counter to verify the consistency of cached data.
5.3 Card Specific Operations

5.3.1 Card Module Context

The general entry point must be provided by every Card Specific module. This entry point initializes its own context information and provides function pointers to be used by the CSP to call into the card module.

5.3.1.1 CardAcquireContext

DWORD CardAcquireContext(

IN OUT PCARD_DATA pCardData);

typedef DWORD (*PFN_CARD_ACQUIRE_CONTEXT)(PCARD_DATA);
5.3.1.2 CardDeleteContext

DWORD CardDeleteContext(

OUT PCARD_DATA pCardData);
5.3.2 Card Capabilities

It will be necessary for the card CSP to the support multiple variations of specific cards and card modules. To best take advantage of the capabilities of a given card, the card specific module should provide an API that the CSP can use to query the full set of functionality provided by the card. Examples of card capabilities include compression algorithms and a guarantee of file integrity via checksum. If any functionality required by the CSP is provided by the card, such as compression, the CSP should always rely on the card implementation. Otherwise, the CSP will fall back to its own implementation of this functionality.
#define CARD_CAPABILITIES_CURRENT_VERSION 1

typedef struct _CARD_CAPABILITIES

{

DWORD dwVersion;

BOOL fCompression;

BOOL fFileChecksum;

BOOL fSupportsAdminPrincipal;

} CARD_CAPABILITIES, *PCARD_CAPABILITIES;
5.3.2.1 CardQueryCapabilities

DWORD CardQueryCapabilities(

IN PCARD_DATA pCardData,

IN OUT PCARD_CAPABILITIES pCardCapabilities);

Input:

Version number should be set in pCardCapabilities

Output:

Status

Filled-in pCardCapabilities struct

Purpose:

Query the card and card-specific module combination for the functionality provided at this level, such as compression and file checksums. Files should be written to the card in a compressed state and with accompanying checksum information. The Interface layer will perform these operations if the Card Specific layer is not capable.
5.3.3 Key Container

· Enumerate

· Delete

· Create with Key Generate

· Create with Key Import

In contrast to the behavior of Microsoft’s Windows 2000-era software CSP’s, only one key pair per container will be supported. Associated with each key will be a key usage, Signature or Key Exchange.

Open Issue: Also associated with each key container should be identifying information about the corresponding Certificate on the card (logical information about where to find the cert data). Not all containers will have a corresponding cert. This pre-supposes that multiple certs per key won’t be supported.

5.3.3.1 CardEnumContainers

DWORD CardEnumContainers(

IN PCARD_DATA pCardData,

IN DWORD dwFlags,

OUT LPWSTR pwszContainerName);

Input:

First | Next

Output:

Status

Guid name of current key container

Purpose:

In successive calls, list the names of all key containers present on the card. Status should indicate failure if the end of the enumeration is reached and the contents of the output buffer have not changed.

5.3.3.2 CardDeleteContainer
DWORD CardDeleteContainer(

IN PCARD_DATA pCardData,

IN DWORD dwReserved,

IN LPWSTR pwszContainerName);

Input:

Guid

Output:

Status

Purpose:

Delete the key container named by the Guid. Status should indicate success if the container existed and was successfully deleted. Otherwise, status should indicate that container didn’t exist, or delete failed for specific reason, or etc.

5.3.3.3 CardCreateContainer

DWORD CardCreateContainer(

IN PCARD_DATA pCardData,

IN LPWSTR pwszContainerName,

IN DWORD dwFlags,

IN DWORD dwKeySize,

IN PBYTE pbKeyData);

Input:

KeyGen | KeyImport

Guid
If KeyGen, a key-type and size must also be supplied.

If KeyImport, the key data must also be supplied.

Output:

Status

Purpose:

Create a new key container named Guid. The new container will always contain a valid key if the call succeeds. The two methods of creating a new container are via random key generation and importation of existing key data.

Issue: What should be the blob format for importing RSA keys? The BSafe private-blob format probably isn’t public, but there may be a PKCS for this.

Issue: What if an app attempts to create a Cert with key-exchange key usage using the default container, when the default container already has a Signature key? This would fail in the one-key model since the container is already “full,” and the current key doesn’t have the correct usage. Correct behavior might be to redirect to a new container.

5.3.3.4 CardGetContainerInfo

DWORD CardGetContainerInfo(

IN PCARD_DATA pCardData,

IN LPWSTR pwszContainerName,

IN DWORD dwFlags,

IN OUT PCONTAINER_INFO pContainerInfo);
Input:

Guid
Flags

Output:

Status
Data

Purpose:

Query the specified key container for additional information about the key it contains, such as its Key Type (Signature or Key Exchange). This will also by the means to extract the public key. The behavior in V1 should be always to return all available container info; however, in future versions it may be desirable to narrow the request to a specific piece of container data to limit the amount of data to be transferred.

There will be at least a 1:1 relationship between the information specified during CardCreateContainer and the information able to be queried by this call. That is, there is no container data accessible via CardGetContainerInfo that was not specified during CardCreateContainer.
5.3.4 Pin

5.3.4.1 CardSubmitPin

DWORD CardSubmitPin(

IN PCARD_INFO pCardInfo,

IN LPWSTR pwszUserId,

IN DATA_BLOB *Pin);

Input:

UserId
Pin

Output:

Status
Purpose:

Using the supplied Pin, authenticate the specified user (User or Admin) to access card private data, such as user key containers. The use of this call will be regulated by the Pin Cache library.
5.3.4.2 CardChangePin

DWORD CardChangePin(

IN PCARD_INFO pCardInfo,

IN LPWSTR pwszUserId,

IN DATA_BLOB *CurrentPin,

IN DATA_BLOB *NewPin);

Input:

UserId
CurrentPin

NewPin

Output:

Status
Purpose:

Change the Pin for the specified user. In the CSP, this call will only be made via the Pin Cache library.
5.3.4.3 CardUnblockPin

DWORD CardUnblockPin(

IN PCARD_INFO pCardInfo,

IN DATA_BLOB *Pin);

Input:

Pin
Output:

Status
Purpose:

Using the supplied Pin, unblock a card which has been locked due to an incorrect user pin having been supplied more than the maximum number of allowed times. If the card was not blocked, or if the unblock failed, the Status should specify these cases.
5.3.5 Public Data

Either in addition or as an alternative to Certificate management functionality, there should be interfaces that emulate generic file storage on the card. This storage could be used for credentials, certificates, etc.

Is it necessary to provide methods for ACL’ing? Cert data is public, so no additional security is needed. If credentials are going to be stored in the public data portions of the card, is possession of the card itself sufficient security, rather than exposing functionality for securing portions of the card’s public data?

Certificate management, for example, requires Enumerate, Delete, and Create functionality.

This interface should have similar look and feel to simplified versions of NT CreateFile, ReadFile, and WriteFile. A file path parameter should correspond to the physical layout of the card (it is up to the Card Interface Layer, above, to map the logical locations from the CSP to physical card locations). The purpose of this interface is to abstract the card as a general, generic file system to be managed by the CSP.

An example of how the CSP will manage public card data using CreateFile semantics is via a master file stored on the card at a well-known location. This master file will serve as a directory of the objects that the CSP has stored in the card file-system. This would allow the CSP to lookup the file names associated with the user certificates and other data stored on the card. The contents of the Certificate file objects would be determined by the CSP. Included in the Certificate data would be information for locating its associated key container. This approach has some trade-offs, however, since additional card-reads will be necessary to first request the master file and then to request the actual data file in question (such as the default user certificate).
On the plus side, the use of a master file gives the CSP a great deal of control over how general card data is stored and accessed. This may better facilitate versioning of the card storage format and allow cards to be more versatile. For instance, rather than relying on the card to keep track of the name of the default user container, that information could simply be stored in a well-known general file. As an optimization, the CSP could immediately read and cache the default file from the card at Dll load time.
5.3.5.1 CardReadFile

DWORD CardReadFile(

IN PCARD_INFO pCardInfo,

IN LPWSTR pwszFileName,

IN DWORD dwFlags,

IN OUT DATA_BLOB *FileContents);

Input:

LogicalFileName
Buffer

BufferLength

Flags – ignore cached data

Output:

Status

File Contents
File Contents Length

Purpose:

Read the entire file specified by LogicalFileName into the user supplied buffer. The location specified by LogicalFileName should be fully-qualified and well formed per Section 4.3 FileFormat, above.
If the data-pointer member of the FileContents parameter is set to NULL, the function will place the size of the specified file in the FileContents data-size member. If the size of the file is greater than the FileContents data-size member, no data will be copied into the caller buffer and the data-size member will be set to the size of the file. If the size of the file is less than the FileContents data-size member, the file will be copied into the caller buffer and the data-size member will be set to the size of the file.
5.3.5.2 CardCreateFile

DWORD CardCreateFile(

IN PCARD_DATA pCardData,

LPWSTR pwszFileName,

DWORD dwAcl);
Input:

LogicalFileName

ACL to be applied to the file

Output:

Status

Purpose:

CardCreateFile creates a general file with the specified logical name and ACL.
5.3.5.3 CardGetFileInfo

#define CARD_FILE_INFO_CURRENT_VERSION 1

typedef struct _CARD_FILE_INFO

{

DWORD dwVersion;

DWORD cbFileSize;

PCARD_FILE_ACL pAcl;

} CARD_FILE_INFO, *PCARD_FILE_INFO;

DWORD CardGetFileInfo(

IN PCARD_DATA pCardData,

LPWSTR pwszFileName,

OUT PCARD_FILE_INFO pCardFileInfo);

Input:

LogicalFileName

Output:

Status

Caller’s CARD_FILE_INFO structure is filled in.

Purpose:

CardGetFileInfo fails if the specified file doesn’t exist.
5.3.5.4 CardWriteFile

DWORD CardWriteFile(

IN PCARD_DATA pCardData,

LPWSTR pwszFileName,

DWORD dwFlags,

IN DATA_BLOB *FileContents);

Input:

LogicalFileName
File Contents

File Contents Length

Flags

Output:

Status
Purpose:

CardWriteFile fails if the named file does not already exist.
5.3.5.5 CardDeleteFile

DWORD CardDeleteFile(

IN PCARD_DATA pCardData,

IN DWORD dwReserved,

IN LPWSTR pwszFileName);

Input:

LogicalFileName
Output:

Status
Purpose:

Delete the specified file. If the file doesn’t exist, the returned Status should indicate if the file did not exist.
5.3.5.6 CardEnumFiles

DWORD CardEnumFiles(

IN PCARD_DATA pCardData,

IN DWORD dwFlags,

IN OUT LPWSTR pwszFileName);

Input:

EnumFirst | EnumNext
If EnumFirst, a directory prefix; see below.

Output:

LogicalFileName
Purpose:

For the ENUM_FIRST case, the LogicalFileName parameter can contain a directory prefix, restricting the scope of the enumeration.
5.3.5.7 CardQueryFreeSpace

DWORD CardQueryFreeSpace(

IN PCARD_DATA pCardData,

IN DWORD dwFlags,

OUT PBYTE pbFreeSpaceInfo);

Input:

Flags specifying the class of free space information being requested.
Output:

Status
Card space information (e.g. number of bytes left, number of available key containers)

Purpose:

Determine the amount of available card storage space. This may be an approximate value in some cases. Examples of the use of this information are determining if a new key container can be created and determining if the card has sufficient storage for a given certificate. The former will be used in calls to CryptAcquireContext CRYPT_NEWKEYSET to determine if the call should succeed, even though the key itself won’t be created until CryptGenKey is called.
Since full support for free space information will probably become available only gradually in new cards, a set of flags could be provided to restrict the scope of the query and provide more useful data to the caller. The flags can be used to specify a particular card operation of interest, such as the creation of a new key pair.

5.3.6 Cryptographic Operations

Sign Data / RSA Decrypt

The remainder of cryptographic functionality should come from the software CSP’s for performance.

5.3.6.1 CardRsaDecrypt

DWORD CardRsaDecrypt(

IN PCARD_DATA pCardData,

IN LPWSTR pwszContainerName,

IN DWORD dwReserved,

IN OUT PBYTE pbData);

Input:

Ciphertext
Output:

Status
Plaintext

Purpose:

The input data for RSA Decryption should be padded by the CSP based on the format requested by the caller (e.g. PKCS #1). Therefore, the data passed to and from CardRsaDecrypt will always be equal in length to the public modulus. This frees the card specific layer from needing to implement various padding schemes. The CSP will validate the padding in the plaintext, so this API should succeed except in the case of hardware error.
5.3.6.2 CardQueryKeySizes

DWORD CardQueryKeySizes(

IN PCARD_DATA pCardData,

IN DWORD dwKeySpec,

IN DWORD dwReserved,

OUT PCARD_KEY_SIZES pKeySizes);

Input:

AT_SIGNATURE | AT_KEYEXCHANGE
Output:

Status

Supported key sizes for the specified algorithm type.
Purpose:

Determine the public key sizes supported by the card in use.

Issue: Are all cards required to support both Signature and Key Exchange key types? Should the card specific module even care what “type” the key is, or does it just need to know the length? It seems that the CSP should be solely responsible for key types.
5.3.7 Data Structures

A common data structure will be used by all of the above Card Specific functions. See the attached header for the definition of the CARD_DATA structure.
5.4 Card Module Management
Each Card Specific module should be distributed as a Dll. To enable the CSP to connect to the appropriate Card module, registry information will be provided to make this association. The Card module association process will proceed as follows.

1. The CSP, searching for a card match, does not find an appropriate cached card.

2. Once the CSP goes to the SCardUI, candidate SCARDHANDLE’s will be passed to the CSP via callback.

3. The CSP can then call SCardStatus to get the ATR of the current card.
4. Lookup the ATR in the system registry to find the Card Specific module

The Smart Card Database portion of the system registry (currently located in HKLM\Software\Microsoft\Cryptography\Calais\SmartCards), and the support functions for accessing the database provided by the Smart Card Subsystem, can be extended to support loadable Card Specific modules.
5.4.1 Card Module Registration

Each Card Specific module will be responsible for registering the card type, or card types, that it supports. For each supported card type, that is, each discreet ATR, the Card Module should call the following API’s in its DllRegisterServer entry point.

WINSCARDAPI LONG WINAPI

SCardIntroduceCardType(

 IN SCARDCONTEXT hContext,

 IN LPCSTR szCardName,

 IN LPCGUID pguidPrimaryProvider,

 IN LPCGUID rgguidInterfaces,

 IN DWORD dwInterfaceCount,

 IN LPCBYTE pbAtr,

 IN LPCBYTE pbAtrMask,

 IN DWORD cbAtrLen);

WINSCARDAPI LONG WINAPI

SCardSetCardTypeProviderName(

 IN SCARDCONTEXT hContext,

 IN LPCSTR szCardName,

 IN DWORD dwProviderId,

 IN LPCSTR szProvider);
The following call should be made by the Card Module for each supported card in response to DllUnregisterServer.

SCardForgetCardType(

 IN SCARDCONTEXT hContext,

 IN LPCSTR szCardName);

5.4.2 Card Module Lookup
When the CSP is presented with a candidate card, the appropriate Card Module must be loaded to begin querying the card. The following API should be used to lookup the Card Module.
SCardGetCardTypeProviderNameA(

 IN SCARDCONTEXT hContext,

 IN LPCSTR szCardName,

 IN DWORD dwProviderId,

 OUT LPSTR szProvider,

 IN OUT LPDWORD pcchProvider);
5.5 Card Layout
For a typical Windows For Smart Card platform card, the following card file layout could be used.

Dispatch Table

\DT
File
Security

\S

Directory
ACL’s

\S\A

File

Known Principals

\S\K

File

Card ATR

\T0

File
CSP Data

\C

Directory
All card data specific to the CSP should be kept under this subdirectory, if possible.

User Certificates

\C\U

Directory

\C\U\<Guid>

File

The Guid used as the filename for each user certificate should be the MD5 hash of the certificate data.

Root Certificates

\C\R

Directory

\C\R\<Guid>

File

The Guid used as the filename for each root certificate should be the MD5 hash of the certificate data.

Private Keys

\C\S0, \C\S1, etc.

File

The mnemonic is S0 for the first Signature private key. A given container should be associated with private and public key files that share the same filename increment. For example, a container with a signature and a key-exchange key pair could be associated with increment “3,” implying that the associated files would be S3, K3, PS3, and PK3.

\C\K0, \C\K1, etc.

File

The mnemonic is K0 for the first Key Exchange private key.

Public Keys

\C\PS0, \C\PS1, etc.

File

The mnemonic is PS0 for the first Public Signature key.

\C\PK0, \C\PK1, etc.

File

The mnemonic is PK0 for the first Public Key Exchange key.

Card Serial Number

\C\ID

File

CSP Certificate-Container Map File

\C\Map

File

This file should provide the following associations.

1. A single certificate with a single container. This is the association level required for Capi in Windows 2000 and XP.

2. Multiple certificates with a single container. This is the association level required for Longhorn. This implies additional Capi functionality to make this data available to applications (such as provider parameter that would return a “bag” of zero or more certificates associated with a given container name). Compatibility must be preserved with the first level, above.
Cache File

\C\CF

File

Card Module Container Name Directory

\C\Dir
File

This file is required by the Card Module to associate container names (Guid’s) used by Capi with a Public/Private key file on the card.
6 Appendix A – Scenarios
6.1 Smart Card Logon

6.1.1 CSP Trace
· This CSP trace is from a Windows Whistler machine, build 2441.

· Gemplus GemSAFE card logging onto the NTDEV domain.

· Process ID 0xf4 is winlogon.exe.

The full trace can be found in logon.txt.

6.1.2 Crypto API Behavior

Begin Logon process:

CryptAcquireContext CRYPT_MACHINE_KEYSET, CRYPT_SILENT – Implies that no caching should be used, and that no UI should be displayed.

(CardReadFile (General_Data_File) – read the Guid of the default container.

CryptGetUserKey AT_KEYEXCHANGE

(CardGetContainerInfo (Guid) – verify that the container indicated by Guid holds a key-exchange key.

CryptGetKeyParam KP_CERTIFICATE

(CardReadFile (“UserCert/Guid”)

CryptGetProvParam PP_CONTAINER

CryptGetProvParam PP_NAME

CryptAcquireContext CRYPT_MACHINE_KEYSET, CRYPT_SILENT

(use the cached data, since this container has already been opened

CryptGetProvParam PP_ENUMALGS

(CardEnumKeySizes

CryptSetProvParam PP_KEYEXCHANGE_PIN

(CardSubmitPin

CryptCreateHash CALG_MD5

CryptHashData

CryptSignHash AT_KEYEXCHANGE

(CardRsaDecrypt (Guid, Data)

CryptGetHashParam HP_HASHVAL

…

CryptSetHashParam HP_HASHVAL

…

CryptImportKey SIMPLEBLOB (CALG_RC2)

CryptSetKeyParam KP_EFFECTIVE_KEYLEN

CryptSetKeyParam KP_IV

CryptDecrypt (CALG_RC2)

CryptGenRandom

CryptCreateHash CALG_SHA1

…

Begin Cert Propagation process: (?)

CryptAcquireContext CRYPT_SILENT

(use cached data

CryptGetProvParam PP_CONTAINER

CryptGetUserKey AT_KEYEXCHANGE

(use cached data

CryptGetKeyParam KP_CERTIFICATE

(use cached data

CryptGetUserKey AT_SIGNATURE

(This call fails, based on cached data in the CSP. We already know what type of key is in this container, and it’s not Signature.

CryptDestroyKey

CryptDestroyHash

CryptReleaseContext

6.2 Certificate Enrollment

6.2.1 CSP Trace
· This CSP trace is from a Windows Whistler client, build 2441

· Infineon SICRYPT CSP was used

· Scenario is web enrollment to a stand-alone CA for a 1024 bit Code Signing certificate with key usage set to “Both.” Did not select “use existing” container.

· Process ID 0x6c4 is iexplore.exe

The full trace can be found in enroll.txt.

6.2.2 Crypto API Behavior

CryptAcquireContext CRYPT_VERIFYCONTEXT

(Implies that no access to keys is required and that no UI should be displayed.

CryptGetProvParam PP_KEYSPEC

(Supported public key types should be per-CSP data, and not per-Card data.

CryptAcquireContext CRYPT_VERIFYCONTEXT

CryptGetProvParam PP_ENUMALGS_EX

(CardEnumKeySizes – The Verify-Context semantics should allow access to public card data.

CryptAcquireContext CRYPT_NEWKEYSET

(CardQueryFreeSpace

(The NEWKEYSET call will also cause the CSP to generate a new Guid-name for this container

CryptGetProvParam PP_NAME

CryptGetProvParam PP_UNIQUE_CONTAINER

(The CSP will return the Guid created above.

CryptGetProvParam PP_PROVTYPE

CryptGetUserKey AT_KEYEXCHANGE – call fails

CryptGenKey AT_KEYEXCHANGE

(CardCreateContainer (Guid, KeyGen, Key-Exchange)

(CardWriteFile (General_Data_File) – write the Guid of the new container as the default.

CryptGetUserKey AT_KEYEXCHANGE

(Succeed using cached data. We know from the previous CryptGenKey that this container holds a Key Exchange key.

CryptExportKey PUBLICKEYBLOB

…

CryptCreateHash CALG_SHA

CryptHashData

CryptSignHash AT_KEYEXCHANGE

(CardRsaDecrypt (Guid, Data)

…

CryptAcquireContext

(CardReadFile (General_Data_File) – read the Guid of the default container.

CryptGetProvParam PP_NAME

CryptGetProvParam PP_UNIQUE_CONTAINER

CryptGetProvParam PP_PROVTYPE

CryptGetUserKey AT_KEYEXCHANGE

(Succeed, using cached data. We already know that the container referenced by this Guid contains a Key-Exchange key.

CryptSetKeyParam KP_CERTIFICATE

(CardWriteFile (UserCert, Guid)

CryptDestroyKey

CryptReleaseContext

6.3 Code Signing

6.3.1 CSP Trace
· This CSP trace is from a Windows Whistler client, build 2441

· Infineon SICRYPT CSP was used

· Scenario is running the signcode.exe wizard and choosing a Code Signing certificate.

The full trace can be found in signdata.txt.

6.3.2 Crypto API Behavior

CryptAcquireContext CRYPT_VERIFYCONTEXT

CryptAcquireContext

CryptGetProvParam PP_ENUMCONTAINERS

CryptGetUserKey AT_KEYEXCHANGE, AT_SIGNATURE

CryptExportKey PUBLICKEYBLOB

CryptCreateHash CALG_SHA1

CryptHashData

CryptGetHashParam HP_HASHVAL

CryptDestroyHash

CryptReleaseContext
CryptAcquireContext

FindCard

FindCachedCard

SCardUIDlgSelectCard

Found Cached Card?

No

Done

Is Cached Card Handle Valid?

Pass along Serial # of matching card.

No

Containers

Data Files

Pins

CSP State

Card State

Card Data

Example Items:

- A list of Card State objects, each representing a card that the CSP has encountered during the lifetime of this process.

Example Items:

- All cached data for this card.

- Each Card State object identified by card serial number.

- Contains a Card Data object.

Example Items:

- All data added by the Card Specific layer.

- The SCARDHANDLE object for this card.

Microsoft Confidential
Microsoft Confidential. © 2001 Microsoft Corporation. All rights reserved. This document is confidential to and maintained as a trade secret by Microsoft Corporation. Information in this document is restricted to Microsoft authorized recipients only. Any use, distribution or public discussion of, and any feedback to, the material in this specification is subject to the terms of the attached license. By providing any feedback on this specification to Microsoft, you agree to the terms of that license. If the license agreement has been removed, review the terms at http://www.microsoft.com/licensing/specs/agrmt01.asp before using the specification.

