ReadMe for SCE Provider Code Base

1ReadMe for SCE Provider Code Base

11. What is WMI - Windows Management Instrumentation?

22. SCE Provider.

43. SCE Provider Architecture.

84. ATL.

84.1 The use of various maps (not the fast lookup map!).

84.2 Create an Externally Creatable Object

94.3 Create a Scriptable Object

94.4. The use of various smart pointers.

114.5 The use of multiple inheritances.

114.6 Common COM coding conventions.

135. Coding Style.

156. What Is Expected from You Should You Need to Change the Code?

The WMI provider for SCE has all its code reside under:

\nt\ds\security\services\scerpc\escprov

Original Spec:

\nt\ds\security\services\scerpc\escprov\scts_design.doc
Modifications to the original spec that have not been finalized:

\\shawnwudev\SCEProviderDocs
This document gives you some useful information about the source, its design architecture, it coding conventions, its use of libraries, so that if you are new to this code, it will give you some very quick inside knowledge to understand and hopefully find and fix problems, enhancing existing functionality, etc.
1. What is WMI - Windows Management Instrumentation?

WMI is Microsoft’s implantation for WBEM (Web Based Enterprise Management) initiative on the Microsoft Windows platform. If you are totally new to this technologies, I encourage you to visit http://wmig web site for information.

Basically, WMI provides access to various components of a system through a consistent programming interface that is: object-oriented, remote-able, scriptable, query-able, and extensible. WMI provides such a platform for extension as well as some implementation of basic system level objects.
For components that WMI has no knowledge about, or for those that are better left for the component authors/vendors to deliver such knowledge and access, WMI has an architecture that allows various vendors to develop their own COM servers that integrate seamlessly into the WMI big picture to provide access to their own WMI classes. Such COM servers are called WMI providers.

A WMI provider knows several things:

(1) What WMI classes/events it supports. When WMI receives request for objects, if such objects is provided by a registered provider, then WMI forward such requests to the appropriate provider. The provider is responsible for object persistence (if they are persistable), object lookup (querying support), etc.

(2) How these classes are supposed to be used.

WMI providers publish this knowledge via a MOF file, which is registered with WMI by compiling the MOF files – use mofcomp.exe provided by WMI SDK.

Each provider has an identity with WMI. This identify is encapsulated by the notation called namespace for programmatic access. The registration identify is done just as any other COM server via the use of dll registration.

WMI’s underlying programming model is COM. If you are not familiar with COM, don’t worry. What I have done for the project pretty much hides all COM specific programming chores. In the next sections, I will try to list all those things about COM that you will come across throughout the code so that you know how to maintain it.
2. SCE Provider.

SCE stands for Security Configuration Engine. We want SCE functionality to be exposed through WMI for the precise reasons of WMI’s built support of remote access, scripting, extensibility, and consistency.

Therefore, SCE Provider is a COM server. It registers with WMI using its MOF file called sceprov.mof. Fortunately, you don’t need to be an expert in COM in order to be a productive contributor to this code base. Most of the COM specifics have been nicely shielded from you. For example,

(1) You don’t need to know how we manage to produce a externally creatable COM class via class factory;

(2) You don’t need to know how to implement IUnknown - which is actually not a trivial task.
(3) You don’t need to know how to prevent our COM class being aggregated.

(4) You don’t need to know how to write a complicated dll registration function to do self-registering (and un-registering) dll.

(5) You don’t need to know how to make our reference counting (all COM objects have that) robust enough for multi-threaded access.

(6) Unless you need to add another COM interface and some additional COM objects or change the existing ones, you don’t need to know how IDL files are compiled, how our type library is created, etc.

All these COM programming burden has been taken care of by using ATL. And better yet, you don’t need to be an expert on ATL either. The following section about ATL is perhaps (hopefully) all you need to know about ATL to be an effective programmer in this code.
The SCE provider has two major goals:

(1) Expose the SCE components and capability via WMI.

Allow other providers to participate in the SCE actions. This is what we call it the extension model, which allows SCE to work with other providers for the common goal: to secure the system.

3. SCE Provider Architecture.

[image: image1]
3.1 CSceWmiProv

This is what makes our project a WMI provider. This class implements two COM interfaces that make it a WMI provider: IWbemServices and IWbemProviderInit. The current design is to delegate all WMI incoming calls to CRequestObject. This class itself only does a few things beyond passing the calls to CRequestObject:

1. Does an impersonation check for each call.

2. Indicating to WMI the status of the method call at the end of each call.

3. To make ourselves a good COM citizen with regard to exception handling, it does a try-catch for each incoming call so that we will always intercept any potential exception (while executing our code) and translate it to a WBEM_E_CRITICAL_ERROR return value.
There is not really much going on inside this class at all.

3.2 CRequestObject

This is the only class that CSceWmiProv knows how to use. CRequestObject does two things:

1. It knows which C++ class to create to fulfill the call from CSceWmiProv. That work is done by the CreateClass function. This function is rather simple: it uses the WMI class name to create a C++ class instance. Please note: all WMI calls to CSceWmiProv will one way or another contains information about the class name. We use our ISceKeyChain interface to capture the knowledge we gained from the WMI calls about the key properties and class name of the calls. There are helper functions inside CRequestObject to create the key chain.
2. It knows our common interface encapsulated by CGenericClass and knows how to translate the CSceWmiProv’s call into a call to the newly created C++ by using CGenericClass’s public interface.

So, all calls from CSceWmiProv are handled pretty much in the following manner:

a. Create the ISceKeyChain from the incoming information from the call.

b. CreateClass. This created a heap object.

c. Call the CGenericClass method against the newly created class.

d. Delete the heap object.

There are several pros and cons with this approach.

The biggest pros is that this way all the CGenericClass’s subclasses don’t need to worry about threading safety as long as it doesn’t use global variables. It’s all heap objects and they only live for a short while as it is making a function call.

The biggest cons is that this is not efficient.
3.3 CGenericClass
This is the bridge between CRequestObject and the C++ classes that implement the functionalities for various WMI classes. Every C++ class inside the project that implements a WMI class needs to be a sub-class of this pure abstract class.
CGenericClass has an extremely simple public interface. It has two pure virtual functions: PutInst and CreateObject. It has two optional virtual functions: ExecMethod and CleanUp.

PutInst. This is the method that fulfills the provider’s PutInstanceAsync call. Basically, when WMI has an object for us, it will hand over the instance to us by calling PutInstanceAsync. When this method is intercepted by CRequestObject, it simply creates the appropriate C++ object (which is a CGenericClass) and call PutInst against the object.

Please note: all SCE’s classes are persistence oriented. Instead of going to set some system settings based on the object, we really just save the instance information into a store. As a result of this design, all our SCE Core classes has a property called SceStorePath, which is the file name of the store.

CreateObject. This function has multiple (and totally different) meanings governed by the ACTIONTYPE parameter. This may be very confusing. So, pay attention to this.
First, this function may be called to create an instance of the requested WMI class. This is the straightforward meaning of the name. This is true when the ACTIONTYPE parameter is equal to ACTIONTYPE_GET.

Secondly, when the ACTIONTYPE parameter is equal to ACTIONTYPE_DELETE, this function is being called to delete an instance of the requested WMI class.

Thirdly, when the ACTIONTYPE parameter is equal to ACTIONTYPE_QUERY, this function is being called to query all instance of the requested WMI class. Since the our instances are really store oriented, somehow the query must have the store name (its where clause must contain information about SceStorePath property).

3.4 SCE Core Objects

All C++ classes that implement Sce Core classes have one common characteristic: they don’t implement ExecMethod. This might be surprising to you. You may ask, so how do these object configure when our famous Configure method is called using a template (the store)?
The answer lies in our sce backend implementation. It takes the whole template (the entire store) to conduct a configuration operation. So, each C++ class (and their WMI counterpart) doesn’t do configure. They merely exist for persistence reasons.

In other words, when a “Configure” action is taken on a template, these C++ classes won’t even come to exist. They are never created because the sce backend engine takes the whole thing and do a configuration.

3.5 CSceOperation

This is the class that implements the ExecMethod. The class is representing the Sce_Operation WMI class, which has three static methods: Import, Export, and Configure.

If not for the extension model, this class will be very easy to implement, it just call the sce backend to do these work.

However, we have an extension model, meaning others can add their stuff into our store and we are responsible for invoking them to do appropriate work using the information stored in the template.
3.6 Extension Model

We currently have two models: Pod and Embedding. We are in the middle of deciding what will be our ultimate extension model. Chances are that both models will be abandoned. So, no specific document on this part yet until we finalize our design.
4. ATL.
The SCE Provider is a COM server. To develop COM server, it makes most sense to use ATL to ease the common coding chores.

There is a very good introductory book that explains a lot of ATL stuff that you probably won’t try to memorize: “Beginning ATL COM Programming” by Grimes and Stockton.
4.1 The use of various maps (not the fast lookup map!).

Maps in this context means those macros prewritten by ATL to simplify the repetitive coding. For example, when your C++ wants to implement a new interface, you will need to do many things and they are all the same. To aid this, ATL has a COM map which looks like this:

BEGIN_COM_MAP

COM_INTERFACE_ENTRY(IWbemProviderInit)

COM_INTERFACE_ENTRY(IWbemServices)

END_COM_MAP

Using this map, when your class wants to implement and expose a new interface called IFoo, all you need to do is to add the following entry to the above map
COM_INTERFACE_ENTRY(IFoo) to make the map look like this:

BEGIN_COM_MAP

COM_INTERFACE_ENTRY(IWbemProviderInit)

COM_INTERFACE_ENTRY(IWbemServices)

COM_INTERFACE_ENTRY(IFoo)

END_COM_MAP

(I have to admit that your class needs to publicly inherit from IFoo, of course, and you have to implement those function of IFoo).

If your class inherit from another C++ class that inherit multiple interfaces that you want to expose them all, then you can use the COM_INTERFACE_ENTRY_CHAIN(CYourBaseClass) entry to do that.
What if you want to your dll to supply a COM class for external creation via (CoCreateInstance/CoCreateInstanceEx)? ATL has another map called object map:

BEGIN_OBJECT_MAP(ObjectMap)

 OBJECT_ENTRY(CLSID_YourClass, CYourClass)

END_OBJECT_MAP()

Where CLSID_YourClass is the class id (guid) and CYourClass is your C++ class that implements that class.

4.2 Create an Externally Creatable Object

As the previous section already mentioned, the COM object map BEGIN_OBJECT_MAP/END_OBJECT_MAP is exactly for this purpose. The only extra thing you need to do is that your C++ class (in the above example, we call it CYourClass) must inherit from CComCoClass. Also, your C++ should have interface map and a couple of macros like this:

BEGIN_COM_MAP(CYourClass)

 COM_INTERFACE_ENTRY(IDispatch)

 COM_INTERFACE_ENTRY(IYourInterface)

 COM_INTERFACE_ENTRY(ISupportErrorInfo)

END_COM_MAP()

// if you don’t want your object to be aggregatable, then add this macro

DECLARE_NOT_AGGREGATABLE(CYourClass)

// you have to have a reg resource macro

DECLARE_REGISTRY_RESOURCEID(IDR_ IYourInterface)

Once you have done that, everything happens automatically. You never need to worry about class factory stuff any more.

4.3 Create a Scriptable Object

First, you need to design a dual interfaced as something like this in your idl file with necessary portion of information in bold:
[

 object,

 uuid(the guid goes here),

 helpstring("Your interface description"),

 dual,

 pointer_default(unique)
// your choise, usually its unique
]

interface IYourInterface : IDispatch
{

 [propget, id(1)] HRESULT PropA([out, retval] int * piLower);

 [propput, id(1)] HRESULT PropA([in] int iLower);

 [propget, id(2)] HRESULT PropB([out, retval] int * piUpper);

 [propput, id(2)] HRESULT PropB([in] int iUpper);

 …

};

Secondly, add an object entry to the object map as I mentioned in the 4.2 section.
Thirdly, your C++ class that implements this interface must also inherit from CComCoClass and IDispatchImpl.
Finally, we need to register the ProgID of all the scriptable objects inside the dll. The following is an example of .rgs portion that registers your ProgID “YourLib.YourObj”, where I assume that your version is 1:
HKCR

{

YourLib.YourObj.1 = s 'Your description'

{

CLSID = s '{guid}'

}

YourLib.YourObj = s 'Your description'

{

CLSID = s '{guid }'

CurVer = s YourLib.YourObj.1'

}

NoRemove CLSID

{

ForceRemove {guid} = s 'Your description'

{

ProgID = s 'YourLib.YourObj.1'

VersionIndependentProgID = s 'YourLib.YourObj'

ForceRemove 'Programmable'

InprocServer32 = s '%MODULE%'

{

val ThreadingModel = s 'Both'

}

'TypeLib' = s '{typelib guid}'

}

}

}
Note: a ProgID is the way script engines lookup COM objects. It always comes in two parts separated by period ‘.’. Even though we name each part whatever way you wish, it’s conventional to use your type library’s name as the first part and your object as the second. Even with this, you will have ProgID collisions. Keep this in your mind and name your ProgID carefully. Also, if you have multiple scriptable objects exposed from the same dll, you need to have multiple ProgID’s.
4.4. The use of various smart pointers.

One of the most difficult error-prone task in COM programming is to remember to AddRef and Release appropriately. ATL has a smart pointer class called CComPtr (another one CComQIPtr is not actively used inside this project) for interface pointers. It does the following things:
1.
When a value is assigned to this smart pointer, the old interface pointer, if there is one assigned, will be released and the new one will be assigned to the smart pointer and AddRef is called automatically.
2.
Of course, as any smart pointer will do, there are enough overloaded operators for you to use it just as if it were a plain pointer of the appropriate type.
3.
When the smart pointer is going out of scope, and if it does have a valid non-null pointer, it will call the Release function.

In other words, CComPtr seems to be doing all the things that you hate to do. You no longer need to worry about leaking a reference count when you code hit an unhandled exception. You see extensive use of smart pointers.

But smart pointer comes with its problems and that is what I really want to warn you. For convenience, I will call a CComPtr with a non-null pointer assigned to its internal pointer non-empty.
1.
Don’t pass the address a non-empty smart pointer to any function that returns an interface pointer. For example, the following code is leaking a reference count:

CComPtr<IFoo> srpFoo = pFoo; // suppose pFoo is an in parameter

//...use srpFoo, but then this srpFoo is not good anymore,
// you need another foo

hr = GetParentFoo(&srpFoo); // error: you leaked a ref count

So, the correct way of doing it is to add the following line of code before the call of GetParentFoo:

srpFoo.Release();

Wait a minute, you must say, “hey, this should be srpFoo->Release();” Actually, you should use my version of “srpFoo.Release();”.

I personally consider this one of the worst ATL naming problems. CComPtr has a member function called Release. The difference between:

srpFoo->Release();

and

srpFoo.Release();

are that (a) srpFoo.Release() is always safe to call while srpFoo->Release() is not when its wrapped pointer is null; (b) srpFoo.Release will release the pointer plus set the internal wrapped pointer to NULL while srpFoo->Release() only releases the pointer. This may be significant because many ATL functions will assert upon receiving a non-null initial values for an [out] only parameter.
2 If you need to pass the reference count to some other pointer, then call CComPtr<…>.Detach(). For example:

HRESULT GetParentFoo (IFoo ** ppFoo)

{

// somehow we get a IFoo and it is wrapped
// inside non-empty smart pointer srpFoo

*ppFoo = srpFoo.Detach();

return S_OK;

}

If you just do the following, you are going to crash:

HRESULT GetParentFoo (IFoo ** ppFoo)

{

// somehow we get a IFoo and it is wrapped inside

// non-empty smart pointer srpFoo

*ppFoo = srpFoo;

// error! If you do this, you need to
// add (*ppFoo)->AddRef();

return S_OK;

}

3. Watch out inside a loop for smart pointer. You may need to detach,
There are several other smart pointer that are used extensively: CComBSTR, CComVariant. They pretty much follow the same pattern as CComPtr other than that these two are not template classes. Just one more warning about these two smart pointers:

4.
For CComBSTR, call its empty() function before passing it as an [out] only bstr pointer parameter. For CComVariant, call clear() before passing it as an [out] only variant pointer parameter.

You will see many places inside the code that has calls like these. Pay attention to them and you will get used to it in no time.

Another class we used extensively is CComObject. This is actually the most derived class for any ATL COM object. Your class (that uses ATL’s IUnknown implementations like CComObjectRootEx) is just a template parameter of this class. As a result, you never directly create an instance your own class, instead, you create the instance by calling CComObject<CYourClass>::CreateInstance(…); See our use of that code for samples.
4.5 The use of multiple inheritances.

Multiple inheritance is life when you develop COM projects using ATL. Fortunately, you probably will never need to resolve ambiguities inside this project unless you are the one that designed multiple classes that and chain them together. This should be a non-issue.
4.6 Common COM coding conventions.

There is a good book titled “Effective COM: 50 Ways to Improve Your COM and MTS-based Applications”. I will list the most common ones that I am keenly aware of:

1. Do not throw inside a interface function. This is because you we don’t assume who are calling us. Throwing exceptions is a C++ feature that is not available to many other languages.
2. Always, always initialize an [out] only parameter to something valid (may be NULL, but NULL is not garbage value). Don’t assume that the user will release your resource or reference after they see a failure code.

3. If you need to pass an array, your pointer should have [size_is] decorator together with a parameter indicating the size of the array.
4. Don’t use an object unless you know that you are holding a reference count of that.

5. Don’t try your smart ways of creating BSTRs. Use SysAllocString/SysFreeString/SysAllocStringLen instead.

6. Use idl file to define your interface. Also, decorate your parameters correctly.

7. If you can, avoid passing IUnknown pointers. Use their strongly typed version. Or passing along the guid and decorate the IUnknown using [iid_is].
8. Avoid, if you can, using success code other than S_OK (same as WBEM_NO_ERROR, same as WBEM_S_NO_ERROR). The reason is that most code simply test for success using SUCCEEDED(hr) and will assume everything is fine. If your S_FALSE actually means “can’t give you anything”, you are likely to crash your caller. But unfortunately, there are already many such uses, so, always document your function clearly to indicate such usage.

9. If you can, avoid [in, out] parameter.

10. In only parameters have no valid values. This is particularly important with respect to the use of variant. The following code is correct:

VARIANT var;

GetVar(&var);

for the function
 void GetVar (VARIANT * pVar).

So, the following implementation is wrong:

void GetVar(VARIANT * pVar)

{

if (pVar !=NULL)

{
 // error! You should call ::VariantInit(pVar);
 ::VariantClear(pVar);

 …

}

11. Don’t return (in C language sense) a ref-counted interface pointer or object pointer. In other words, don’t do this:

IFoo* GetFoo ()

{

IFoo* pReturnFoo = m_pMyInternalFoo;

pReturnFoo->AddRef();

return pReturnFoo;

}

Such functions are evils for leaking ref count. If you have to return a pointer, it must be for internal (helper) use and you don’t want to AddRef. Think about it, with the above function implementation, all the following innocent code leaks ref count:

GetFoo() -> UseFoo();

HereIsFoo(GetFoo());

If you need to give external classes the pointer, use [out] parameters for that purpose. Then COM rule clearly says that the passed out parameter is ref counted and the caller knows that.

12. Don’t ever delete (in C++ sense) an interface pointer or a COM object. For example, the following code is totally wrong

// suppose somehow we need Foo’s parent

IFooParent * pFP = NULL;

IFoo* pIFoo = new CFoo; // CFoo implements IFoo

if (pIFoo != NULL)

{

hr = pIFoo->GetFooParent(&pFP);

if (FAILED(hr))
{

delete pIFoo;

}

}

5. Coding Style.
Before I start, I want to make it clear: I want you to maintain the comment to reflect the updated code.

A lot of effort has been put into standardizing this code. As a matter of fact, about two weeks of time is devoted into standardizing the code and comment the code to follow one single style. So, if you need to modify any code, please follow the exact same commenting style, spacing, indentation. This might sound too restrictive, but it makes a lot of people happy.
Because of that, I want you to maintain the style as it is and if you find major areas to improve the style or commenting, please document it and if you want to make a change of style, including commenting style, you are expected to change all of them.

Some examples:

1. Each class must have a class description comment. Each class should have a section describing its usage. What sequence the user should do to use it, etc.
2. Each function must have a function definition comment.

3. Each parameter must have comment specifying what information it carries.
4. Each comment block is preceded by a blank line following by a double-slash blank line before any comment text is inserted. The ending of a commenting block is exactly the same as the beginning of the comment block.

5. Specify return values. Make the return value set as small as possible. If your function can return 10 different codes, it’s hard to use it.

6. If you have doubts about something and yet you have to move on, please use a clear mark for discovering all such places. You must document this mark. Currently, I am using $undone, $consider. $undone should be resolved before checking in the code.

7. Please choose good names. I’d rather have a long name other than a decrypted short name. Use camel casing, like DoWhateverYouWantWithFoo.
8. Class data members are always prefixed by m_, or s_ (for static members). Classes always start with the capital letter C.

9. Indent your code properly. I prefer the following style of indentation:

if (…)

{

while (…)

{

…

}

…

}

10. Avoid using generic names. For example, I like such function names as

ProcessBuffer.

11. As a general rule, while you are always expected to write efficient code, don’t try too much to hand optimize your code. If the performance is not good, usually, either your data structure has problems, your design has issues, or your algorithm is not optimal.

12. If something is a constant (function, variable, parameter), declare them as such. This is especially true with respect to LPWSTR and LPCWSTR. If it’s an IN only parameter, it should be LPCWSTR. We have seen many API parameters not properly declared that cause us to cast.

13. Don’t write duplicate code. If you find two pieces of code almost (or exactly) the same, then try to do a better design to re-use it. Use template classes are functions if you have to. Break your functions into smaller pieces to assemble the large function. Bring the common functionality into the base class.

14. Don’t write big classes. 15 – 20 public members is a good threshold for breaking apart classes.

15. Make them private/protected.

16. Use classes instead of struct’s. Even a class with all its data members public is better than a struct – at least you can do construction and destruction correctly.

17. Avoid optional parameters as much as you can. The combination of possible set of parameters is just too big for good documentation and clean code.

15. Avoid, if you can, using default values for parameters.
16. Think about object-oriented. Ask yourself if something belongs there or not.
6. What Is Expected from You Should You Need to Change the Code?
Most of all (other than correct code), I want you to put efforts into designing a good approach to solve the problem.
Secondly, don’t duplicate code. Usually, a smarter design can eliminate duplicate code.

Thirdly, I want you to maintain the comment to reflect the updated code.
Last, don’t check in temporary code that only works for good inputs.
Extension Model

CRequestObject

CSceWmiProv

WMI

CAuditSettings

CPasswordPolicy

…

CEventLogSettings

CGenericClass

CPodData

CEmbedForeignObj

SCE Core Objects

CSceOperation

CSceStore

