Windows Whistler & Beyond

Security
Security Configuration Tool Set Features

Jin Huang
Version 0.3

2/25/2000
Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 2000. All Rights Reserved

Microsoft Confidential

Printed on 2/25/00 at 11:30 AM
Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

Table of Contents

61
Remove Local Policy

61.1
Implementation Design

71.1.1
Database/Structure Changes

71.1.2
New Interfaces

71.1.3
Interface Changes (for Local Security Settings to call):

81.1.4
Setup/dcpromo changes (setupcln.cpp)

91.1.5
Policy propagation changes:

91.1.6
Eliminate policy filter on wks/srv

91.2
Notes for UI

112
Add/Remove/Set List Items

112.1
Implementation Design

112.1.1
INF/JET Layout

112.1.2
Database Changes

122.1.3
Structure Changes

132.1.4
Interface Changes

142.1.5
Remove memberof

142.1.6
Policy Impact

152.2
Notes for UI

152.2.1
Remove memberof

152.2.2
Support members in append mode

163
Extend Feature Support – Web Server

163.1
Extended Registry Key Support

163.1.1
Registry Value Types

163.1.2
Registry Key Creation

173.2
Attachment Framework Fine-Tune

173.2.1
Area Redefinition

173.2.2
Attachment Engine

173.2.3
Attachment UI

173.3
Support C2 Capabilities

183.3.1
INF layout change

183.3.2
New Structures

183.3.3
Interface Changes

183.4
Other

194
WMI Integration

194.1
SCTS-WMI Architecture

194.1.1
SCTS in Windows 2000

194.1.2
SCTS In Whistler & Beyond

204.1.3
General Architecture

224.2
Integrated Attachment Architecture

234.2.1
Base Classes

234.2.2
Attachment Providers

234.3
SCTS Scenarios Walkthrough

234.3.1
View INF template

244.3.2
Create new INF templates

254.3.3
Modify existing templates

264.3.4
Export generalized templates

264.3.5
View database information

264.3.6
Import configuration into database (create a new database)

274.3.7
Export database configuration into template(s)

274.3.8
Configure system w/ a database

274.3.9
Analyze system w/ a database

284.3.10
Log file view

294.3.11
Database-less configuration

294.3.12
Modify database configuration

294.3.13
Database-less analysis

294.3.14
Manage system settings, per class configuration

304.3.15
Group policy scriptbility

304.3.16
Attachment RSOP

304.3.17
Complex queries

314.4
SCTS Schema Classes

314.4.1
SCTS_Template

324.4.2
SCTS_DatabaseConfiguration

334.4.3
SCTS_AnalysisDatabase

334.4.4
SCTS_AttachmentBase

344.4.5
SCTS_Log

354.4.6
SCTS_PasswordSettings

354.4.7
SCTS_AccountLockoutSettings

364.4.8
SCTS_KerberosTicketSettings

364.4.9
SCTS_AuditSettings

374.4.10
SCTS_EventLogSettings

384.4.11
SCTS_RegistryValues

384.4.12
SCTS_Privileges

394.4.13
SCTS_GroupMembers

404.4.14
SCTS_ObjectACLs

404.4.15
SCTS_Services

404.4.16
Other Helpers

414.5
Policy Diagnosis & Planning – RSOP Extension

414.5.1
Schema (RSOP Classes)

434.5.2
Log RSOP data for Diagnosis Mode

454.5.3
Log RSOP data for Planning Mode

465
Environment Variable Support

465.1
Implementation Design

465.1.1
Database Changes

475.1.2
Import Templates

485.1.3
Export Templates

485.2
Notes for UI

496
Object Names in Wildcard

496.1
Implementation Design

496.1.1
Building the object tree

506.1.2
Analysis Result and View

506.1.3
Editing

506.1.4
Database changes

516.1.5
Structure Changes

516.1.6
Interface Changes

526.2
Notes for UI

526.2.1
Partial Tree View for objects

526.2.2
Flat Analysis View for objects

537
Support SMB Security – File Server

537.1
Implementation Design

537.1.1
Remove SMB Extension

537.1.2
New Structures

547.1.3
Database Changes

557.1.4
Area Redefinition

557.1.5
New Functions

577.1.6
Interface Changes

577.2
Notes for UI

577.2.1
Scope Pane Changes

577.2.2
Result Pane Changes

588
Support Print Security – Print Server

588.1
Implementation Design

588.1.1
New Structures

598.1.2
Database Changes

598.1.3
New Functions

618.1.4
Interface Changes

618.2
Notes for UI

618.2.1
Scope Pane Changes

618.2.2
Result Pane Changes

629
Support IIS Security – Web Server

629.1
Implementation Design – IIS Extension Engine:

639.1.1
Types

639.1.2
INF/JET layout

649.1.3
Structures

669.1.4
Interfaces

669.2
Notes for IIS Extension UI:

6810
Support TCP/IP Security – Web Server

6911
Snapshot System Security

6911.1
Implementation Options

6911.2
Phase I

6911.2.1
Database Change

7011.2.2
New Interfaces

7011.2.3
Interface Changes

7011.2.4
Command Tool “secedit.exe” Changes

7011.3
Phase II

7011.3.1
Machine Independent

7011.3.2
Object Groups (Wildcard)

7111.3.3
Implementation of the Export Function

7211.3.4
A new “Export” option for secedit.exe

7312
Remote Management

7312.1
Implementation Design

7312.1.1
Remote Validation

7312.1.2
Interface Changes

7412.2
Notes for UI

7513
Service Pack/Hotfix Analysis

7513.1
Implementation Options

7513.2
Implementation Changes

7513.3
Notes for UI (Option 2 only):

7614
Database-less Operation

7614.1
Implementation Design

7614.1.1
Exported Interface Changes

7814.1.2
RPC Interface Changes

7814.1.3
SCE Server Logic Changes

7914.1.4
Database Changes

7914.2
Command Tool “secedit.exe”:

7914.3
Notes for UI

8015
Code Independent Upgrade Scenarios

8015.1
Implementation Design

8015.1.1
Progress ticker

8015.1.2
Marta support

8015.1.3
Security install template

8115.1.4
Re-engineering dcpromo

8115.1.5
Handle Domain Accounts in setup

8115.1.6
Backup system security

This spec outlines the design of new features planned for SCTS in Windows Whistler & Beyond. It focuses on the engine design and interfaces between engine and UI. UI design (the “look”) will be designed in a separate spec.

Windows Whistler & Beyond SCTS Features

Most of the new features require exported interface changes and structure changes so UI is affected. Most of the new features also require database format changes that expose backward compatibility issues and data migration issues. Security templates format change will affect policy pushdown from new server to old clients (new client w/ old server should be fine because new client recognize old templates). Remote management support will expose more issues with UI talking to engine. All of these issues must be considered during the feature design.

Template/database changes and data migration required for all of these features should be reviewed together so for future releases, we have few problems to face.

The features are listed in priority order in this spec.

1 Remove Local Policy

There are numerous issues with local security policy/management on Windows 2000. For example, local security settings do not take effect if the domain controller is not available; policy tattoos when it’s removed; local policy changes may get overwritten by group policy and that’s not obvious; and so on.

This task is to improve security policy management on a computer (local or remote). In summary, the proposed solution is to get rid of local security settings from the local security database (secedit.sdb) and UI talks to the local or remote system directly. In other words, security settings on a local/remote computer are not part of “group policy” anymore.

In summary, the proposed solution is 1) create a new tattoo table which contains default values for the settings that are/were defined in group policy objects; 2) empty local table in the local policy database at end of setup and it will stay empty thereafter; 3) Local Policy Editor/Security Settings work with actual system (via new argument); 3) Eliminate use of policy filters on wks/srv (non-DCs).

The reason to have a separate tattoo table than the local table is to handle setup upgrade case, where the default values for settings controlled by domain GPOs are still needed (after the upgrade). The local table in this case is the working configuration table.

One problem to solve (in the new solution) is how to handle tattoo information for settings that contain accounts (such as user rights, group membership). When a group policy setting is removed, the saved pre-policy setting is re-applied in policy propagation. What if this setting contains invalid accounts at the time of re-applying? For example, a user is defined, added a user right. A policy is defined for the user right so the previous setting is saved as the tattoo info. Then the user is deleted (note there is no policy filter running in this design so the user is still in the tattoo table). When the pre-policy setting is re-applied back to the system, an error will occur.

One way to fix the above problem is to validate all accounts in the tattoo table before re-applying to the system. The second way to fix is to have policy filter to catch the changes to these accounts.

Local security policy table in the security database is initialized in setup, managed by “Local Security Settings” UI, and used in policy propagation/filter/dcpromo. So to get rid of the local security policy table and fix the tattoo problem, setup/dcpromo, policy propagation, policy filter, and UI interfaces are all affected. Below is the detail tasks/changes.

1.1 System Settings

1.1.1 Database/Structure Changes

Define new flags SCE_ENGINE_SYSTEM and SCE_ENGINE_GPO in SCETYPE. The first type SCE_ENGINE_SYSTEM will be used when UI/client queries/sets information to the system directly and SCE_ENGINE_GPO is used to query domain GPO settings only. Note, the difference between SCE_ENGINE_GPO and SCE_ENGINE_SCP is that SCE_ENGINE_SCP is for all settings in the SCP table (or SMP table if SCP doesn’t exist) which may include local tattoo settings. SCE_ENGINE_GPO is for policy database only, for settings defined in domain GPOs if there is any.

1.1.2 New Interfaces

Both of the interface changes are RPC interfaces that are called by exported interfaces to support local security settings working on the actual system. For detail for the exported interface changes, see “Interface Changes” section.

SCEPR_STATUS

SceRpcGetSystemSecurityFromHandle(

 [in] SCEPR_CONTEXT Context,

// the local policy database handle

 [in] AREAPR Area,

// security policy and/or user rights area

 [in] DWORD Options,

// option for the task

 [out] SCEPR_PROFILE_INFO **ppInfoBuffer,
// output buffer

 [out] SCEPR_ERROR_LOG_INFO **Errlog
// error occurred if there is any

);

SceRpcGetSystemSettings(

Binding_h
hBinding,
// could be bound to local or remote

AREA_INFORMATION Area,
// security policy area or user rights area

DWORD Options, // any option for the task

SCE_PROFILE_INFO *ppInfo,
// output buffer for the settings

SCE_ERROR_LOG_INFO *pErrLog
// errors occurred if there is any

);

Both functions above are to query security settings from the actual system for password policy, account lockout policy, kerberos policy, audit policy, user rights, and security options. The interfaces are implemented by sharing some existing functions (slightly modified) as discussed in “Interfaces changes” section. The second interface (with binding handle) can be used when a user don’t have access to the local policy database (to get domain GPO settings), for example, a normal user.

SCEPR_STATUS

SceRpcSetSystemSecurityFromHandle(

 [in] SCEPR_CONTEXT Context,

 [in] AREAPR Area,

 [in] DWORD Options,

 [in] SCEPR_PROFILE_INFO *pInfoBuffer,

 [out] SCEPR_ERROR_LOG_INFO **Errlog

);

SCESTATUS

SceRpcSetSystemSettings(

Binding_h
hBinding,
// could be bound to local or remote

AREA_INFORMATION Area,
// security policy area or user rights area

DWORD Options, // any option for the task

SCE_PROFILE_INFO pInfo,
// output buffer for the settings

SCE_ERROR_LOG_INFO *pErrlog
// error during the operation if there is any

);

The routines above are to configure actual system setting, using the buffer passed in. The interfaces are implemented by sharing existing functions as discussed in “Interface changes” section. Again, the second interface is required by the normal user case where he doesn’t have access to the local policy database handle.

The assumption is that settings controlled by group policy (in effective policy table) shouldn’t be changed locally (via this routine). So if some of the settings are covered by domain wide group policy, the settings shouldn’t be changed in UI.

1.1.3 Interface Changes (for Local Security Settings to call):

Modify existing functions so that they can be shared in SceRpcGetSystemSettings/ SceRpcGetSystemSettingsFromHandle. The change is to allow analyzed settings saved in the SAP database as well as stored in the buffer if there is any.

ScepAnalyzeSystemAccess

ScepAnalyzeSystemAuditing

ScepAnalyzeKerberosPolicy

ScepAnalyzeRegistryValues

ScepAnalyzePrivileges

Modify existing functions so that they can be shared in SceRpcSetSystemSettings/ SceRpcSetSystemSettingsFromHandle. The change is to allow system settings configured based on the info buffer passed in.

ScepConfigurePrivileges

ScepConfigureSystemAccess

ScepConfigureSystemAuditing

ScepConfigureAuditEvent

ScepConfigureKerberosPolicy

ScepConfigureRegistryValues

Modify the above 11 Scep{Analyze|Configure}Xxx functions. For configuration, these functions will ask for write access and failure to configure one setting won’t fail the entire configuration; For analysis, these functions only ask for read access and failure to analyze one setting won’t fail the entire analysis. Settings that can’t be queried will be returned as “SCE_NO_VALUE”.

Changes to exported interface SceGetSecurityProfileInfo (called by UI):

When SCE_ENGINE_SYSTEM is passed in as ProfileType, SceRpcGetSystemSettings or SceRpcGetSystemSettingsFromHandle (depend on if there is a database handle) will be called instead of SceRpcGetDatabaseInfo. The settings will be output in the same type of structure. The areas supported under type SCE_ENGINE_SYSTEM are AREA_SYSTEM_ACCESS and AREA_PRIVILEGES.

When SCE_ENGINE_GPO is passed in as ProfileType, SceRpcGetDatabaseInfo is called. The information returned contains domain GPO settings only.

Changes to exported interface SceUpdateSecurityProfile (called by UI):

When SCE_UPDATE_SYSTEM is passed in as dwMode, SceRpcSetSystemSettings or SceRpcSetSystemSettingsFromHandle (depend on if there is a database handle) will be called instead of SceRpcUpdateDatabaseInfo. The actual system settings will be modified. Note the buffer passed in should only contain dirty settings that have been changed by users.

When “Local Security Settings” calls SceGetSecurityProfileInfo to get effective policy (SCE_ENGINE_SCP), the effective policy information will be returned. Please note that this information doesn’t contain any local settings. It contains only the policy settings from domain/OU/site. UI should use this information to display “domain policy” and to determine if change is allowed for a system setting.

1.2 Fix Policy Tattoo problem

1.2.1 Database/Structure Changes

Create the tattoo table and migrate the local “tattoo” default values in policy propagation if the table doesn’t exist (refer to policy propagation changes below). The default values in the tattoo table is copied from the local security settings table under the condition 1) the tattoo table doesn’t exist, 2) the setting is coming from a domain, 3) the setting exists in the local table.

1.2.2 Setup/dcpromo changes (setupcln.cpp)

For setup upgrade, remove the calls to snapshot system security settings (SceRpcAnalyzeSystem). The purpose of these calls ware to have local security table synchronize with the system actual settings so when SCTS UI (old local security settings UI) views/manages security settings, it shows the correct system settings. Because the new SCTS UI will work with the actual system settings directly (after this change), there is no need to make these calls in setup.

For both clean install and upgrade, the local policy table and effective table will be emptied at end of setup and policy propagation is always triggered. So by the end of setup, the local security database is mostly empty. If the tattoo table exists, scan through the settings in tattoo table to update the “default” values to the settings in local policy table (this is done before the local policy table is emptied).

In dcpromo, when building the default domain and domain controller policy templates, local security policy table shouldn’t be used. Instead, the actual system settings should be queried with the new interface SceRpcGetSystemSettings and the default GPOs should be built with info from the actual system settings and the default templates (dcfirst/dcup/defltdc).

At end of dcpromo, the local policy and effective policy will be emptied (a policy propagation will always occur because of the new domain information). So by the end of dcpromo, the local security database is empty, because a new product is installed.

??? If a server is joined to a domain and the domain has group policy propagated to this machine, should the settings from the other domain group policy be used as the default GPO settings for the new domain to be?

1.2.3 Policy propagation changes:

Since there is no local policy in the security database anymore, the effective policy table will only contain policies from the domain, plus settings to reset (from the tattoo table) due to domain policy deletion – this is to fix “tattooing” problem of group policies.

Create tattoo table if it doesn’t exist and update the database version # if the table is created.

Remove the code to copy local policy into effective policy table when the first group policy is imported.

Add code to handle tattoo settings after the last group policy template is imported into the effective policy table. In detail, this task contains the following:

Loop through effective policy table and search each setting in the tattoo table. If the setting doesn’t exist in the tattoo table, it is a new group policy setting. In this case, query the current system setting and save the setting in tattoo table. The security policy and user rights settings can be queried using SceRpcGetSystemSettings (see new interfaces section). Other areas such as group, service, file, key, and so on, must be queried individually. Security for objects (files/keys) should be saved as a single object with flag 0 (inherited) so that the security will be reset in inherited mode.

Loop through tattoo table for settings that do not exist in the effective table (this is equivalent to settings that have been deleted in group policy) and move these settings to effective table to reset them. Note, the settings must be moved, namely, copied to effective table then deleted from the tattoo table.

Remove extension registration for local group policy mode (in system32\grouppolicy\gpt.ini) because security settings don’t belong to group policy anymore and it should be only called when there is group policy from the domain.

1.2.4 Eliminate policy filter on wks/srv

Since local security policy is removed on wks/srv, there is no need to filter LSA/SAM/registry value changes so policy filter can be removed on wks/srv. Below are the changes to remove policy filter:

Return success in policy filter (client call) when it’s invoked on a wks/srv.

Do not run delayed registry value filter in policy propagation when it’s invoked on a wks/srv.

The Policy filter is still needed for DCs because the default domain controller GPO is the only way used to synchronize policies among DCs. So unregistering SAM filter in setup does not work well since a server could be promoted to DC.

1.3 Notes for UI

UI will do token check and if non-admin logs on, the settings will be displayed in read only mode.

UI must handle errors in configuration/analysis: configuration may fail (in some settings) due to access denied or other reason. In this case, UI has to query the actual system setting again to refresh its buffer.

Analysis may fail (in some settings) due to access denied or other reason. In this case, settings that fail will have “SCE_NO_VALUE” in the buffer

UI still displays “policy” column that is queried from the local security database. This information is not modifiable. The information also controls if the local system setting can be modified. One exception here is for user rights where if a user right is defined in add/remove mode, the system settings will contain more accounts than the one specified in the policy and the extra accounts should be allowed to be removed and other accounts should be allowed to be added. In other words, even though domain has a policy defined for the user right, it should still allow local users to add/remove accounts that are not defined in policy, for the user right.

UI should remove “PolicyChanged” call

UI should call SCTS engine to query the actual system setting w/ SCE_ENGINE_SYSTEM, rather than the local policy table w/ SCE_ENGINE_SMP.

UI should extend computer management to work on real system settings.

UI should hide nodes when extending local group policy editor. The Security Settings node is not removed from LPE is because this node has other extensions that reside in local policy mode.

When UI saves changes to the system, the buffer must contain dirty only items.

UI should also group modified settings together (such as all auditing policies) before committing to the system.

UI should “enforce” system settings that violate domain policy to be the same as policy. This should occur automatically, either when UI is initialized or when the node is expanded.

UI should not allow “import” and “export” functions because UI works on system settings rather than templates.

2 Add/Remove/Set List Items

In Windows 2000, restricted groups can be managed via SCTS in two ways – members and memberOf. The limitation of the design is 1) members are configured in replace/overwrite mode only, which means existing members that are not in SCTS are removed from the system; 2) even though memberOf is designed to be the “append” mode, the restricted group must exist on the local SAM and must be a group. Due to these limitations, there is no way to add a user or a domain group to a local group through policy/SCTS, without affecting existing membership.

In Windows 2000, user rights can either be “not defined” or completely defined. This is inconvenient and sometimes causing trouble for group policy because the complete settings for a user right on different machines are not same and can’t be same.

This feature is to enhance restricted group and user rights design to solve the above problems. The proposed solution is to support overwrite mode and append mode for group members and user rights and get rid of memberOf functionality.

Besides being able to support a list of users/groups in overwrite mode as well as append mode, the format of each user/group must support both SID and name (free text) and users should be allowed to choose the format for each user/group (via UI).

2.1 Implementation Design

2.1.1 INF/JET Layout

User rights are stored in section [Privilege Rights]. Each line in the section represents a user right. If a user right doesn’t exist in the section, it’s not defined. If a user right setting exists and contains “Add” or “Remove” keywords, it’s defined in append mode; otherwise, the setting is defined in overwrite mode. When the setting is empty, it’s defined in overwrite mode where all existing accounts are removed from the user right. There is no need to have a empty setting in append mode because that means to do nothing. But just in case, if the setting contains only “Add” or “Remove” keywords without any other account, this setting is defined in append mode and is ignored by SCTS engine.

Same rule/syntax applies to restricted group section [Group Membership]. Each line in the section represents a group with its member lists. Memberof list is removed from the product.

To maintain backward compatibility and to remote management easier, the key name in [Group Membership] section stays as “group name” plus suffix “__members”. If __Memberof or __PrivilegeHeld suffix exists, the line is ignored.

INF template version number can’t be changed to reflect this change because Win2000 clients can’t process templates in versions other than 0 and 1. This brings up a limitation on policy. See policy section below. We should create a bug for SP to fix Win2000 clients. If template versions are greater than it recognizes, it will fail policy propagation.
2.1.2 Database Changes

Define a status field in configuration and analysis table. This is easier for database parser to get status of each item.

Database version # should be increased with this change and existing databases should be migrated at open time automatically. This could be done in setup time, or any time after setup when a database is asked for opening.

Add and remove flag will be imported into the database directly (not expanded) and configured as in append mode.

Q: Free text or SID: free text should be converted into SID when importing. What to do when exporting?

2.1.3 Structure Changes

2.1.3.1 Remove Definitions

static const WCHAR szMembers[] = L"__Members";

static const WCHAR szMemberof[] = L"__Memberof";

static const WCHAR szPrivileges[] = L"__Privileges";

#define SCE_GROUP_STATUS_MEMBERS_MISMATCH 0x01

#define SCE_GROUP_STATUS_MEMBEROF_MISMATCH 0x02

#define SCE_GROUP_STATUS_NC_MEMBERS 0x04

#define SCE_GROUP_STATUS_NC_MEMBEROF 0x08

#define SCE_GROUP_STATUS_NOT_ANALYZED 0x10

#define SCE_GROUP_STATUS_ERROR_ANALYZED 0x20

2.1.3.2 SCE_ACCOUNT_LIST - new

#define SCE_ACCOUNT_FLAG_STORE_SID
0x0

#define SCE_ACCOUNT_FLAG_STORE_NAME
0x1

typedef struct _SCE_ACCOUNT_LIST {

 PWSTR

AccountName;

 BYTE

AccountFlag;

 struct _ SCE_ACCOUNT_LIST *Next;

} SCE_ACCOUNT_LIST, *PSCE_ACCOUNT_LIST:

2.1.3.3 SCE_PRIVILEGE_ASSIGNMENT

#define SCE_ACCOUNT_SET

0x1

#define SCE_ACCOUNT_ADD

0x2

typedef struct _SCE_PRIVILEGE_ASSIGNMENT {

 PWSTR Name;

 DWORD Value;

 PSCE_ACCOUNT_LIST AddAccounts;

 PSCE_ACCOUNT_LIST RemoveAccounts;

 DWORD Status;

 struct _SCE_PRIVILEGE_ASSIGNMENT *Next;

} SCE_PRIVILEGE_ASSIGNMENT, *PSCE_PRIVILEGE_ASSIGNMENT;

For configuration info, the Status could contain SCE_ACCOUNT_SET or SCE_ACCOUNT_ADD to indicate if the setting is in “overwrite” mode or in “add/remove” mode. For the overwrite mode, the configuration is stored in AddAccounts and RemoveAccounts is NULL; for the add/remove mode, the configuration is stored in both AddAccounts and RemoveAccounts where of course AddAccounts contains the list of accounts to add and RemoveAccounts contains the list of accounts to remove from the user right.

For analysis information, the Status field contains the analysis status (match, mismatch, not configured, not analyzed, or error analyzed). The whole list of accounts assigned the user right is stored in AddAccounts list and RemoveAccounts will always be NULL.

2.1.3.4 SCE_PRIVILEGE_VALUE_LIST

#define SCE_PRIVILEGE_FLAG_ADD

0x1

#define SCE_PRIVILEGE_FLAG_REMOVE
0x2

typedef struct _SCE_PRIVILEGE_VALUE_LIST {

 PWSTR Name;

 BYTE PrivilegeFlag;

 DWORD PrivLowPart;

 DWORD PrivHighPart;

 struct _SCE_PRIVILEGE_VALUE_LIST *Next;

}SCE_PRIVILEGE_VALUE_LIST, *PSCE_PRIVILEGE_VALUE_LIST;

This structure is used by SCTS configuration engine when configuring user right/privileges. A different structure is defined for the task because user rights are stored by accounts (not by rights) on the system and is easier/faster to configure when information is loaded into this structure. The PrivilegeFlag could contain SCE_PRIVILEGE_FLAG_ADD (when PrivLowPart and PrivHighPart contain user right bits to add) and SCE_PRIVILEGE_FLAG_REMOVE (when PrivLowPart and PrivHighPart contain user right bits to remove from the account).

2.1.3.5 SCE_GROUP_MEMBERSHIP

typedef struct _SCE_GROUP_MEMBERSHIP {

 PWSTR

 GroupName;

 PSCE_ACCOUNT_LIST AddAccounts;

 PSCE_ACCOUNT_LIST RemoveAccounts;

 DWORD
 Status;

 struct _SCE_GROUP_MEMBERSHIP *Next;

}SCE_GROUP_MEMBERSHIP, *PSCE_GROUP_MEMBERSHIP;

For configuration info, the Status could contain SCE_ACCOUNT_SET or SCE_ACCOUNT_ADD to indicate if the setting is in “overwrite” mode or in “add/remove” mode. For the overwrite mode, the configuration is stored in AddAccounts and RemoveAccounts is NULL; for the add/remove mode, the configuration is stored in both AddAccounts and RemoveAccounts where of course AddAccounts contains the list of accounts to add and RemoveAccounts contains the list of accounts to remove from the membership of the group.

For analysis information, the Status field contains the analysis status (match, mismatch, not configured, not analyzed, or error analyzed). The whole list of current members for the group is stored in AddAccounts list and RemoveAccounts will always be NULL.

2.1.4 Interface Changes

SceFreeMemory should be modified to handle the new SCE_GROUP_MEMBERSHIP structure and new SCE_ACCOUNT_LIST structure.

SceInfpGetPrivileges and SceInfpGetGroupMembership must be able to read old/mix styled templates in user rights and group membership sections. Old styled user right list is treated as in set mode. If SID can’t be resolved to name, the sid string is displayed.

SceeInfpWritePrivileges and SceInfpWriteGroupMembership must be able to write new style information to old styled templates for group members list and user right account list. If name can’t be resolved to SID, name will be stored.

ScepConfigureGroupMembership should take the new structure and add/remove/set group membership as specified in the structure. Should consider loading SID into buffer when configuring, which will save time to lookup the account names back and force.

ScepAnalyzeGroupMembership should take the new structure and analyze the groups based on add/remove/set mode (all groups defined plus any built-in groups are analyzed). The analysis logic is to make sure that accounts in the add list exist in the membership and accounts in the remove list don’t exist in the membership, or membership matches exactly as the configuration (set mode). If any of the above condition mismatches, a mismatch status is raised for the group; otherwise match status is raised. The whole group membership is written to the analysis result table in both match and mismatch status because we need the whole system settings even when it’s matched in order to support the add/remove mode. If error occurs during analysis or groups are not analyzed (due to previous group failure), the groups are raised as ERROR or NOT_ANALYZED status (same as before). Note, when raising the group, the group name plus the suffix is still used as the key.

ScepConfigurePrivileges should take the new structure and add/remove/set privileges as specified in the structure. Accounts are loaded into PRIVILEGE_VALUE_LIST by account SID and PrivilegeFlag (add or remove). For set operations, accounts not defined in the list will be enumerated from the system and added to the list with “remove” flag.

ScepAnalyzePrivileges should take the new structure and analyze the user rights based on add/remove/set mode (all user rights are analyzed even though they are not defined in the configuration). This follows the same logic as group membership – whole user right assignments are saved in the analysis result table in all status except error or not analyzed status. Note, this requires a status field in the database.

ScepGetPrivileges and ScepGetGroupMembership must be able to read old/mix styled database configurations/analysis results in user rights and group membership sections. Old styled user right list is treated as in set mode. When reading configuration information, the settings are read into corresponding buffers for group and user rights in add/remove/set mode. When reading from analysis result table, all user rights or groups in both configuration and analysis table are returned. For the items that are available in configuration table but not analysis table, status NOT_ANALYZED is assigned (new added items) and there are no system settings available for them.

Updating user rights and groups in database mode is not allowed !!! ? This is a limitation in UI ???

2.1.5 Remove memberof

All interfaces mentioned in the above section should be modified to remove the code to get/write/configure/analyze memberof and privilegeHeld settings.

Memberof and privilegeHeld will be ignored in existing templates/databases by using the new interfaces defined in the above section. These old settings will be removed in the first write with new code.

2.1.6 Policy Impact

When a group or user right is defined in add/remove mode in multiple GPOs, the final policy for the user right or group should be the “merged” settings from multiple GPOs.

2.1.6.1 New DCs/Old clients

There is a limitation of using this feature in a domain policy that is pushed down to old version of clients (such as NT4 or Windows 2000). The policy template in version other than 0 or 1 or in new layout (add/remove for groups) won’t be processed for policy. Add or Remove keywords will be treated as a account name therefore unexpected results could occur. This should be fixed in Windows SP1.
For a domain hosted by multiple DCs, if one or more DCs are in old version, new format of group policy can’t be used. So policy can’t be changed until machines affected by the policy is running the same version or newer version OS. This limits the default GPOs in old format (see below).

2.1.6.2 Policy on DCs

By default, user rights are parts of domain controller GPO, which affects all domain controllers in the domain. This GPO is also the place/tool to manage user rights for the domain controllers.

When domain controller group policy is defined in the new format (for user right or group), policy synchronization between DCs will be a problem when user rights are defined in add/remove mode, even with LSA policy running on DCs. Group membership isn’t a problem because they are synchronized in and by DS.

Policy filter on DCs – what should it do if user rights are in add/remove mode?

One proposed solution is to have this as a “feature”. For user rights that need to be available on all DCs, define them in the DC GPO in add/remove mode. If accounts defined in add/remove mode are changed, the change will be filter into the GPO (by policy filter). If other accounts are changed, filter won’t trap the change to GPOs.

2.1.6.3 Remote policy management

Although this is a feature we don’t expose yet, we need to consider it in this change. One problem is the version mismatch between the local computer and the remote machine. There should be some logic defined in the “remote local policy” task to take care if two machines should talk for the first place.

If a database from a remote machine (for other machine’s configuration) is opened by SCTS tool (UI or cmd tool) by mapping a network drive, what should we do?

2.2 Notes for UI

2.2.1 Remove memberof

The current members and memberof property sheets should be removed and Restricted Group section will use the same UI as user rights section.

2.2.2 Support members in append mode

Redesign the UI to define a list of users/groups in Add/Remove mode. See spec\nt5\se\secmgr\scodyssey.doc for detail defined by Kirk.

Follow the interface changes described in the design for engine.

Extend Feature Support – Web Server

The secure configuration for different server roles requires all registry value types to be supported in SCTS, also different options to be provided when setting ACL on a registry key, and so on. In this section, the requirement is summarized followed by the design on how is SCTS functions extended.

2.3 Extended Registry Key Support

2.3.1 Registry Value Types

The standard registry value types predefined in Windows 2000 include:

REG_NONE

REG_SZ

REG_EXPAND_SZ

REG_BINARY

REG_DWORD

REG_DWORD_LITTLE_ENDIAN

REG_DWORD_BIG_ENDIAN

REG_LINK

REG_MULTI_SZ

REG_RESOURCE_LIST

REG_FULL_RESOURCE_DESCRIPTOR

REG_RESOURCE_REQUIREMENTS_LIST

REG_QWORD

REG_QWORD_LITTLE_ENDIAN

SCTS in Windows 2000 supports REG_SZ, REG_BINARY and REG_DWORD. It’s required that SCTS to support REG_EXPAND_SZ, REG_MULTI_SZ, and REG_QWORD (for 64 bit).

The following interfaces must be changed to support the above types. For REG_QWORD, we also need to define the data format for INF template and DB. One option is to save it in two fields, separated by comma (highpart, lowpart).

ScepConfigureRegistryValues

ScepAnalyzeRegistryValues

ScepEnumAllRegValues

2.3.2 Registry Key Creation

This is required by secure Web server configuration. When setting ACL to a registry key, the key should be created if it doesn’t exist. In windows 2000, the ACL won’t be set and FILE_NOT_FOUND error is returned for the key if the key doesn’t exist.

This functionality is required to secure remote registry management (via winreg key). If winreg key doesn’t exist, it should be created and set a secure ACL so only people allowed to access this key are able to access the registry.

This function can be implemented in the existing registry key (or file security) section. In Windows 2000, there is a flag field defined for each object – inherit (0), ignore (1), overwrite (2). To support the creation, more values are defined for the field:

Flag 5, create the object if it doesn’t exist, then set SDDL with mode 0 (inherit)

Flag 6, create the object if it doesn’t exist, then set SDDL with mode 2 (overwrite)

Interface Changes include object configuration and analysis. In configuration, SCTS should first call RegCreateKeyEx or CreateDirectory if the object to configure doesn’t exist, then follow the same logic to set ACL. In analysis, if an object doesn’t exist and the configuration flag is set to 5 or 6, a mismatch will be logged (rather than logging the error that file/key is not found).

2.4 Attachment Framework Fine-Tune

2.4.1 Area Redefinition

See spec in the same subject under SMB security section. The areas must be re-defined in order for attachments being plugged under the root level of SCTS.

2.4.2 Attachment Engine

Note: this section could be related to the WMI integration.

Attachment engine registration with SCTS engine should be checked for duplication of extension names because the extension names will be used as the section names in INF templates and JET databases.

Attachment engine should be allowed to use more than one sections in the storage – INF template or JET database. The solution here is to use a suffix plus the extension name as a section name, so all interfaces should allow “PWSTR SuffixSectionName” as a parameter.

Attachment engine should support another interface to allow extension engine parsing template data before importing into the database storage. This is to handle generic settings in templates. This importing interface will translate generic settings into machine specific settings (configuration) to save in the database. For example, wild card object name support. For IIS extension, multiple web sites can be supported on one single web server and it’s impossible to define settings for a specific web site from group policy (or from customized template).

Should we maintain attachment framework compatibility with Windows 2000? There is currently no extension attached to SCTS in Windows 2000 production.

2.4.3 Attachment UI

All extension attachments should expand “Extensions” node instead of “Services” node as in Windows 2000.

All extension attachments should share the UI resources with SCTS UI as much as possible (such as the detail dialogs), or be implemented in the same style as SCTS UI.

2.5 Support C2 Capabilities

SCTS must be able to delete keys and subkeys, value, files, and directories, in order to remove POSIX subsystem and etc. For configuration, this function is to remove the requested objects. For analysis, the objects are checked for existence and match/mismatch status is determined based on the find result. Please note the settings for these objects can’t be recovered after a configuration (there is no recovery option for the deletion operations).

Files to be removed are handled under FILE_SECURITY area and registry keys/values to remove is handled under REGISTRY_SECURITY area.

2.5.1 INF layout change

Add a section for each section. For example for file system, add a section [File.Remove] and for registry section, add a section [Registry.Remove]. Within each section, each line represents an object to delete, in the following format:

objName, flag

where flag could be 0 or 1. 0 means that it’s an object (file or value) and 1 means that it’s a container (directory/registry key).

2.5.2 New Structures

Define the section names

Define structures

2.5.3 Interface Changes

2.6 Other

System boot time

Lockout Admin for network access

Stop service when disabling service

3 WMI Integration

Windows Management Instrumentation (WMI) enables the windows platform for monitoring, controlling, and analyzing software, hardware, networks, users, and policies within the enterprise. It provides the plumbing or infrastructure for developers and ISVs to create management applications built directly on top of the management infrastructure. Security settings managed in SCTS should be integrated into WMI so ISVs can build tools to manage/analyze/report system security. This is a huge benefit to both sides – SCTS engine won’t depend on UI to expose the functionalities and features, and users can have many tools in different favors to work on the same data. For more information about WMI, see http://wmig.

3.1 SCTS-WMI Architecture

3.1.1 SCTS in Windows 2000

SCTS in Windows 2000 contains the following components:

Engine – scesrv.dll, which works with a system (configuration/analysis), JET database(s), and INF templates. Interfaces are called by the client site scecli.dll

Client – scecli.dll, which contains wrappers for setup, policy propagation, dcpromo, policy filter, and interfaces used by SCTS UI (MMC snap-in) and cmdline tool. The client site works with INF storage only.

Secedit.exe/MMC snap-in/setup/dcpromo/policy communicate with client site only.

3.1.2 SCTS In Whistler & Beyond

The goals for SCTS are:

1) Scriptable

· Create/Modify templates

· Configure/Analyze a system using the template

· Reporting analysis result - schema for databases and templates

2) Extendable

· Open Attachment Architecture

3) Managable – break engine/UI dependency and allow other tools to share engine data.

To achieve the above goals, SCTS should be integrated with WMI to provide schema of SCTS storage and to provide functionalities of SCTS. This means that WMI will be the “door” of everything SCTS engine does and other components always communicate to us via WMI. This includes UI/cmd tool and attachments.

The following SCTS scenarios must be supported via WMI in Whistler or beyond:

· View INF template

· Create a new INF template or modify existing template

· View database configuration and analysis information

· Import INF templates into database configuration

· Export database configuration into template

· Configure w/ a database

· Analyze w/ a database

· Attachment framework for view/modify/configure/analyze/import/export

· Log file view

· Database-less configuration

· Per class configuration

· Modify database configuration

· Database-less analysis

· Local policy mode (view/configure the system settings directly)

· Attachment RSOP

· Attachment to Group Policy (scriptable and propagation)

· Complex queries

In current schedule, the top 8 items will be delivered in Whistler and the rest will be delivered after Whistler. Although the items below “Log file view” are cut from Whistler, they must be considered in Whistler for the schema design to make sure that the schema/framework is expandable in the future, especially for the two items of attachments (RSOP and Group Policy).

3.1.3 General Architecture

In summary, the SCTS/WMI/Attachment model is as follows:

· SCTS registers as a WMI provider (instance and method). All attachments of SCTS also register as instance providers.

· SCTS defines three base classes: SCTS_Template, SCTS_Database, SCTS_AttachmentBase.

SCTS_Template and SCTS_Database are classes for security templates or databases. They contain properties of security templates or databases (such as description and version #), as well as providing static methods to configure/analyze/import/export using the template or database.

SCTS_AttachmentBase is the base abstract class for all attachments to inherit. This class provides static methods for querying data and setting data for each attachment (class name of each attachment will be used as the "section" name in our store). This class is also needed when enumerating all attachments (by enumerating all inherited classes from this base class).

· Attachment classes inherited from SCTS_AttachmentBase must implement methods to configure/analyze their security. These methods will be called when configure/analyze/etc is requested from SCTS_Template or SCTS_Database.

· All data classes (either for SCTS defined classes or attachment classes) must have a key for store name and a key for store type in addition to other class specific properties. These two keys are used to link to a security template or database.
This model will be explained in detail below.
3.1.3.1 Name Space

SCTS will consume one namespace in WMI, in the path of root\security\SCTS. All classes/instances are in a flat view under this namespace, including attachment classes.

3.1.3.2 Provider

SCTS will be registered as an instance provider and a method provider. All SCTS attachments must be registered as instance providers.

Instance providers can support zero or more of the following features by supplying a complete implementation of the corresponding IWbemServices method.:

	Data retrieval
	GetObjectAsync
	GetObjectAsync

	Data modification
	PutClassAsync
	PutInstanceAsync

	Data deletion
	DeleteClassAsync
	DeleteInstanceAsync

	Data enumeration
	CreateClassEnumAsync
	CreateInstanceEnumAsync

	Query processing
	ExecQueryAsync
	ExecQueryAsync

Besides the primary interfaces that an instance provider should support, SCTS instance provider also supports the additional methods for SCTS store class, for example, ApplySecurity (apply security to a system), AnalyzeSecurity, ImportTemplate, and ExportTemplate. SCTS attachment providers should support the same set of methods for their data.

Method providers fully implement a set of methods for a Common Information Management (CIM) object in their primary interface, ExecMethodAsync. All of the other methods return WBEM_E_NOT_IMPLEMENTED. SCTS method provider also supports additional methods that could be used by WMI users such as

Enumerate all registry values supported by SCTS

Enumerate all privileges supported by SCTS

Enumerate all audit categories supported by SCTS

Questions:
The methods that attachments implement in their classes for configuring/analyzing/importing/exporting are used in SCTS provider to invoke the appropriate operation requested by users (via store classes). These methods shouldn’t be visible to WMI users. Is this possible - No? What other options do I have?

3.1.3.3 Base Classes

The following base classes SCTS_Template, SCTS_DatabaseConfiguration, SCTS_DatabaseAnalysis, and SCTS_AttachmentBase are defined.

SCTS_Template is a class representation of security templates (INF). It contains key path name to a template as well as other properties of a template, for example, description and version #. To support database-less configuration, this class will also provide a static method “ApplyTemplate” to allow configuration using the template. This class is read only.

SCTS_DatabaseConfiguration is a class representation of security database for configuration information. It contains key path name to a database and other properties of a database, such as description, version #, configuration timestamp, and etc. This class is read only. SCTS_DatabaseConfiguration also provides static methods for configuring/analyzing/importing/exporting.

SCTS_DatabaseAnalysis is a class representation of security database for analysis information. It contains key path name to a database and other properties of a analysis database, such as analysis time stamp, summary of analysis, and etc. This class is read only and no method is provided.

SCTS_AttachmentBase is an abstract class for attachments to inherit. It contains inheritable properties for key store name (template or database name) and key store type. It provides static methods to query and set attachment data to the storage (template or configuration database). It also provides method prototypes that attachments must implement for configuration/analysis/import/export.

SCTS_Log class describes the log format for SCTS operations. It provides properties of one log record and methods to put one log record from/to the log file on disk.

Questions:

Do we really need to have two separate base classes for SCTS_DatabaseXXX?

The attachment methods (configuration/analysis/import/export) are only meaningful for configuration database. How should attachment providers block these methods for other storage types?

3.1.3.4 Other Consideration

To handle multiple instances of user who might open the same template in multiple sessions, the design is to let them share the same WMI instances for the template and register themselves to get notified whenever a template is changed (so they can refresh their buffer).

To support granular configuration/analysis, All data classes (including SCTS core and attachments) must support a “Apply” method.

To support “local policy mode” where system settings are managed, all data classes must be associated with WMI system object. The associated class is SCTS_LogicalSystemSecuritySetting. This class provides get and set methods that query/set security settings from/to the system directly. All derived classes from this base class derive the same methods that allow configuration on a per class basis. For account policies and local policies (as exposed in local policy mode in Windows 2000), all system settings could be viewed/modified through the logical association classes.

For database-less configuration, the SCTS_Template class should support a “Apply” method. Attachments should also support a “Apply” method without database argument. For database-less analysis, a place holder should be defined in WMI and more work must be done in engine – to figure out where the database is for the logon user. The place holder is key’ed on logged on user’s SID (which means that one user can have only one active workspace to do configuration/analysis). Multiple templates must be able to be grouped together to configure/analyze (merged in append mode). The database concept is still supported since there might be other needs where analysis information needs to be saved in the database.

SCTS attachments should also be under group policy – be able to create policy data (in SCTS templates) and propagate their policy data. Attachments also need to provide RSOP (diagnosis and planning mode) data. See attachment architecture below for detail.

Complex queries are needed to provide higher level of operations on security settings, such as grouping settings together.

The picture below shows the architecture of SCTS in WMI namespace.

<picture here>

3.2 Integrated Attachment Architecture

Not all security aspects of every component/application are managed by SCTS core engine. To unify security management into one tool and one unified storage, a open attachment architecture is defined in Windows 2000. This is done by attachments registering with SCTS and implementing well-defined interfaces for configuration, analysis, and editing of their own security data. SCTS is responsible to invoke appropriate attachments and to save their data into the security template(s) and database(s) together with other security data.

In order to expose attachments’ data and get the benefits of scriptability and manageability, the open attachment model should be integrated into WMI as well. This will also break the “hardcoded” link between SCTS and its attachments. In the new WMI SCTS attachment model, security attachments of SCTS should manage their own configuration/analysis and communicate with SCTS to incorporate data into SCTS storage. All communication of data is done via WMI classes.

3.2.1 Base Classes

All attachments must inherit the base abstract class defined by SCTS – SCTS_AttachmentBase and implement the methods required by this class.

One attachment can have multiple classes and the class name will be used as the “section” name in SCTS storage. This is guaranteed unique since WMI enforces the uniqueness of class names in one name space.

For group policy plugin, attachments must inherit from SCTS_AttachmentGroupPolicy which inherits from group policy base class (to be defined). This class contains the group policy ID, name, and template name. This class should support import and export functionalities.

For policy propagation, attachments should registered with group policy as an extension to propagate policy. They should use the QueryData method (provided in the base class) to get data from group policy templates and apply the data to a system.

Attachments should define RSOP extension schema to extend SCTS RSOP schema. During policy propagation, attachments will be called by group policy (directly) to apply/log/generate RSOP data.

Questions:

Are there other options for attachments to handle group policy and RSOP data, for example, attachments do not implement as group policy extensions. Instead, SCTS invoke them during policy propagation/generation and group policy. How to do this?

3.2.2 Attachment Providers

Each attachment should implement a WMI instance provider to support their class instances as well as to provide methods to configure/analyze/import/export. The instruction/procedure for the registration are documented in WMI SDK – provider registration procedure.

The attachment providers should be registered with WMI under namespace Root\Security\SCTS. The attachment instance provider should implement the standard Get/Put/Enum/Del for its own class instances.

3.3 SCTS Scenarios Walkthrough

Each scenario listed in the general architecture section is discussed in detail here. To simplify the process, each scenario is walked through with SCTS data, for example, password policy, as well as attachment data, for example, SMB extension.

Remote management is not considered here because WMI is remotable. WMI users could connect to a remote WMI to request operations on the remote machine.

The general problems with all “write” operations are Locking, Transactioning, and multiple views. These features will be supported after Whistler.

3.3.1 View INF template

An INF security template may contain SCTS security data and attachments data. WMI users view a template by issuing a query or calling the get method directly.

3.3.1.1 WMI query

Select * from <ClassName> where PathName=”c:\foo\test.inf” and StoreType=1

GetObject(//./root/security/SCTS/<ClassName>:PathName=”c:\foo\test.inf” && StoreType=1)

3.3.1.2 SCTS Provider

When password policy is requested, WMI evaluates the request and calls to SCTS provider for class SCTS_PasswordPolicy to get instances for the template specified. SCTS provider will read password policy data from the template and create an instance of the class then returns.

3.3.1.3 Attachment Provider

When SMB data is requested, WMI evaluates the request and calls to SMB provider for the class (for example, SCTS_SMB_Shares. SMB provider is invoked here because it registers itself as a provider for the class. When it’s called, SMB provider will call the static method GetDataFromStore implemented in the base abstract class SCTS_AttachmentBase. This method will take the template name, the class name, and returns the buffer in key=value format. Attachment data could be queried in a series of GetDataFromStore calls (via EnumHandle) until return code from this API becomes ERROR_NO_MORE_DATA.

Taking the data returned from GetDataFromStore, SMB provider will create the instances for the requested class.

3.3.2 Create new INF templates

WMI users create a template by issuing an update query or calling the put method directly.

3.3.2.1 WMI query

Update <properties/values> to <ClassName> where PathName=”c:\foo\test.inf” and StoreType=1

PutObject(ThisObjct, //./root/security/SCTS/<ClassName>:PathName=”c:\foo\test.inf” && StoreType=1)

3.3.2.2 SCTS Provider

To create password policy in a template, WMI users first an instance of the class with appropriate data then calls to WMI to “save” the instance. WMI evaluates the request and calls to SCTS provider for class SCTS_PasswordPolicy to put the instance into the template specified in the class. SCTS provider will read the password policy class instance and save the data to the template.

3.3.2.3 Attachment Provider

Same logic here as password policy for WMI users to create the WMI instance for SMB data, then WMI users will call the query or put method to request the save (to WMI). WMI evaluates the request and calls to SMB provider for the class (for example, SCTS_SMB_Shares). When it’s called, SMB provider will call the static method SaveDataToStore implemented in the base abstract class SCTS_AttachmentBase. This method will take the template name, the class name, and the buffer, and save it in the template.

3.3.2.4 Validation

All data must be validated for range and dependency relationship. WMI doesn’t support these kinds of validation even though they are defined in schema. Each provider has to perform the task.

3.3.2.5 Bundle Changes

WMI user makes the decision if he wants to bundle all changes to a template into one transaction (“save” action). Assuming WMI support the transaction functionality, WMI user needs to call BeginTransaction before making any change and CommitTransaction after all changes being made. WMI will cumulate all changes until CommitTransaction is called, when WMI sends all changes to the provider(s).

Questions:

Saving multiple changes in one transaction could fail in either SCTS provider or attachment providers. How to handle the errors? Note that data written to the file (in current design) is not revertable. So if errors occur, the CommitTransaction call will return failure, which causes WMI rolls back all WMI changes. How do we keep the template accurate?

One solution is to provide SCTS methods for transitions – SCTSBeginTransaction, SCTSCommitTransaction, and SCTSRollbackTransaction. When SCTSBeginTransaction is called for a template, SCTS provider will make a temp copy of the template and all changes thereafter are written to the temp file until SCTSCommitTransaction is called, when the temp file will be copied back to the original.

3.3.3 Modify existing templates

Modifying existing templates follow similar logic as creating new templates for add/overwrite settings. It has the same issues for bundling changes into one transaction as discussed above and the same solution applies.

In addition to the add/overwrite operation, delete operation must be supported for classes that could have multiple instances in a template. In SCTS scope, the exception classes are password, lockout, and kerberos. All other classes may have multiple instances. For the exception classes, there is no “delete” needed. Properties could be changed to “not defined” and when the instance is put back, the object associated to the property will be deleted from the template.

Deletion of instances could be done in several ways:

3.3.3.1 Delete a single instance from a class

The Delete method of the provider will be called by WMI directly. SCTS provider deletes the object (by key) from the template directly. Attachment providers have to call SetDataToStore with the DELETE_KEYS option.

Question:

File objects and registry keys will have problems to be deleted based on keys since there is no keys in these sections. What should we do:

1) load all section into buffer, dremove the object(s) from the buffer, delete the whole section from the file then save all data back.

2) Change template layout to have object name as keys. This will introduce a compatibility issue with group policy or remote management. The way to resolve the compatibility issue is to have a version #. Old clients/machines can’t open newer version of templates. So policy propagation will be affected.

3.3.3.2 Delete all instances of a class

Each provider should support a query, something like:

delete * from <classname> where PathName=”c:\foo\test.inf”

Internally this query is translated to delete the whole section (class name) in the template. If a class is for attachment providers, they need to call SetDataToStore with EMPTY_SECTION option.

3.3.3.3 Delete all classes from a template

This is equivalent to delete the template from disk. All of these functions should be supported by Win32 schema.

SCTS may need to provide a method doing this in order to allow multiple users viewing the same file. When the file is deleted, this method should broadcast events for the deletion so other users who are viewing the file will get notified to refresh their data.

3.3.3.4 Import other templates

This feature is not supported in Whistler. The design here is for post Whistler.

To allow multiple incremental templates to be imported into a unified template, SCTS provider will provide a static method “ImportTemplate” in SCTS_Template. A template can be imported in “append” mode or “overwrite” mode where “append” mode adds data from the importing template on top of existing data and “overwrite” mode is to replace all data in the existing template.

SCTS provider will get all available sections in the importing template by calling GetPrivateProfileSectionNames api. For SCTS sections, it imports the data (following the import rule) and for attachment data, it calls to each class (section name)’s import method. The importing rule includes append/overwrite mode, convert machine specific info, and etc.

3.3.4 Export generalized templates

The only reason that a template is exported to another template (both in INF format) is to convert machine specific information into generalized virtual information. For example, accounts are saved in template in SID format that contains machine SID or domain SID. To make it generic, %MachineSid% or %DomainSid% must be used in the exported template. Accounts in names such as IIS_<ComputerName> must be converted to this form since its SID on different machines is different. Another example is that object names (files/keys) should be converted into env variables and wildcard format too.

A static method ExportGenericTemplate should be implemented in SCTS_Template to accomplish the task. This method is very useful in group policy perspective and configuring multiple machines with same security configuration.

In the implementation of the method, SCTS provider get the list of sections (classes) in the template, exports its own classes, then calls attachments for the rest of classes. Attachment providers should implement a method to export data where GetDataFromStore (from the exporting template) is called for each attachment data, change the machine/domain specific information, then SetDataToStore (to the exported template).

3.3.5 View database information

This applies to both configuration information and analysis information. The logic is same as viewing INF templates except that the StoreType is 2 or 3 for database configuration or database analysis.

3.3.6 Import configuration into database (create a new database)

SCTS_ConfigurationDatabase implements a static method “ImportTemplate” which allows importing a template into a configuration database. This database is then used to configure/analyze a system. Database is machine centric so when a template is imported, all generic information will be resolved based on the information available on the machine. Items to resolve include environment variables, special accounts, machine/domain SIDs. Wildcard object names will be handled in configuration rather than importing. See separate feature design for wildcard support and environment variable support.

WMI users can make a call to the ImportTemplate method, providing a database name and other arguments. SCTS provider will do the work to import the template. For attachment data, SCTS provider will get a list of available attachment classes (sections) in the template and call each one of them to import their own data. This is necessary due to the same reason as SCTS has – resolve generic info.

Importing a template into a database is the only way to create a new database.

3.3.7 Export database configuration into template(s)

The logic is same as exporting generic information from a template except the following:

The static method:

ExportToTemplate

The class (implement the method):
SCTS_ConfigurationDatabase

Attachment implemented method:
ExportToTemplate (calls to GetDataFromStore and SetDataToStore).

Multiple templates may be created based on the size of the template because INF file size has a usable limit. This is decided and managed by SCTS engine. This feature is needed for snapshot security case. See separate spec for this feature’s detail.

3.3.8 Configure system w/ a database

Once one or more INF templates are imported into the configuration database, the database can be used to configure a system.

3.3.8.1 WMI

WMI users can call a static method “ConfigureSystem” implemented in SCTS_ConfigurationDatabase to configure the local system. The method takes a database name, an optional template name, and other arguments.

3.3.8.2 SCTS provider

SCTS provider is invoked for the request. If a template is provided, first it will do “import” operation on the template, as discussed in “Import configuration into database” section. Attachments may be invoked here for the import. After importing, SCTS engine starts configuration of core security settings. Then SCTS provider get a list of attachment classes and call each one to configure their portion.

3.3.8.3 Attachment providers

Attachment providers must implement a method “ConfigureComponent” which takes a store name, a store type, an optional log file name, and etc. to configure security aspects of the component. Each attachment first queries data from the store by calling GetDataFromStore, plans the configuration, then applies to the system.

3.3.8.4 Logging

During configuration, a log file will be created if it’s provided. SCTS will write log record to the file directly. The log file path is passed into each attachment. Log record can be created for attachments by creating instance(s) of the class and put into WMI, which calls to SCTS provider to save the record.

3.3.9 Analyze system w/ a database

Analysis can be performed on a system given a database. The configuration portion of the database is used to compare with the system and the analysis portion of the database is created during analysis. The analysis database is read only from WMI users perspective.

3.3.9.1 WMI

WMI users call a static method “AnalyzeSystem” implemented in SCTS_ConfigurationDatabase to analyze the local system. The method takes a database name, an optional log file name, and other arguments.

3.3.9.2 SCTS provider

SCTS provider is invoked for the request. SCTS provider just simply passes the call to SCTS engine to analyze core system settings. Then SCTS provider gets a list of attachment classes and calls each one to analyze its component.

3.3.9.3 Attachment providers

Attachment providers must implement a method “AnalyzeComponent” which takes a database name, an optional log file name and etc. to analyze the security aspects of its component. Each attachment first queries configuration data from the store by calling GetDataFromStore, performs the analysis, then saves analysis data to analysis database by calling SetDataToStore.

3.3.9.4 Logging

During analysis, log records are created if a log file name is passed in. Same as in configuration, SCTS will write log record to the file directly. The log file path is passed into each attachment. Log record can be created for attachments by creating instance(s) of the class and put into WMI, which calls to SCTS provider to save the record.

3.3.9.5 Analysis rule

Each provider decides the rule for its own analysis. The rule determines how should analysis data be displayed in some UI tools and how should analysis data be interperated.

SCTS provider compares system settings with configuration and raises mismatches/errors to analysis database. All matched items are not raised in analysis database. Even if some settings are not defined in the configuration, they are still analyzed by SCTS engine (for example, password, kerberos, lockout, audit policy, user rights, security options, event log settings, services, all builtin groups and the roots of files and registry keys). The analysis status for these items are “not defined”.

Attachment providers should determine their own analysis rule, for example, they can decide that data for all statuses (match, mismatch, not defined, errors, etc) are saved in analysis database.

Question:

how is analysis rule saved in analysis database for each attachment, and how is the rule stored in WMI schema?

3.3.10 Log file view

Log files are created in operations such as configure/analyze system. In order to publish the log format in WMI (for view or add new records), each log record must be formalized. A class SCTS_Log is defined for this purpose. It supports Get/Enum methods, also supports the Put method with validation logic to ensure that only new records being added to the log and existing records can’t be deleted or modified.

WMI users can query log records from a log file by issuing standard WQL query.

Attachment providers should call the put method to add new log record to the log file.

In order to create WMI instances from log files, SCTS log file format must be changed and SCTS engine must provide interfaces for SCTS provider to log.

3.3.11 Database-less configuration

This is to allow configuring a system without importing to a database. This feature is useful when users just want to configure the system settings and do not worry about analysis using the database and do not want to leave the useless database on the system.

This scenario doesn’t have a WMI view.

If database-less analysis is not implemented at the same time as database-less configuration, this could be done by generating a temporary database name and passes the temp name to all methods. All other operations will operate normally as “Configure system w/ a database”. After configuration is done, the database is unloaded and deleted. Two problems with this approach:

· The location of the temporary database: if it’s stored in each user’s profile, the database path may contain DBCS characters, which is not supported by JET.

· The database must be marked “not recover” and properly detached from Jet engine before it’s deleted, because otherwise JET engine will hang at the next start trying to find the database and recover it.

If database-less analysis and configuration is implemented in the same fix (in engine), it could be done as discussed in database-less analysis section – allocate one and only one hidden database for each log on user.

3.3.12 Modify database configuration

Modifying data in a configuration database follows the same logic and inherits all problems as modifying existing templates. For detail on the solution, see “Modifying existing templates” section.

This feature is not designed for Whistler is due to the complexity of the relationship between configuration and analysis database. When data in a configuration database is changed, the corresponding analysis view is not accurate anymore. We need to figure out a way to either notify the viewers about analysis result change or to block the change if the analysis database is being opened.

3.3.13 Database-less analysis

SCTS engine will support database-less analysis operation by using a hidden database for each logged on user (for example, the hidden database is placed in the user’s profile which requires the fix from JET engine to support DBCS path name).

From WMI users point of view, the same classes defined for template mode and database mode can be used. The path name is the username and the store type is either configuration or analysis. When SCTS or attachment providers are invoked for their classes, they follow the same logic as database operations and handle the parameters to SCTS engine to process.

We don’t want to totally hide the database concept because it is still useful for users who would like to save analysis history etc.

3.3.14 Manage system settings, per class configuration

One option is to use computer name as the path name (the local computer name) and computer settings as the store type. For remote computers, connect to WMI on the remote machine.

All classes should provide a “ApplyData” method for the computer store type. This method will configure the settings defined in WMI instances to the system.

Another option is to associate SCTS classes with predefined Win32 system classes. TBD.

3.3.15 Group policy scriptbility

Can I define private properties that are not visible to WMI users? This is needed to “hide” the security template name for the GPO.

Assuming security extension will be invoked via WMI methods.

Define a base class inheriting GPPolicyExtension for security extension, which implements the required methods to create/save/import/export etc.

Define classes inheriting GPPolicyExtension class, for all data objects (password policy to ACLs) as defined in SCTS schema

Register a provider for the above classes under //./root/GP namespace. This provider can share some common routines with SCTS provider to create WMI instances of each class.

The Save method (to save WMI instances into a security template in a GPO) should query all existing WMI instances for the above classes and save them into the file so provider shouldn’t do anything for the put method.

How to handle delete operation of WMI instances?

Import/Export will block user rights/group membership sections and “copy” existing stuff into the destination GPO.

3.3.15.1 SCTS Attachments

TBD

3.3.16 Attachment RSOP

Attachments need to define schema to inherit from the base Group policy RSOP class (in RSOP namespace)

Attachments should provide a method to propagate policy.

When Security settings extension is called to propagate policy, it will propagate its own policy then connects to WMI to enumerate then call each attachment’s propagate policy method. The list of templates is passed into the method.

Each attachment should use the same mechanism accessing one template to process the list of templates. While applying the policy, it should also log RSOP data in their own schema.

Same logic applies to generating planning RSOP data. Attachments should provide a method to generate policy and this method is called in this mode.

3.3.17 Complex queries

TBD

3.4 SCTS Schema Classes

Properties are all private to the class. Methods to manipulate the properties should be provided (not documented here since they are standard).

3.4.1 SCTS_Template

This class describes the base class properties for template (INF)

Properties:

[key]
String
TemplatePath

Full path of the store

String
Description

Store description

Uint32
Version

Template version #

Boolean
bReadonly

Flag to indicate that the template is read only

Boolean bDirty

Flag to indicate that the template is modified

Methods

//

// to allow importing a template. For GPO mode, it will also convert

// domain/machine specific information.

//

// not supported in Whistler

//

static HRESULT ImportTemplate(IN LPTSTR TemplateName,

 IN LPTSTR LogFileName OPTIONAL,

 IN DWORD dwMode,

 IN DWORD Options

);

//

// to allow exporting a template (remove machine/domain specific info)

// not supported in Whistler.

//

static HRESULT ExportGenericTemplate(IN LPTSTR TemplateName,

 IN LPTSTR LogFileName OPTIONAL,

 IN DWORD dwMode,

 IN DWORD Options

);

//

// to allow deletion of the template

// notifications must be broadcasted for each class.

//

static HRESULT DeleteTemplate(IN LPTSTR TemplateName,

IN DWORD Options

);

//

// to support database-less configuration in the future.

// for Whistler, it is NOT_SUPPORTED.

//

static HRESULT ApplyData(
IN LPTSTR LogFilePath,

IN DWORD Options);

3.4.2 SCTS_DatabaseConfiguration

This class describes the properties of a security configuration database.

Properties:

[key]
String
Path

Full path of the store

String
Description

Store description

Uint32
Version

Database version #

[Values{“Regular”,”Snapshot”] [ValueMap{“1”,”2”}]

Sint32
InfoType

The information type stored in the database. For example, snapshot settings

datetime
LastConfigTime;

Last configuration timestamp.

Boolean
bReadOnly

Boolean bDirty

string
TemplateImported[];

Methods:

Static HRESULT ImportTemplate(IN LPTSTR TemplateName,

 IN LPTSTR LogFileName OPTIONAL,

 IN DWORD dwMode,

 IN DWORD Options

);

static HRESULT ExportToTemplate(IN LPTSTR TemplateName,

 IN LPTSTR LogFileName OPTIONAL,

 IN DWORD dwMode,

 IN DWORD Options

);

static HRESULT ConfigureSystem (IN LPTSTR TemplateName OPTIONAL,

 IN LPTSTR LogFileName OPTIONAL,

 IN DWORD dwMode,

 IN DWORD Options

);

static HRESULT AnalyzeSystem(IN LPTSTR LogFileName OPTIONAL,

IN DWORD dwMode,

IN DWORD Options

);

3.4.3 SCTS_AnalysisDatabase

This class describes properties of a read only analysis database.

Properties:

[key]
String
Path

Full path of the store

datetime
LastAnalTime;

Last analysis timestamp.

String
szAnalyzeRule;

SCTS_SummaryRecord
m_Summary[];

Methods

None

3.4.4 SCTS_AttachmentBase

This class is an abstract class that SCTS attachments must inherit.

Questions:

How to get inherited class names into the methods below?

[abstract]

Properties:

[key]
String
Path

Full path of the store.

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

[key]
Uint8
StoreType; // template, configuration database, analysis database

Methods

//

// can inherited class names be queried from this method ?

//

Static DWORD SctsGetDataFromStore(

IN LPTSTR StoreName,

IN DWORD StoreType,

IN LPTSTR ClassName,

OUT PSCTS_ATTACHMENT_INFO *pInfo,

OUT DWORD *nCount,

IN OUT ENUM_HANDLE *EnumHandle);

Read attachment data from the store.

Static DWORD SctsSaveDataToStore(

IN LPTSTR StoreName,

IN DWORD StoreType,

IN LPTSTR ClassName,

IN PSCTS_ATTACHMENT_INFO pInfo OPTIONAL,

IN DWORD nCount,

IN DWORD Flags

// EMPTY_SECTION;

// OVERWRITE

// DELETE_KEYS

);

Save attachment data to the store.

HRESULT ImportComponentTemplate(

 IN LPTSTR StoreName,

 IN DWORD StoreType,

 IN LPTSTR TemplateName,

 IN LPTSTR LogFileName OPTIONAL,

 IN DWORD dwMode,

 IN DWORD Options

)=0;

HRESULT ExportComponentToTemplate(

 IN LPTSTR StoreName,

 IN DWORD StoreType,

 IN LPTSTR TemplateName,

 IN LPTSTR LogFileName OPTIONAL,

 IN DWORD dwMode,

 IN DWORD Options

)=0;

HRESULT ConfigureComponent (

 IN LPTSTR StoreName,

 IN DWORD StoreType,

 IN LPTSTR TemplateName OPTIONAL,

 IN LPTSTR LogFileName OPTIONAL,

 IN DWORD dwMode,

 IN DWORD Options

)=0;

HRESULT AnalyzeComponent(

IN LPTSTR StoreName,

IN DWORD StoreType,

IN LPTSTR LogFileName OPTIONAL,

IN DWORD dwMode,

IN DWORD Options

)=0;

3.4.5 SCTS_Log

This class describes the log information/format used in SCTS.

Properties:

string
szName

Log file full path name

string
szLogOperation

The operation for the log record (e.g., configuration, analysis)

Datetime
LogTime

Date time of the log record

String
szComponent

Which component logs the record (e.g., password policy)

Uint32
dwError

Error code of the record, 0 = success

String
szItem

Which item (setting) is the log record for

String
szStatus

Status of the item (if applicable), e.g., mismatch

String
szMessage

Additional message for the log record

Methods

None

3.4.6 SCTS_PasswordSettings

This is the class for password policy. Note range and dependency may need to be handled by SCTS provider because WMI doesn’t support this.

Q: How to define dependency in WMI?

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

 [key]
uint8

StoreType;

SCTS_STRUCT_Numeric32
MinimumAge;

SCTS_STRUCT_Numeric32
MaximumAge;

SCTS_STRUCT_Numeric32
MinimumLength;

SCTS_STRUCT_Numeric32
HistoryCount;

SCTS_STRUCT_Boolean

ComplexityEnabled;

SCTS_STRUCT_Boolean

StoreClearText;

SCTS_STRUCT_Boolean

RequireLogonToChangePassword;

// the setting is remarked in Windows 2000, is there a bug somewhere?

SCTS_STRUCT_Boolean

ForceLogoff;

Methods:

// After Whistler, to support per class configuration & database-less configuration

HRESULT Apply(IN LPTSTR LogFileName OPTIONAL);

3.4.7 SCTS_AccountLockoutSettings

This is the class for account lockout policy

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

[key]
uint8

StoreType;

SCTS_STRUCT_Numeric32
LockoutThreshold;

SCTS_STRUCT_Numeric32
Duration;

SCTS_STRUCT_Numeric32
ResetDuration;

Methods:

// After Whistler, to support per class configuration & database-less configuration

HRESULT Apply(IN LPTSTR LogFileName OPTIONAL);

3.4.8 SCTS_KerberosTicketSettings

This is the class for kerberos ticket policy

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

 [key]
uint8

StoreType;

SCTS_STRUCT_Numeric32
MaximumAge;

SCTS_STRUCT_Numeric32
MaximumRenewAge;

SCTS_STRUCT_Numeric32
MaximumServiceAge;

SCTS_STRUCT_Numeric32
MaximumClockSpew;

SCTS_STRUCT_Boolean

ValidateClient;

Methods:

// After Whistler, to support per class configuration & database-less configuration

HRESULT Apply(IN LPTSTR LogFileName OPTIONAL);

3.4.9 SCTS_AuditSettings

This is the class for audit policy. This class is defined to handle dynamic audit categories for the new auditing model (beyond Whistler).

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

 [key]
uint8

StoreType;

[ValueMap{“AuditSystemEvents”,”AuditLogonEvents”,”AuditObjectAccess”,”AuditPrivilegeUse”,

“AuditPolicyChange”,”AuditAccountManage”,”AuditProcessTracking”,”AuditDSAccess”,”AuditAccountLogon”}]

string

AuditCategory; // check with the new auditing model (operational audit)

Boolean

AuditSuccess;

Boolean

AuditFailure;

DWORD
Status; // not defined, error, mismatch, match, ….

Methods:

// After Whistler, to support per class configuration & database-less configuration

HRESULT Apply(IN LPTSTR LogFileName OPTIONAL);

3.4.10 SCTS_EventLogSettings

This is the class for event log. There could be up to five instances of this class – application log, system log, security log, DS log, and NTFRS log.

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

 [key]
uint8

StoreType;

SCTS_STRUCT_Numeric32
MaximumSize;

SCTS_STRUCT_Numeric32
RetentionDays;
// dependent on RetentionPeriod

SCTS_STRUCT_Numeric32
RetentionPeriod;

SCTS_STRUCT_Boolean

RestrictGuestAccess;

Methods:

// After Whistler, to support per class configuration & database-less configuration

HRESULT Apply(IN LPTSTR LogFileName OPTIONAL);

3.4.11 SCTS_RegistryValues

This is a class for registry values (security options) supported in SCTS. 0 or more instances of the class could exist for one store.

Q: how to represent the display type/value vs. registry type/value?

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

 [key]
uint8

StoreType;

string

FullPathName;

uint32

RegType; // standard reg types (REG_DWORD, REG_SZ, etc)

string

Value;

uint32

Status;

Methods:

// After Whistler, to support per class configuration & database-less configuration

HRESULT Apply(IN LPTSTR LogFileName OPTIONAL);

3.4.11.1 SCTS_RegistryValueMaps

This class provides detail descriptive information of a registry value.

Properties:

[key]
string
RegFullPathName;
// same as in SCTS_RegistryValues

string
Description;

string
Units;

string
ValueType;

uint32
ValueCount;

string
ValueSets[]

Methods:

None

3.4.12 SCTS_Privileges

This is a class for user rights/privileges supported in SCTS.

Q: how to support both name/SID format? Should accounts always be saved in name format since otherwise, user has to do the translation? Translated names in WMI solve the viewing problem but when user edit the data, how do we determine if names should be saved or SIDs should be saved?

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

 [key]
uint8

StoreType;

string

FullPathName;

uint32

RegType; // standard reg types (REG_DWORD, REG_SZ, etc)

string

Value;

uint32

Status;

[key]
string

PrivilegeName;

string

AccountsAdd;

// multi-sz string

string

AccountsRemove

// multi-sz string

sint8

mode;

uint32

Status;

Methods

Put(LPTSTR AccountName, BYTE mode);

Delete(LPTSTR AccountName, BYTE mode);

// After Whistler, to support per class configuration & database-less configuration

HRESULT Apply(IN LPTSTR LogFileName OPTIONAL);

3.4.13 SCTS_GroupMembers

This is a class defined for group membership.

Q: Same as privileges

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

[key]
uint8

StoreType;

[key]
string

GroupName;

uint32

mode; // add/remove or set

string

MembersAdd;

// multi-sz

string

MembersRemove;

// multi-sz

uint32

status;

Methods

Put(LPTSTR AccountName, BYTE mode);

Delete(LPTSTR AccountName, BYTE mode);

// After Whistler, to support per class configuration & database-less configuration

HRESULT Apply(IN LPTSTR LogFileName OPTIONAL);

3.4.14 SCTS_ObjectACLs

This is a class defined for object (files/keys/DS) ACLs

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

[key]
uint8

StoreType;

[key]
string

ObjectName;

uint32

InheritType;

string

SDDLString;

uint32

Status;

3.4.15 SCTS_Services

This is a class defined for services managed in SCTS (startup type and security descriptor only).

Properties:

[key]
string

StorePath;

[Values{“Template”,”Configuration Database”, “Analysis Database”}] [ValueMap(“1”,”2”,”3”)]

 [key]
uint8

StoreType;

 [key]
string

ServiceName;

uint32

StartupType;

string

SDDLString;

uint32

Status

3.4.16 Other Helpers

typedef _SCTS_STRUCT_Numeric32_ {

DWORD
Setting;

BYTE

UnitID;
// 1=days,2=hours,3=minutes;4=chars;5=passwords;6=logons

DWORD
Status; // e.g., defined, not defined, error, mismatch, …

} SCTS_STRUCT_Numeric32, *PSCTS_STRUCT_Numeric32;

typedef _SCTS_STRUCT_Boolean_ {

BOOL

Setting;

DWORD
Status; // e.g., defined, not defined, error, mismatch, …

} SCTS_STRUCT_Boolean, *PSCTS_STRUCT_Boolean;

typedef _SCTS_STRUCT_Summary_ {

}

3.5 Policy Diagnosis & Planning – RSOP Extension

In Windows 2000, there is no public method of determining what each extension to Group Policy will do or has done with a given list of GPOs and it requires write access to view a GPO. This increases the cost of defining and diagnosing policy for a domain. RSOP (Resultant Set Of Policy) infrastructure will provide the ability.

RSOP is based on WMI, provides public method of exposing what each extension would do or has done, and enables the creation of rich products and tools for diagnostic and planning purposes. To deliver the feature, all group policy extensions including security settings must be RSOP enabled. This means, in terms of work items, SCTS engine must support:

WMI schema for all security settings supported in policy

Log diagnostic data to WMI database

Generate planning data to WMI database

3.5.1 Schema (RSOP Classes)

This section describes the various classes of RSOP Security Settings. The information presented is organized as follows:

<Class_Name>

Description:

Describes the class and explaination of the aspect of group policy that it models.

Schema:

A transcript of the class as it is found in the MOF file

Properties:

<Property_Name>

Description and explanation of the property.

3.5.1.1 RSOP_SECURITY_PasswordPolicy

Class object for password policy.

Class RSOP_SECURITY_PasswordPolicy : RSOP_PolicyObject

{

SCTS_STRUCT_Numeric32
MinimumAge;

SCTS_STRUCT_Numeric32
MaximumAge;

SCTS_STRUCT_Numeric32
MinimumLength;

SCTS_STRUCT_Numeric32
HistoryCount;

SCTS_STRUCT_Boolean

ComplexityEnabled;

SCTS_STRUCT_Boolean

StoreClearText;

SCTS_STRUCT_Boolean

RequireLogonToChangePassword;

// the setting is remarked in Windows 2000, is there a bug somewhere?

SCTS_STRUCT_Boolean

ForceLogoff;

}

3.5.1.2 RSOP_SECURITY_LockoutPolicy

Class object for account lockout policy.

Class RSOP_SECURITY_LockoutPolicy : RSOP_PolicyObject

{

SCTS_STRUCT_Numeric32
LockoutThreshold;

SCTS_STRUCT_Numeric32
Duration;

SCTS_STRUCT_Numeric32
ResetDuration;

}

3.5.1.3 RSOP_SECURITY_KerberosPolicy

Class RSOP_SECURITY_KerberosPolicy : RSOP_PolicyObject

{

SCTS_STRUCT_Numeric32
MaximumAge;

SCTS_STRUCT_Numeric32
MaximumRenewAge;

SCTS_STRUCT_Numeric32
MaximumServiceAge;

SCTS_STRUCT_Numeric32
MaximumClockSpew;

SCTS_STRUCT_Boolean

ValidateClient;

}

3.5.1.4 RSOP_SECURITY_AuditPolicy

Class RSOP_SECURITY_AuditPolicy : RSOP_PolicyObject

{

[ValueMap{“AuditSystemEvents”, ”AuditLogonEvents”, ”AuditObjectAccess”, ”AuditPrivilegeUse”, “AuditPolicyChange”, ”AuditAccountManage”, ”AuditProcessTracking”, ”AuditDSAccess”, ”AuditAccountLogon”}]

string

AuditCategory; // check the new auditing model (operational audit)

Boolean

AuditSuccess;

Boolean

AuditFailure;

DWORD
Status; // not defined, error, mismatch, match, ….

}

3.5.1.5 RSOP_SECURITY_EventLogPolicy

Class RSOP_SECURITY_EventLogPolicy: RSOP_PolicyObject

{

SCTS_STRUCT_Numeric32
MaximumSize;

SCTS_STRUCT_Numeric32
RetentionDays;
// dependent on RetentionPeriod

SCTS_STRUCT_Numeric32
RetentionPeriod;

SCTS_STRUCT_Boolean

RestrictGuestAccess;

}

3.5.1.6 RSOP_SECURITY_RegistryValues

Class RSOP_SECURITY_RegistryValues: RSOP_PolicyObject

{

string

FullPathName;

uint32

RegType; // reg types (REG_DWORD, REG_SZ, etc)

string

Value;

uint32

Status;

}

3.5.1.7 RSOP_SECURITY_Privileges

Class RSOP_SECURITY_Privileges: RSOP_PolicyObject

{

 [key]
string

PrivilegeName;

string

AccountsAdd;

// multi-sz string

string

AccountsRemove

// multi-sz string

sint8

mode;

uint32

Status;

}

3.5.1.8 RSOP_SECURITY_GroupMembers

Class RSOP_SECURITY_GroupMembers: RSOP_PolicyObject

{

[key]
string

GroupName;

uint32

mode; // add/remove or set

string

MembersAdd;

// multi-sz

string

MembersRemove;

// multi-sz

uint32

status;

}

3.5.1.9 RSOP_SECURITY_ObjectACLs

Class object defined for object (files/keys) ACLs

Class RSOP_SECURITY_ObjectACLs : RSOP_PolicyObject

{

[key]
string
ObjectName;

[Values{“Inherit”, “Ignore”, “Overwrite”}] [ValueMap{“0”,”1”,”2”}]

uint32
InheritType;

string
SDDLString;

uint32
Status;

}

3.5.1.10 RSOP_SECURITY_Services

Class object defined for services

Class RSOP_SECURITY_Services : RSOP_PolicyObject

{

[key]
string
ServiceName;

[Values{“Automatic”,”Manual”,”Disabled”}][ValueMap{“2”,”3”,”4”}]

uint32
StartupType;

string
SDDLString;

uint32
Status;

}

3.5.2 Log RSOP data for Diagnosis Mode

A WMI database is used to store the diagnostic data from each policy extension. Every policy extension is responsible to populate its own data into these databases. The diagnostic data on a machine is periodically refreshed in the winlogon group policy propagation engine. This is done via a new registered interface from the extension:

DWORD

WINAPI

SceProcessSecurityPolicyGPOEx(

IN DWORD dwFlags,

IN HANDLE hToken,

IN HKEY hKeyRoot,

IN PGROUP_POLICY_OBJECT pDeletedGPOList,

IN PGROUP_POLICY_OBJECT pChangedGPOList,

IN ASYNCOMPLETIONHANDLE pHandle,

IN BOOL *pbAbort,

IN PFNSTATUSMESSAGECALLBACK pStatusCallback,

IN IwbemServices *pWbemServices

);

The interface must be registered under the same registry key with a name “ProcessGroupPolicyEx”, REG_SZ. This function is called by winlogon/userenv as part of applying group policy as well as logging RSOP data to the WMI database.

In Windows 2000 security policy propagation, GPO templates are cached then imported into the security database (effective policy table). If errors occur during caching/importing, the entire policy set is discarded (to control all policy or zero policy business rule). This is all done in server site in a JET database.

In order to log RSOP data while applying security policy, a new function must be defined (on the client site of SCTS) to support WMI operations (logging). The problems to consider when implementing this function are:

1) Error occurred during caching – no policy will be applied/logged

2) Error occurred during applying – some of the policy are wrong, what to do for RSOP data?

3) Is there transaction concept in WMI database?

4) Partial RSOP data is logged then error occurred, what to do? - rollback

5) Asynchronous support?

6) The account lookups must be done in UI when the data is being viewed because account names could be changed between policy propagations.

DWORD

ScepLogSecurityPolicyRSOPData(

IN IWbemServices *pWbemServices,

IN PGROUP_POLICY_OBJECT pGPOList,

IN BOOL *pbAbort

);

After all GPO templates are successfully imported into security database, this function deletes all RSOP data (from previous propagation) from the WMI database and commits the change. Then this function loads the last (winning) GPO template first and works backward. For a given setting, it searches in the WMI database first to get the precedence #. If the setting doesn’t exist in WMI database, precedence # is 1. (For multi-value type of settings that may come from multiple GPOs, the precedence # is determined in the same logic as the merging.) The setting is logged to WMI with the precedence # and an error code SCEPOLICY_ERROR_NOT_APPLIED for diagnosis mode and SCEPOLICY_SUCCESS for planning mode.

The pWbemServices pointer must be marshell’ed to the server site of SCTS. When any setting is applied, whether successfully or with error, the setting must be logged to RSOP database again with the correct error value (success or the actual error). This is done by utilizing the internal functions implemented in the above log function. Only error cdoe is re-logged to the RSOP database.

Questions:

What if logging fails?

3.5.3 Log RSOP data for Planning Mode

A WMI database is used to store the planning data from each policy extension. Every policy extension is responsible to populate its own data into these databases. The planning data is logged when RSOP tool is manually invoked and all extensions are called. Extensions are invoked via a new registered interface:

DWORD

WINAPI

SceGenerateRSOPSecurityPolicy(

IN DWORD dwFlags,

IN BOOL *pbAbort,

IN WCHAR *pwszSite,

IN PRSOP_TARGET pComputerTarget,

IN PRSOP_TARGET pUserTarget

);

where RSOP_TARGET is defined as:

WCHAR *
pwszAccountName;

WCHAR *
pwszNewSOM;

SAFEARRAY *
psaSecurityGroups;

PRSOPTOKEN
pRsopToken;

PGROUP_POLICY_OBJECT
pGPOList;

IwbemServices *
pWbemServices;

This interface must be registered under the same registry key as Diagnosis mode with a value name “GenerateGroupPolicy”, REG_SZ.

Same ScepLogSecurityPolicyRSOPData function should be called to generate the planning mode RSOP data, following the same logic as diagnosis mode (phase I). This assumes that the pGPOList passed to each extension is already filtered with the security groups.

Questions:

What are the security groups for?

4 Environment Variable Support

Besides the standard system/user environment variables, the following SCTS environment variables should be hardcoded in addition to %SystemDirectory%, and %SystemDrive%:

%BootDrive%

%DSDIT%

%DSLOG%

%SYSVOL%

%CSIDL_COMMON_XXX% values which include:

· CSIDL_COMMON_ADMINTOOLS
File system directory containing administrative tools for all users of the computer.

· CSIDL_COMMON_ALTSTARTUP

File system directory that corresponds to the nonlocalized Startup program group for all users.

· CSIDL_COMMON_APPDATA

Application data for all users. A typical path is C:\Documents and Settings\All Users\Application Data.

· CSIDL_COMMON_DESKTOPDIRECTORY

File system directory that contains files and folders that appear on the desktop for all users. A typical path is C:\Documents and Settings\All Users\Desktop.

· CSIDL_COMMON_DOCUMENTS

File system directory that contains documents that are common to all users. A typical path is C:\Documents and Settings\All Users\Documents.

· CSIDL_COMMON_FAVORITES

File system directory that serves as a common repository for all users' favorite items.

· CSIDL_COMMON_PROGRAMS

File system directory that contains the directories for the common program groups that appear on the Start menu for all users. A typical path is C:\Documents and Settings\All Users\Start Menu\Programs.

· CSIDL_COMMON_STARTMENU

File system directory that contains the programs and folders that appear on the Start menu for all users. A typical path is C:\Documents and Settings\All Users\Start Menu.

· CSIDL_COMMON_STARTUP

File system directory that contains the programs that appear in the Startup folder for all users. A typical path is C:\Documents and Settings\All Users\Start Menu\Programs\Startup.

· CSIDL_COMMON_TEMPLATES

File system directory that contains the templates that are available to all users. A typical path is C:\Documents and Settings\All Users\Templates.

· %ComputerName% or %DomainName% (in Account names and SDDL)

4.1 Implementation Design

4.1.1 Database Changes

Define a new column in the configuration tables (including local table, and policy tables) for environment variable ID – EnvID, SINGLE type.

Define a new table dynamically for environment variables used. The table will have 3 columns:

EnvID, EnvName, EnvValue.

Define three indexes in the table, for each of the three columns.

The EnvID will be automatically incremented for a new env variable. The table will be deleted (ID reset to 0) when a template is imported into the database with “overwrite” mode.

4.1.2 Import Templates

4.1.2.1 Account Names

Account names in SDDL strings, user rights, and group members could contain %ComputerName% and %DomainName% for any account domain accounts. These accounts must be translated into the appropriate account SIDs (or names with machine name) when the template is imported into a database. This requires:

Define a function to replace %ComputerName% with the real computer name and %DomainName% with the primary domain name. This function should be called for all SDDL strings, user right list and group list (group name and members list).

4.1.2.2 Files

· Add CSIDL_COMMON_XXX variables to the hardcoded SCTS environment function “ScepTranslateFileDirName”

· Change environment variable lookup routine to lookup system standard environment first, then lookup the hardcoded SCTS variables. This change is to ensure that system standard environment variables take precedence.

· Write a function to detect boot drive. This requires some setup code to query the boot sector.

SCESTATUS

ScepGetBootDrive(LPTSTR szBootDrive,

 DWORD *dwLen);

· Write a function to get location for %DSDIT% and %DSLOG%. This requires coordination with DS group (to have them posted) or have SCTS to post them in dcpromo.

SCESTATUS

ScepGetDSLocation(LPTSTR szDSDIT,

 DWORD nFlag,

 DWORD *dwLen);

· Write a function to get location for %SYSVOL%. This requires working with net share apis to query the path of share “SYSVOL”. But note that this share is not ready to be published in dcpromo and at boot time. So SCTS has to be able to handle the case when this share doesn’t exist.

SCESTATUS

ScepGetSharePath(LPTSTR ShareName,

LPTSTR szSharePath,

DWORD *dwLen

);

· All environment variables will be stored in a environment variable table so that when the configuration is exported, the correct environment variable is used. The configuration table is linked to the environment table with EnvID.

SCESTATUS

ScepAddEnvironmentVariable(

IN LPTSTR EnvName,

IN LPTSTR EnvValue,

OUT DWORD *ID

);

4.1.3 Export Templates

The configuration stored in a database (either imported from a template, or defined directly through UI) doesn’t contain any environment variable. All environment variables defined in a security template are mapped to the system locations during importing. So when exporting from a database configuration, the machine-specific path should be converted back to environment variables. This could be done by mapping the individual object setting to the “environment variable” table by EnvID.

SCESTATUS

ScepReverseEnvironmentVariable(

IN LPTSTR ObjectName,

IN DWORD EnvID,

OUT LPTSTR *ExportName

);

Since the environment variables used to import the security templates are saved within a database, configuration exported from a database that is copied from a different machine or is remotely connected will use the same environment variables as used in importing.

Another option should be defined for the export function: /independent. This option will map the account domain accounts in SDDL strings, user rights, and restricted groups to %ComputerName% or %DomainName% before exporting into the template.

SCESTATUS
ScepReverseAccountDomainAccounts(

IN LPTSTR szAccount, // could be SID format or name format

OUT LPTSTR *ExportName

);

4.2 Notes for UI

The UI should support two modes of template modification corresponding to whether or not we automatically provide environment variable conversion:

If Automatic Environment Variable Conversion is ON:

We automatically display and store all recognized environment variables (system or hardcoded) whenever the user chooses a path that can be expressed in terms of an environment variable.

If Automatic Environment Variable Conversion is OFF:

We never convert anything for the user and accept environment variables only when the user explicitly types them in.

Toggling Automatic Environment Variable Conversion only affects future modifications.

5 Object Names in Wildcard

When using SCTS in Windows 2000 to define templates, we realized that there is a need to support wildcard (*) in object names, for example, unknown object names in the path or duplicate object settings. When a portion of a key (full name) contains a dynamically generated name, there is no way to define a static template for the exact key name. When a lot of files under a directory share the same permission setting, it will take time to define each one of them in a template and it will take more memory/time to process each one of them.

On analysis, any object included by the regular expression should be called out explicitly if there is a mismatch.

For file system and registry objects, the * may appear in any portion of the path, except the root directory. For example,

· %systemroot%*

· %systemdirectory%*.dll

· MACHINE\System\CurrentControlSet\Control\Class*\Properties

Print Security section also has a need for wildcard printer names because same type of printers or printers within a division could share the same setting. Wildcard printer name is documented in section 3 (spooler security).

For printer objects, since they do not have a hierarchy, it only makes sense to support the * at the root (which is also the leaf) level. For example,

· *

· HP*

5.1 Implementation Design

In Windows 2000, when file/registry key objects are to be processed, they are first loaded into memory in a tree hierarchy. When a lot of objects are defined, the memory taken to build the tree will increase, which puts a limitation on how many objects (in configuration) we could process.

With support of wildcard names that represent a lot of objects, it will get us into the above trouble if each single object is expanded into the tree. So the design is to save wildcard object names in configuration table and dynamically expand the objects when configuring/analyzing. This brings up questions 1) how to compute the inherited security information for wildcard objects, 2) how to configure/analyze system using the tree containing wildcard names, and 3) how to report analysis result to users.

Remember that file object name could also contain environment variables, in addition to wildcard path names, for example, %windir%\system32*.dll. Environment variables will be expanded at importing, as designed in “Environment Variable Support” section. This section focuses on wildcard support only.

5.1.1 Building the object tree

When configuring/analyzing objects, the object tree is built in order to compute inherited security. For wildcard object names, if the wildcard (*) is not in a leaf node (the last part of the object name), it will be expanded dynamically when building the tree and all expanded objects are added to the tree. If the wildcard (*) is in the last part though, it won’t be expanded because all of the objects share the same kind of inheritance and there is no configuration object underneath (to depend on the inherited info from the wildcard nodes).

When analyzing, each individual object will be analyzed based on configuration (either a wildcard object setting, or explicitly defined object setting). If mismatch is determined, the individual object name is saved to the analysis table. In order for UI to display how is the mismatch status determined, the configuration setting based on must be linked. For this purpose, the original object name (with or without wildcard) must be stored in the tree together with the expanded object name, so both names can be saved to analysis result table.

When computing the inherited security information, it’s important to know if an object is a container because inherited security could be different depending on this attribute (container inherit or object inherit). For wildcard objects, it’s stored in one node in the tree but it could represent both containers and non-containers. To handle this case, two different security should be computed, one for container, one for non-container. When configuring/analyzing the wildcard objects, if an object is a container, the container- inherited security will be used to process the object and all of its children; otherwise, the object-inherited security will be used for the object only.

SCTS inheritance mode (Overwrite/inherited/ignore) for wildcard objects should be treated the same way as it’s defined for a regular object. The wildcard objects will be enumerated and each object (tree) found will be processed based on the inheritance mode flag (calling marta or NT security apis).

5.1.2 Analysis Result and View

Only the mismatched objects are saved in the analysis result table. Not configured objects are not saved as Windows 2000 does.

Each mismatched object has a link to the configuration object from which the mismatch status is determined. For a given configuration object, all mismatched child objects can be queried based on this link. See more detail information in the Partial Tree Object View under UI design.

If there is no configuration information for the object section, no object is analyzed and displayed.

Q: Should all drives/registry hives be analyzed even though they are not defined in the configuration? This is useful to know if a drive doesn’t support ACL (FAT system) or other drives are available on the system. If all drives are to be analyzed, only the root level is analyzed. – how is this information being viewed then ?

5.1.3 Editing

Security of existing configuration objects can be modified (which will erase all mismatch’ed info resulted from the object and the node will become “not analyzed”)

New configuration object(s) can be added (including wildcards). The item will become “not analyzed”. If the new added object falls into an existing tree, only the subtree is affected.

Existing interface SceUpdateObjectInfo is used to save the editing.

5.1.4 Database changes

Must add another column to the analysis result table for the original object name that analysis of the object is based on). This link is set as the primary key which is used to query all mismatch objects under a given configuration object. The column defined as below:

OrignalName, BINARY type, 1024 Bytes, must not be NULL.

Key: OriginalName=OriginalName+Name

Since there is a table change, any old database with analysis information shouldn’t be allowed to open. This is controlled by a version #. No data migration is needed. For old databases, all it needs is to re-analyze with the configuration information in the database.

5.1.5 Structure Changes

Existing structures for objects can be used.

5.1.6 Interface Changes

5.1.6.1 ScepObjectNameDefined

BOOL

ScepObjectNameDefined(

IN PWSTR ObjectName,

IN PWSTR WildcardName

);

This function matches an object name with an object name or wildcard object name. This is used when configuring objects under a given container to determine if the inherited security from its parent should be used, or explicitly defined security from the configuration should be used. In Windows 2000, this is done by string comparing the object names. But since we are going to support wildcard names, an individual object name could match a wildcard object name.

5.1.6.2 SceQueryObject/ SceFreeEnumHandle

#define SCE_OBJECT_FILTER_SD
0x1

#define SCE_OBJECT_QUERY_ALL

0x2

SCESTATUS

SceQueryObject(

IN PVOID

hProfile,

IN SCETYPE

ProfileType,

IN AREA_INFORMATION
Area,

IN PWSTR

StringFilter OPTIONAL,

IN DWORD

dwQueryFlag,

IN OUT PVOID

*EnumHandle,

OUT PSCE_OBJECT_CHILDREN *Buffer

);

This function is used to query (w/ optional filter) objects defined in the configuration or analysis results (mismatched objects) in the analysis table. ProfileType determines which table to get information from the database (hProfile) and Area determines if registry section or file section should be queried.

For configuration information (SCE_ENGINE_SMP), the filter can be an object name or prefix, or a security descriptor string (for example, query for all objects allow every full control “(A;CIOI;GA;;;WD)”). If the filter is a security descriptor string, SCE_OBJECT_FILTER_SD bit must be specified in dwQueryFlag; otherwise, filter is treated as object name prefix if it’s not NULL.

For analysis information query (SCE_ENGINE_SAP), the filter can be a configuration object name (may contain wildcard) for which mismatched children are queried. If the filter field is NULL and SCE_OBJECT_QUERY_ALL is defined, all mismatched children under the section are returned.

This function also supports multiple enumerations for the case when the number of objects is too big to be returned in one call. If there are more pending objects for the same filter, SCESTATUS_SUCCESS is returned, with a EnumHandle. The EnumHandle must be used for further calls. When the enumeration is done, the EnumHandle must be closed by SceFreeEnumHandle.

SCESTATUS

SceFreeEnumHandle(IN PVOID EnumHandle);

5.1.6.3 Remove SceGetObjectChildren

This interface is replaced by SceQueryObject.

5.1.6.4 SceUpdateObjectInfo

The prototype of this interface is not changed but the logic of this interface in engine is changed (simplified). This function will save the updated information to the configuration object record and delete all mismatched children resulted from the old configuration info. The analysis status of this object becomes “not analyzed”.

5.2 Notes for UI

Based on the analysis information returned from engine, UI can arrange the data into different views. In this version, we should at least support the following views

5.2.1 Partial Tree View for objects

This view is the main view we will support. All configuration objects will be first displayed in a flat list, with match/mismatch status plus optional number of mismatches under each object. When an object is expanded, all mismatched children under the objects are presented in either flat view or tree view format. Please note that all children under here are determined “mismatched” based on the configuration information of the object (directly or indirectly).

Same question here: if all drives/hives are to be analyzed even if they are not defined in the configuration, how are they displayed in this view ?

5.2.2 Flat Analysis View for objects

This view format lists all mismatched objects in a flat list. Later one, this view could be extended to allow query and filter. This view could also break the limit of the AREA concept and list all mismatched items (including policies and etc) in a one flat list.

Analysis summary could also be provided at this view.

6 Support SMB Security – File Server

In order to secure file server, LanManServer/Rdr related security settings must be configured/analyzed in SCTS. Some of the settings are already configured in “Security Options” node in Windows 2000. We need to support the full security settings described in the requirement spec (scodyssey.doc). In summary, the features to support for SMB security:

Default DACL for new shares

Allow Power Users to create shares

Make share security equal NTFS security

Remove all non auto-admin shares

Remove all non auto-admin/CD shares

Remove all auto admin shares

Named pipes which can be accessed anonymously

Shares which can be accessed anonymously

EnableSecuritySignature

RequireSecuritySignature

Amount of idle time required before disconnecting a session

Hide server from browsing lists

RequireEnhancedChallengeResponse

SendNTResponseOnly

RestrictNullSessAccess

6.1 Implementation Design

6.1.1 Remove SMB Extension

Remove the extension structure for SMB server. SMB security should be implemented within the core engine rather than as an extension.

6.1.2 New Structures

1. Define structures for SMB settings

typedef struct SCE_SHARES_ {

 PWSTR ShareName;

 DWORD Flag; //1 = admin share; 2 = CD shares; 3 = non auto-admin shares

 struct SCE_SHARES_ *Next;

} SCE_SHARES, *PSCE_SHARES;

typedef struct SCESHARE_SECURITY_ {

 PWSTR ShareName;

 PWSTR FilePath;

 PSECURITY_DESCRIPTOR pShareSecurity;

 PSECURITY_DESCRIPTOR pFileSecurity;

 DWORD Status;

 struct SCESHARE_SECURITY *Next;

} SCESHARE_SECURITY, *PSCESHARE_SECURITY;

typedef struct _SCESMB_INFO_ {
 PSECURITY_DESCRIPTOR pDefaultSD;

 BYTE AllowPowerUsersCreateShare;

 BYTE ShareACLSameWithNTFS;

 PSCESHARE_SECURITY pDifferentACLShares; // analysis only

 BYTE RemoveShares;

// 0x1 – remove non auto-admin shares

// 0x2 – remvoe auto-admin shares

// 0x4 – remove non auto-admin/CD shares

 PSCE_SHARES pExceptionShares; // analysis only

 PWSTR NullSessionPipes;
//MULTI-SZ type

 PWSTR NullSessionShares;
// MULTI-SZ type

 BYTE EnableSecuritySignature;

 BYTE RequireSecuritySignature;

 DWORD AutoDisconnect;

 BYTE HideServer;

 BYTE RequireECR;

 BYTE SendNTResponseOnly;

 BYTE RestrictNullSessionAccess;

 } SCESMB_INFO, *PSCESMB_INFO;

2. Link the SMB info structure (PSCESMB_INFO) into PSCE_PROFILE_INFO structure

typedef struct SCE_PROFILE_INFO_ {

:

:

PSCESMB_INFO pSmbInfo;

}

3. Define a new INF section. All SMB information is stored in this section.

static const WCHAR szSmbInfo[] = L"File Share Security”

[File Share Security]

DefaultSecurityDescriptor = <SDDL string>

AllowPowerUsersCreateShare = 0 or 1

ShareACLSameWithNTFS = 0 or 1

;
0x1 – remove non auto-admin shares

;
0x2 – remvoe auto-admin shares

;
0x4 – remove non auto-admin/CD shares

RemoveShares = 0,1,2,3,4,or 6

NullSessionPipes = a,b,c

NullSessionShares = x,y,z

EnableSecuritySignature = 0 or 1

RequireSecuritySignature = 0 or 1

AutoDisconnect = 0 or n

HideServer = 0 or 1

RequireECR = 0 or 1

SendNTResponseOnly = 0 or 1

RestrictNullSessionAccess = 0 or 1

6.1.3 Database Changes

· Add a new section for SMB info to the section table (by changing SceJetpAddAllSections for section szSmbInfo)

· All SMB settings are stored under szSmbInfo section in the database

· Should be able to handle database upgrade – if SMB section doesn’t exist, it should be added dynamically in order to handle upgrade from Windows 2000.

· For analysis result table, there are two more read only SMB settings, one is the list of shares that have different security than NTFS, the other is the list of shares that are not removed.

· The first setting is only analyzed when flag ShareACLSameWithNTFS is set to 1 and file system is NTFS. The analysis result of this setting is stored under key “DifferentACLShares” and all shares are stored in multi-sz format and info for one share is stored in the sequence of “ShareName, NTFSPath, ShareSecurity,NTFSSecurity”.

· The second setting is only analyzed when flag “RemoveShares” is set. The analysis result of this setting is stored under key “RemainingShares” and all shares are stored in multi-sz format. Each share is stored in the sequence of “ShareName,ShareType”.

6.1.4 Area Redefinition

More security areas are covered by SCTS, for example, SMB security or print security. They are not necessarily related to services. To make SCTS engine consistent with UI display and be expandable, the AREA_INFORMATION is redefined as follows:

#define AREA_PASSWORD_POLICY
0x0001

#define AREA_ACCOUNT_LOCKOUT
0x0002

#define AREA_KERBEROS_POLICY
0x0004

#define AREA_AUDIT_POLICY

0x0008

#define AREA_PRIVILEGES

0x0010

#define AREA_REGISTRY_VALUES
0x0020

#define AREA_EVENT_LOGS

0x0040

#define AREA_FILE_SECURITY

0x0080

#define AREA_REGISTRY_KEYS
0x0100

#define AREA_SYSTEM_SERVICES
0x0200

#define AREA_FILE_SHARING

0x0400

#define AREA_PRINT_SECURITY
0x0800

#define AREA_EXTENSIONS

0x8000

6.1.5 New Functions

The SMB security settings will be handled within AREA_FILE_SHARING so existing exported APIs can be used to query/save the info.

Define private functions to handle read/write SMB info from/to security templates as well as Jet databases. Functions to configure and analyze SMB settings are also needed (invoked by the main SCTS configuration / analysis engine).

1. Define SceInfpGetSmbInfo to read SMB settings from an INF template. This function is called in SceInfpGetSecurityProfileInfo when AREA_FILE_SHARING is requested

SCESTATUS

SceInfpGetSmbInfo(

 IN HINF hInf,

 OUT PSCESMB_INFO * ppSmbInfo,

 OUT PSCE_ERROR_LOG_INFO *Errlog OPTIONAL

);

2. Define SceInfpWriteSmbInfo to write SMB settings to an INF template. This function is called in ScepWriteSecurityProfile when AREA_FILE_SHARING is requested.

SCESTATUS

SceInfpWriteSmbInfo(

 IN PCWSTR ProfileName,

 IN PSCESMB_INFO pSmbInfo,

 IN BOOL bOverwrite,

 OUT PSCE_ERROR_LOG_INFO *Errlog OPTIONAL

);

3. Define ScepGetSmbInfo to read SMB settings from a database table. This function is called in ScepGetDatabaseInfo when AREA_FILE_SHARING is requested.

SCESTATUS

ScepGetSmbInfo(

 IN PSCECONTEXT hProfile,

 IN SCETYPE ProfileType,

 OUT PSCESMB_INFO * ppSmbInfo,

 OUT PSCE_ERROR_LOG_INFO *Errlog OPTIONAL

);

4. Define ScepAnalyzeSmbInfo to analyze SMB settings based on the configuration. This function is called in ScepAnalyzeStart when AREA_FILE_SHARING is requested. When flag ShareACLSameWithNTFS is set to 1 and file system is NTFS, all shares will be enumerated and their security is compared with NTFS security. If any one share has different security than NTFS, the share is stored to “DifferentACLShares” in the analysis result table. When flag RemoveShares is set, depending on the value of the flag, all admin/non admin shares are enumerated and stored to “RemainingShares” in the analysis result table.

SCESTATUS

ScepAnalyzeSmbInfo(

 IN PSCECONTEXT hProfile,

 IN PSCESMB_INFO pSmbInfo

);

5. Define ScepConfigureSmbInfo to configure SMB settings with the configuration info. This function is called in ScepConfigureSystem when AREA_FILE_SHARING is requested. When flag “ShareACLSameWithNTFS” is set, this function should first check if the file system is NTFS. If it’s not NTFS system, the flag is ignored. Otherwise, query security from NTFS and set the same security to the share.

SCESTATUS

ScepConfigureSmbInfo(

 IN PSCESMB_INFO pSmbInfo

);

6. Define ScepUpdateSmbInfo to update SMB settings (changes from UI). This function is called in ScepUpdateDatabaseInfo and ScepUpdateLocalTable.

SCESTATUS

ScepUpdateSmbInfo(

 IN PSCECONTEXT hProfile,

 IN PSCESMB_INFO pSmbInfo,

 IN PSCESMB_INFO pBufScep OPTIONAL,

 IN PSCESMB_INFO pBufSap OPTIONAL,

 IN DWORD dwMode

);

6.1.6 Interface Changes

7. Modify functions to add szSmbInfo section and handle PSCESMB_INFO structure.

SceFreeMemory

ScepDeleteInfoForAreas

SceJetConvertInfToJet

ScepCopyLocalToMergeTable

SceRpcBrowseDatabaseTable

8. Modify functions to handle SMB settings through RPC interface (due to the security descriptor binary type)

SceRpcGetDatabaseInfo (convert the RPC buffer into SCE buffer type)

ScepMergeBuffer(SceGetSecurityProfileInfo) to merge buffer returned from RPC

9. Handle SMB section in policy

SceGetAreas

ScepDcPromoSharedInfo (create default policy)

10. Modify all functions related to AREA_INFORMATION for the new area definitions. This should be just mechanic works to replace old area information with the new definitions. Note, this change should be cooperated with UI and cmd tool (since both tools request info and invoke tasks based on area information).

6.2 Notes for UI

6.2.1 Scope Pane Changes

Define a new node “File Sharing” for SMB settings in the top level hierarchy. The new node belongs to AREA_FILE_SHARING.

6.2.2 Result Pane Changes

In the result pane of “File Sharing” node, all SMB settings described above are displayed in the flat scope.

7 Support Print Security – Print Server

In order to secure print server, spooler related security settings must be configured/analyzed in SCTS. In summary, the features to support for spooler security:

Remove all Print Shares

Default DACL for new printers (this is hardcoded in spooler??)

(Existing) Printer Security – no add/remove printer is supported

Secure spool directory

Prevent users from installing printers

Load print drivers from trusted server only

Server to load print driver (dependency)

Web-based printer

Hide printers

Automatically publish new printers in Active Directory

Allow printers to be published

7.1 Implementation Design

7.1.1 New Structures

1. Define structures for spooler settings

Typedef struct _SCEPRINT_SECURITY_INFO_ {

 PWSTR PrinterName;

 PSECURITY_DESCRIPTOR pPrinterSD;

 DWORD Status;

 Struct SCEPRINT_SECURITY_INFO *Next;

} SCEPRINT_SECURITY, *PSCEPRINT_SECURITY;

typedef struct _SCEPRINT_INFO_ {
 PSECURITY_DESCRIPTOR pDefaultSD;

 BYTE RemoveAllPrintShares;

 PSCE_SHARES pRemaingShares; // analysis only

 BYTE SecureSpoolDirectory; // default (secure) DACL is hardcoded ??

 BYTE AddPrintDriver;

 BYTE LoadTrustedDriver;

 PWSTR TrustPrintPath;

 BYTE AllowWebPrinting;

 BYTE HidePrinters;

 BYTE AllowPrinterPublished;

 BYTE AutoPublishPrinter;

 PSCEPRINT_SECURITY pPrinterSecurity;

 } SCEPRINT_INFO, *PSCEPRINT_INFO;

2. Link the spooler info structure (PSCEPRINT_INFO) into PSCE_PROFILE_INFO structure

typedef struct SCE_PROFILE_INFO_ {

:

:

PSCEPRINT_INFO pPrintInfo;

}

3. Define two new INF sections. General spooler information is stored in one section “Spooler Info” and all printers are stored in the other section “Printer Security”.

static const WCHAR szSpoolInfo[] = L"Spooler Info”

static const WCHAR szPrinterSecurity[] = L”Printer Security”

[Spooler Info]

DefaultPrinterSecurity = <SDDL string>

RemoveAllPrintShares = 0 or 1

SecureSpoolDirectory = 0
or 1

AddPrintDriver = 0 or 1

LoadTrustedDriver = 0 or 1

TrustPrintPath = a,b,c ; multi-sz

AllowWebPrinting = 0 or 1

HidePrinters = 0 or 1

AllowPrinterPublished = 0 or 1

AutoPublishPrinter = 0 or 1

[Printer Security]

<PrinterName>,flag,<SDDL string>

:

7.1.2 Database Changes

· Add two new sections to the section table for spooler security (by changing SceJetpAddAllSections for section szSpoolInfo and szPrinterSecurity)

· General spooler info is stored in szSpoolInfo section and all printer security is stored in szPrinterSecurity section.

· Should be able to handle database upgrade – if spooler section doesn’t exist, it should be added dynamically in order to handle upgrade from Windows 2000.

· For analysis result table, there is a read only spooler setting - the list of print shares that are not removed. This setting is only analyzed when flag RemoveAllPrintShares is set to 1. The analysis result of this setting is stored under key “RemainingPrintShares” and all shares are stored in multi-sz format.

7.1.3 New Functions

The spooler security settings will be handled within AREA_PRINT_SECURITY so existing exported APIs can be used to query/save the info.

Define private functions to handle read/write spooler info from/to security templates as well as Jet databases. Functions to configure and analyze spooler settings are also needed (invoked by the main SCTS configuration / analysis engine).

· Define SceInfpGetPrintInfo to read spooler settings from an INF template. This function is called in SceInfpGetSecurityProfileInfo when AREA_PRINT_SECURITY is requested

SCESTATUS

SceInfpGetPrintInfo(

 IN HINF hInf,

 OUT PSCEPRINT_INFO * ppPrintInfo,

 OUT PSCE_ERROR_LOG_INFO *Errlog OPTIONAL

);

· Define SceInfpWritePrintInfo to write spooler settings to an INF template. This function is called in ScepWriteSecurityProfile when AREA_PRINT_SECURITY is requested.

SCESTATUS

SceInfpWritePrintInfo(

 IN PCWSTR ProfileName,

 IN PSCEPRINT_INFO pPrintInfo,

 IN BOOL bOverwrite,

 OUT PSCE_ERROR_LOG_INFO *Errlog OPTIONAL

);

· Define ScepGetPrintInfo to read spooler settings from a database table. This function is called in ScepGetDatabaseInfo when AREA_PRINT_SECURITY is requested.

SCESTATUS

ScepGetPrintInfo(

 IN PSCECONTEXT hProfile,

 IN SCETYPE ProfileType,

 OUT PSCEPRINT_INFO * ppPrintInfo,

 OUT PSCE_ERROR_LOG_INFO *Errlog OPTIONAL

);

· Define ScepAnalyzePrintInfo to analyze spooler settings based on the configuration. This function is called in ScepAnalyzeStart when AREA_PRINT_SECURITY is requested. When flag RemoveAllPrintShares is set to 1, all print shares will be enumerated and stored to “RemainingPrintShares” in the analysis result table. When flag “SecureSpoolDirectory” is set to 1, the spool directory (queried from registry) and its all subdirectories/files will be analyzed with the default (secure) DACL (hardcoded?). If there is any difference, the spool directory is treated not secure and this flag in analysis result table is set. Note that if the spool directory is configured in file system section, it will have different security than the default DACL but it may not be unsecure.

SCESTATUS

ScepAnalyzePrintInfo(

 IN PSCECONTEXT hProfile,

 IN PSCEPRINT_INFO pPrintInfo

);

· Define ScepConfigurePrintInfo to configure spooler settings with the configuration info. This function is called in ScepConfigureSystem when AREA_PRINT_SECURITY is requested. When flag “RemoveAllPrintShares” is set, all print shares will be enumerated and deleted. When flag “SecureSpoolDirectory” is set, first this function queries the spool directory from registry then set the default DACL to this directory and all of sub-directories/files. Note, if the spool directory is also configured in file system security section with a different DACL, depends on which section is executed first, one of them will not work as expected (overwritten by the last write).

SCESTATUS

ScepConfigurePrintInfo(

 IN PSCEPRINT_INFO pPrintInfo

);

· Define ScepUpdatePrintInfo to update spooler settings (changes from UI). This function is called in ScepUpdateDatabaseInfo and ScepUpdateLocalTable.

SCESTATUS

ScepUpdatePrintInfo(

 IN PSCECONTEXT hProfile,

 IN PSCEPRINT_INFO pPrintInfo,

 IN PSCEPRINT_INFO pBufScep OPTIONAL,

 IN PSCEPRINT_INFO pBufSap OPTIONAL,

 IN DWORD dwMode

);

7.1.4 Interface Changes

· Modify functions to add szSpoolInfo and szPrinterSecurity sections and handle PSCEPRINT_INFO structure.

SceFreeMemory

ScepDeleteInfoForAreas

SceJetConvertInfToJet

ScepCopyLocalToMergeTable

SceRpcBrowseDatabaseTable

· Modify functions to handle spooler settings through RPC interface (due to the security descriptor binary type)

SceRpcGetDatabaseInfo (convert the RPC buffer into SCE buffer type)

ScepMergeBuffer(SceGetSecurityProfileInfo) to merge buffer returned from RPC

· Handle spooler sections in policy

SceGetAreas

ScepDcPromoSharedInfo (create default policy)

7.2 Notes for UI

7.2.1 Scope Pane Changes

The UI should expose “Print Sharing” in the top level hierarchy with one subnode (Printer Permissions). The new nodes belong to AREA_PRINT_SECURITY.

7.2.2 Result Pane Changes

In the result pane of “Print Sharing” node, all general print settings described above are displayed in the flat scope. In the result pane of “Printer Permissions” node, all printers with their permissions are displayed.

8 Support IIS Security – Web Server

IIS security is supported in IIS extension of SCTS. As an extension, it follows the spec for SCTS attachments, namely, it has an engine to configure/analyze/update IIS related security; it also has an UI to display/manage IIS security aspects. IIS engine is invoked by SCTS engine via well-known interfaces. IIS UI is expanded under SCTS UI (“Extensions” node) when the node is expanded. IIS UI communicates with SCTS UI for querying/setting information. SCTS UI then passes the information/requests to SCTS engine. SCTS engine then invokes IIS engine for the detail processing.

The attachment framework is already defined in Windows 2000 but there is no real attachment implemented and there are some known bugs with the framework. In Odyssey, the attachment framework should be refined, with IIS extension as the first attachment in production.

IIS security is only a portion of web server security. This extension focuses on IIS metabase security. For a secure web server, security aspects of the OS and other components (such as TCP) should also be configured. These aspects will be discussed in the TCP extension and in core SCTS feature enhancements (later).

8.1 Implementation Design – IIS Extension Engine:

IIS extension engine will be registered as “SceIISSecurity” so this will also be the section name in INF templates and JET databases.

For FTP service, the following settings will be configured/analyzed in IIS extension:

Any virtual directory permission (Permission)
- any level

Logging (AllowLogging)

- any level

Log format (LogFormat)

- svc,site,root level only

Restrict sites (IP address) to users (RestrictIP)
- any level

Connection timeout (ConnectionTimeout)

- svc and site level only

RemoveVirtualDirectory (RemoveDirectory)
- any level

Remove script mappings (RemoveScriptMappings)
- any level

Analyze log for attack (AttackKeywords)

- any level

Allow Anonymous FTP (AllowAnonymous)

- svc, site level only

Anonymous FTP only (AnonymousOnly)

- svc, site level only

For W3C service, the following settings will be configured/analyzed in IIS extension:

Authentication Method (AuthMethod)

- any level

Any virtual directory permission (Permission)
- any level

Logging (AllowLogging)

- any level

Log format (LogFormat)

- svc,site,root level only

Restrict sites (IP address) to users (RestrictIP)
- any level

Connection timeout (ConnectionTimeout)

- svc and site level only

Server only indexing (AllowServerIndex)

- any level except virtual file

RemoveVirtualDirectory (RemoveDirectory)
- any level

Remove script mappings (RemoveScriptMappings)
- any level

Analyze log for attack (AttackKeywords)

- any level

Disable IP address in content location (DisableIPContent) – svc, site level only

Disable parent path (DisableParentPath)

- any level

Disable #exec (DisableExecInclude)

- any level

Allow HTTP keep alive (AllowKeepAlive)

- svc and site level only

8.1.1 Types

This section explains all FTP and W3C settings and their value types/ranges. The value type and range will determine how these settings are stored in INF/JET and how should UI display these settings. Some of the settings are only analyzable (not configurable).

	Value Name
	Value Type
	Value Range
	Comment

	AuthMethod
	Number
	1,2,3
	1 - AuthAnonymous

2 - AuthBasic

3 - AuthNTLM

	Permission
	String
	SDDL string
	Must use IIS defined access mask flags

	AllowLogging
	Number
	0 or 1
	0 – don’t log

1 – log

	LogFormat
	String (MULTI-SZ)
	Log field names separated by comma
	Log field names must be IIS pre-defined

	RestrictIP
	
	
	

	ConnectionTimeout
	Number
	0 – max
	In minutes

	AllowServerIndex
	Number
	0 or 1
	0 – don’t allow

1 – allow indexing

	RemoveDirectory
	Number
	0 or 1
	0 – don’t remove

1 – remove

	RemoveScriptMappings
	Number
	0 or 1
	0 – don’t remove

1 – remove

	AttackKeywords
	String (MULTI-SZ)
	Keywords separated by comma, such as msadcs
	This is a analysis only setting

	DisableIPContent
	Number
	0 or 1
	0 – don’t disable

1 – disable

	DisableParentPath
	Number
	0 or 1
	0 – don’t disable

1 – disable

	DisableExecInclude
	Number
	0 or 1
	0 – don’t disable

1 – disable

	AllowKeepAlive
	Number
	0 or 1
	0 – don’t allow

1 – allow keep alive

	AllowAnonymous
	Number
	0 or 1
	0 – don’t allow

1 – allow

	AnonymousOnly
	Number
	0 or 1
	0 – allow non anonymous

1 – only anonymous

8.1.2 INF/JET layout

All IIS metabase security information is stored in one section in object hierarchy layout, as registry keys. The root of each object could be public/, private/, default/, or a site name (e.g., microsoft.com). Following the root name, FTP or WWW are used to differenciate security settings for FTP service or W3C service. Then the virtual directory/file path follows. The real security setting name follows the virtual path, separated with a “.”

[SceIISSecurity]

public/WWW/AuthMethod = 1 or 2 or 3

public/WWW/Permission = <SDDL string>

:

private/FTP/AllowAnonymous = 0 or 1

Private/FTP/root/AttackKeywords = <keywords separated by ,>

:

microsoft.com/WWW/root/scripts/RemoveScriptMappings = 0 or 1

8.1.3 Structures

When above settings are queried via SCTS engine, the settings are returned in the general attachment buffer (array of Key and Value, defined in scesvc.h). Since IIS settings apply to IIS virtual directories/files in metabase and structure of the metabase is just like registry (keys and values), the buffer returned from SCTS engine must be re-arranged into object hierarchy in order to configure/analyze.

IIS metabase interfaces/APIs handle inheritance of attributes. Attributes set on a top level parent will bet automatically propagated to all of its children. So for configuration, attributes should be configured in top-down order for the objects specified in the configuration template. Order doesn’t matter for analysis but all metabase objects should be analyzed to determine status of “match/mismatch/not defined.

Note, virtual directory names could also contain wildcard (*). When rearranging the buffer (for configuration/analysis), the wildcards will be expanded to map to the real metabase objects.

One configuration may map to multiple analysis. For example, wildcard objects, or the public/private templates that are applied to all public/private sites. The question is how to do the mappings between one configuration and multiple analysis?

8.1.3.1 SCEIIS_ANY

typedef struct SCEIIS_ANY_ {

PSECURITY_DESCRIPTOR
pSDPermission;

BYTE

bLog;

BYTE

bRemoveDirectory;

BYTE

bRemoveScriptMappings;

PWSTR

mszAttackKeywords;

PWSTR

szRestrictIP;

} SCEIIS_ANY, *PSCEIIS_ANY;

8.1.3.2 SCEIIS_FTP_ANY

typedef
SCEIIS_FTP_ANY
SCEIIS_ANY;

typedef
PSCEIIS_FTP_ANY
PSCEIIS_ANY;
8.1.3.3 SCEIIS_FTP_ROOT

SCEIIS_AN

typedef struct SCEIIS_FTP_ROOT_ {

PWSTR

mszLogFormat;

struct SCEIIS_ANY_
AttributeAny;

} SCEIIS_FTP_ROOT, *PSCEIIS_FTP_ROOT;

8.1.3.4 SCEIIS_FTP_SITE_SVC

typedef struct SCEIIS_FTP_SITE_SVC_ {

BYTE

bAllowAnonymous;

BYTE

bAnonymousOnly;

PWSTR

mszLogFormat;

DWORD

dwConnectionTimeout;

struct SCEIIS_ANY_
AttributeAny;

} SCEIIS_FTP_SITE_SVC, *PSCEIIS_FTP_SITE_SVC;

8.1.3.5 SCEIIS_W3C_ANY

typedef struct SCEIIS_W3C_ANY {

BYTE

AuthMethod;

BYTE

bDisableParentPath;

BYTE

bDisableExecInclude;

struct SCEIIS_ANY
AttributeAny;

} SCEIIS_W3C_ANY, *PSCEIIS_W3C_ANY;

8.1.3.6 SCEIIS_W3C_DIR

typedef struct SCEIIS_W3C_DIR_ {

BYTE

bAllowServerIndex;

struct SCEIIS_W3C_ANY
AttributeAny;

} SCEIIS_W3C_DIR, *PSCEIIS_W3C_DIR;

8.1.3.7 SCEIIS_W3C_ROOT

typedef struct SCEIIS_W3C_ROOT_ {

PWSTR

mszLogFormat;

struct SCEIIS_W3C_DIR_
AttributeDir;

} SCEIIS_W3C_ROOT, *PSCEIIS_W3C_ROOT;

8.1.3.8 SCEIIS_W3C_SITE_SVC

typedef struct SCEIIS_W3C_SITE_SVC_ {

BYTE

bAllowKeepAlive;

BYTE

bDisableIPContent;

PWSTR

mszLogFormat;

DWORD

dwConnectionTimeout;

struct SCEIIS_W3C_DIR_ AttributeDir;

} SCEIIS_W3C_SITE_SVC, *PSCEIIS_W3C_SITE_SVC;

8.1.3.9 SCEIIS_INFO

#define SCEIIS_SCOPE_PUBLIC

0x1

#define SCEIIS_SCOPE_PRIVATE
0x2

#define SCEIIS_SCOPE_UNKNOWN
0x3

#define SCEIIS_TYPE_FTP

0x1

#define SCEIIS_TYPE_WWW

0x2

#define SCEIIS_LEVEL_ANY

0x1

#define SCEIIS_LEVEL_VIRDIR

0x2

#define SCEIIS_LEVEL_ROOT

0x3

#define SCEIIS_LEVEL_SITESVC
0x4

typedef struct SCEIIS_INFO_ {

BYTE

Scope;

BYTE

Type;

BYTE

Level;

PWSTR

szVirtualName;

union {

PSCEIIS_W3C_SITE_SVC
pW3Csite;

PSCEIIS_W3C_ROOT

pW3Croot;

PSCEIIS_W3C_DIR

pW3Cdir;

PSCEIIS_W3C_ANY

pW3Cany;

PSCEIIS_FTP_SITE_SVC
pFTPSite;

PSCEIIS_FTP_ROOT

pFTPRoot;

PSCEIIS_FTP_ANY

pFTPAny;

} SingleObject;

struct SCEIIS_INFO *Parent;

struct SCEIIS_INFO *LeftChild;

struct SCEIIS_INFO *Next;

} SCEIIS_INFO, *PSCEIIS_INFO;

8.1.4 Interfaces

Three well-known interfaces are required in each SCTS extension engine – configure, analyze, and update.

8.2 Notes for IIS Extension UI:

The above attributes could be configured to a virtual directory/file for W3C or FTP services. These settings should be presented on property sheet(s) for one profile. The profile then can be applied to one or more sites/virtual directories/files. For example, on the high level view, it’s a list of security profiles:

<public web site security profile>

<private web site security profile>

<Microsoft.com security profile>

Double click (or right click Property) on any of the profiles to bring up its property, which contains the above attributes (may require multiple sheets since they have different types and groups). Besides the attributes, UI should also present a radio button for the type of profile and two edit boxes, one for the optional virtual dir/file name and the other for the description of a profile:

All public sites

All private sites

Virtual Object Name: <Edit Box>

Profile Description: <Edit Box>

9 Support TCP/IP Security – Web Server

Unbind Netbios from tcpip

- Tcp/ip ext

Disable IP routing

- Tcp/ip ext

Configure tcpip filtering (TCP/UDP/IP ports)

- Tcp/ip ext

Unbind client for Microsoft Network from all adapters

- Tcp/ip ext

Bind TCP/IP only

- Tcp/ip ext

Configure static ip address/submask/gateway/DNS server or DHCP
- Tcp/ip ext

LMHOSTS lookup

- Tcp/ip ext

Remove optional components (add/remove programs)

- Tcp/ip ext ?

	Must be able to unbind any protocol from any protocol - Netcfgx.h

	Must be able to enable/disable IP routing.

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\IPEnableRouter, REG_DWORD, 0 or 1

Dynamic management: EnableRouter/UnenableRouter (IpHlpApi) - Windows 2000 server only ?

	Must be able to unbind any protocol from adapter - Netcfgx.h

	Must be able to set binding - Netcfgx.h

	Must be able to block ports

Security filter ?

IOCTL_TCP_BLOCK_PORTS, NtDeviceIoControlFile, ntddtcp.h, ntos\io\netboot.c

	There are over 30 registry values defined in

\\nttest\ntct\slm\src\tcp\documentation\attack_protection\regkey_protection.htm

10 Snapshot System Security

This feature is to provide rollback data that can be used to restore security on the entire system. Due to a limitation in setupapi handling INF files (max 7M), a Jet database is used to store the snapshot data. In Phase I, the data can’t be copied/used on other machines because the data contains machine specific information (such as machine SID and specific NTFS layout). In phase II, portability of snapshot data will be supported.

All security areas supported in SCTS should be under snapshot. In file system and registry areas, all files/keys under HKEY_LOCAL_MACHINE and HKEY_USERS\Default should be snapshot.

In Phase I, UI won’t support the snapshot database to view/modify the data. In Phase II, UI can be used to view/modify the exported templates from the snapshot database. So there is no UI change for this task in both phases.

10.1 Implementation Options

1. Snapshot explicit only ACEs of NTFS files and registry keys. This may give us possible less objects to store in the database and use the same analysis view (everything is considered matched!) and configuration mechanism. The limitation of this method is that inherited security information on objects can’t be viewed (an existing bug in Windows 2000 for any analysis data). Any new files/keys added after the snapshot with protected security descriptor will be overwritten to inherit the parent’s security descriptor. But this option allows modification to the snapshot database (no difference with other private databases).

2. Snapshot all ACEs (inherited & explicit) of NTFS files and registry keys and store all objects in the database. The benefit of this option is to be able to view inherited information. But this requires a new engine method to query/merge the data, a new configuration engine mode to stamp security onto each object, and a new analysis engine mode to compare security of each object. Any new files/keys added after the snapshot with protected security descriptor won’t be overwritten in this option. This option shouldn’t allow modifications to the database.

Based on the complexity/benefit of option 2, we decide to use option 1 and the snapshot database is not viewable/modifiable. Snapshot data can only be viewed after it’s exported into a INF template.

10.2 Phase I

The issues in phase-I are: 1) choosing the right option for snapshot 2) handling errors in snapshot.

Errors occurred in snapshot (such as files in use or access is denied) will be logged in a log file. The object(s) won’t be saved in the snapshot database. This implies that security of these objects will be overwritten by inherited security from its parent(s).

10.2.1 Database Change

1. Database structure – add a column “Type” into system table to indicate the database is a snapshot database – SCE_DB_SNAPSHOT

2. Provide an appropriate database description: Security snapshot at mm/dd/yy hh:mm

10.2.2 New Interfaces

3. Provide an API ScepGetProfileType to query if it’s a snapshot database. This function will be called when a database is requested to open. A snapshot database can’t be opened by UI.

SCESTATUS

ScepGetDatabaseType(

IN PVOID hProfile,

OUT SCEDBTYPE *pDbType);

4. Provide an API SceSnapshotSystem to snapshot the entire system into a database. Security of an object includes only explicit ACEs. The snapshot of security will be saved in the analysis table (SAP). For account domain accounts (non builtin nor well-known) in user rights, group membership, and SDDL strings, account names should be saved rather than the account SID (which has machine SID). Note this function requires that SDDL APIs to support account names.

SCESTATUS

SceSnapshotSystem(

 IN LPTSTR SystemName OPTIONAL,

 IN PCWSTR DatabaseName,

 IN PCWSTR LogFileName OPTIONAL,

 IN DWORD Options,

 IN AREA_INFORMATION Area,

 IN PSCE_AREA_CALLBACK_ROUTINE pCallback OPTIONAL,

 IN HANDLE hCallbackWnd OPTIONAL,

 OUT PDWORD pdWarning OPTIONAL

);

10.2.3 Interface Changes

5. No import/export (into INF template in phase I) are allowed into/from this database.

10.2.4 Command Tool “secedit.exe” Changes

Provide an option to snapshot a system. Required parameters are /db. Optional parameters are /areas, /log, and /verbose.

10.3 Phase II

In Phase II, the following functions should be supported:

· Exported configuration should be system independent (environment variable support)

· Export into one or more INF templates (wildcard support, multiple templates support)

10.3.1 Machine Independent

This function includes 1) converting machine name to %ComputerName% or %DomainName% for any account name (in SDDL, user rights, and groups). 2) converting file system paths to use generic system environment variables. This is required in order for the snapshot data to be used on other systems (to make other systems in the same configuration as this one).

Note, the accounts are already saved in name format by the analysis engine.

10.3.2 Object Groups (Wildcard)

In the nature of Windows 2000, a lot of system files share the same kind of security settings (such as Admin/System full control, everyone Read). To list each object with the same security setting in the same template not only increases the size of the configuration template/table, it also slows down processing time (when calculating inherited security information for every object).

In Phase II, we will try to group objects with same security settings together, represented by some wildcard names, such as *.dll, *.exe. This is hard in some degree because it reverses the wildcard name process to map many into one.

10.3.3 Implementation of the Export Function

Importing template is not supported for snapshot databases. Exporting from the snapshot database is a special function because it needs to do the machine independent task and the wildcard task, as well as be able to export into multiple templates. The latter task is due to the limitation of INF files in which we store the security configuration, and the size of snapshot data.

10.3.3.1 “Fixup” the data

The first step of the new export function is to determine if the snapshot data has been “fixed” – this is done via looking at the configuration table (SMP). Since all snapshot data (RAW) is saved in SAP, SMP table is empty if “fixup” hasn’t been run.

The fixup function will reverse the environment variable support and machine name mappings. Account names will be compared with computer name or domain name to decide if %ComputerName% or %DomainName% should be used. To reverse mapping of environment variables, %SystemDirectory% and %SystemRoot% are first compared, followed by standard environment variables in the order of longest to shortest. The fixed data will be saved in the configuration table (SMP)

10.3.3.2 Wildcard grouping

Assumption:

The wildcard grouping is only done at the leaf node level.

This is done together with the “fixup” function.

10.3.3.3 Multiple Templates

When data exported is over a limit (for example 4M), new template(s) should be created to continue the exportation. One option is that engine creates the template automatically, using the same template name followed by a sequence number (such as 001,002,003,etc). Another option is to provide the number of templates required and take the template names beforehand. Both options can also be supported with a flag.

This function requires a new interface SceGetExportTemplateCount and changes to SceSetupGenerateTemplate and SceCopyBaseProfile.

DWORD

WINAPI

SceGetExportTemplateCount(

 IN LPTSTR SystemName OPTIONAL,

 IN LPTSTR JetDbName OPTIONAL,

 IN BOOL bFromMergedTable,

 IN AREA_INFORMATION Area,

 OUT DWORD *Count

);

DWORD

WINAPI

SceSetupGenerateTemplate(

 IN LPTSTR SystemName OPTIONAL,

 IN LPTSTR JetDbName OPTIONAL,

 IN BOOL bFromMergedTable,

 IN LPTSTR *InfTemplateNameList,

 IN DWORD TemplateCount,

 IN LPTSTR LogFileName OPTIONAL,

 IN AREA_INFORMATION Area

);

SCESTATUS

WINAPI

SceCopyBaseProfile(

 IN PVOID hProfile,

 IN SCETYPE ProfileType,

 IN PWSTR *InfFileNameList,

 IN DWORD TemplateCount,

 IN AREA_INFORMATION Area,

 OUT PSCE_ERROR_LOG_INFO *pErrlog OPTIONAL

);

10.3.4 A new “Export” option for secedit.exe

This export function will do the above conversion at export time.

11 Remote Management

This is required in order to support remote administration of security settings (such as user rights). Please note that RPC data structures are changed (for other features such as Restricted Group/User Right enhancement) so remotely managing machines in old builds should be handled correctly. SCTS version should be checked before performing any remote task.

11.1 Implementation Design

Since local policy is removed (in section 1), there is no need to handle remote policy refresh and effective policy refresh.

11.1.1 Remote Validation

After a SCTS client connects to a SCTS server, before making any RPC calls, the SCTS client should call ScepIsRemoteCompatible to check if the remote server supports the client version. For old systems (Windows 2000 or below), this interface doesn’t exist and the exception calling this interface should be handled.

BOOL

ScepIsRemoteCompatible(

IN BINDING_H bBinding OPTIONAL,

IN LPTSTR SystemName OPTIONAL

);

This function queries the local code number of SCTS and passes the number over a RPC interface, as defined below.

BOOL

SceRpcIsRemoteCompatible(

IN BINDING_H hBinding,

IN localVersion // the local code version (could use build number)

);

11.1.2 Interface Changes

· Change the following interfaces to add “SystemName” parameter:

SceOpenProfile

SceCreateDirectory

SceEnumerateServices

SceSvcConvertTextToSD

SceSvcConvertSDToText

SceIsSystemDatabase

· Define new RPC interfaces:

SceRpcCreateDirectory

SceRpcEnumerateServices

SceSvcRpcConvertTextToSD

SceSvcRpcConvertSDToText

SceRpcIsSystemDatabase

· Change RPC binding to bind to the right system based on the SystemName parameter. Add logic to determine if the “SystemName” is the local computer to avoid network traffic.

· Remove LPC bindings to use RPC bindings

11.2 Notes for UI

1. Get computer name of the machine where local policy editor or computer management points to, and save the computer name with this instance of UI (note, there might be multiple instances of security settings snap-in running simultaneously).

2. Pass the computer name to appropriate SCTS engine APIs

3. Perform user right display name lookup on the remote computer (GetRightsDisplayName).

4. Query/store UI state/configuration from/to the remote registry or local registry (using remote registry apis) – e.g. security options

12 Service Pack/Hotfix Analysis

This feature is to provide user information about the machine regarding what service pack is it running and what hotfixes have been applied (on top of the service pack).

Since this is “read-only” information, it doesn’t fit into the SCTS category that must be configurable and analyzable through SCTS. The design then is to analyze and save the information during a system analysis.

12.1 Implementation Options

1. Save the information in the analysis log file, if there is one provided. This requires engine change only.

2. Save the information to the system table (read only) within each database. This requires both engine and UI change (UI should display the info somewhere) but the benefit is that the information would be kept together with each analysis database.

12.2 Implementation Changes

1. During system analyze initialization (after database is initialized/opened), perform analysis for the service pack info and hotfix info:

· Query build # and service pack # by calling GetVersionEx (or querying registry values under HKLM\software\Microsoft\windows nt\currentversion, CurrentBuildNumber, CSDVersion).

· Query hotfix applied to the service pack – enumerate all subkeys under KLM\software\Microsoft\windows nt\currentversion\hotfix. For a given subkey, if registry value “Installed” (REG_DWORD) has a value 0x1 and registry value “Service Pack” has the same value as the service pack number queried in #1, the hotfix is installed for the service pack and should be logged.

2. Data format:

All data will be concatenated into one line: Build # [Service pack x] [Hot Fixes a,b,c…] If no service pack or hot fix applied, the information won’t be saved.

3. Define appropriate strings for localization builds – “Build”, “Service Pack”, “Hot Fixes”

4. Choose storage:

· for option 1, log the info to the log file

· for option 2, define a new string field “SP info” in the system table.

12.3 Notes for UI (Option 2 only):

For option 2 where SP info is saved in the analysis database, UI needs to display the info to users. Where should this info be exposed? A summary page is one option here.

13 Database-less Operation

As it is designed in Windows 2000, a database is required for configuration/analysis (as the workspace and storage). The database concept is confusing in some cases such as configuring a system with a template and that’s all users cared.

This feature is to hide the database concept from users. Instead of prompting users to choose a database to work with, each user will always have one hidden working database, in addition to the system database. The hidden database will be stored in a dedicated SCTS directory on each machine, with user’s SID string as a subdirectory name. The proposed location for the hidden database is %systemdrive%\SCTSSecurityDb\ <user SID string>. The proposed database name is ScaWork.sdb.

When remotely connect to a machine to configure, the hidden database should be located on the remote machine (because Jet engine on the remote machine may not be able to write the database back to this machine). This requires all database names to be resolved in server.

The reason not to use user profile location is to handle remote case above – when a user launched a SCTS task remotely but this user hasn’t logged on to this machine in which case there won’t be a user profile for the user.

Database parameter to the interfaces is still needed because it can be used to debug users databases. It will also be required if an admin choose to browse information in other databases in the future. Passing a NULL as the database name allows engine to figure out the hidden database to use. For the system database, a flag SCE_SYSTEM_DB should be passed to the server.

13.1 Implementation Design

13.1.1 Exported Interface Changes

1. Define a set of new functions SceGetHiddenDatabaseName, SceRpcGetHiddenDatabaseName, and ScepGetHiddenDatabaseName to find out the hidden database name based on the current logon user. This function could be the modified version of ScepGetProfileSetting/ ScepGetDefaultDatabase.

SCESTATUS

SceGetHiddenDatabaseName(IN LPTSTR SystemName,

 IN BOOL bSystemDb,

 OUT LPTSTR *pDbName);

SCESTATUS

SceRpcGetHiddenDatabaseName(IN BOOL bSystemDb,

 OUT LPTSTR *pDbName);

SCESTATUS

ScepGetHiddenDatabaseName(IN BOOL bSystemDb,

 OUT LPTSTR *pDbName);

2. Change callers to ScepGetProfileSetting/ScepGetDefaultDatabase to either call ScepGetHiddenDatabaseName, or reconsider the scenarios.

server.cpp

setupcln.cpp – ScepSetupOpenSecurityDatabase

setup case and optional component case (outside of setup). Should reject non admins to access system db.

3. Redefine SCE_FORMAT_TYPE to allow bitmask (remove type define for SCE_FORMAT_TYPE to use a DWORD bitmask)

#define SCE_INF_FORMAT

0x1

#define SCE_JET_FORMAT

0x2

#define SCE_JET_ANALYSIS_REQUIRED
0x4

#define SCE_JET_SYSTEM

0x8

SCESTATUS

WINAPI

SceOpenProfile(

 IN PCWSTR ProfileName OPTIONAL, // for the system database

 IN DWORD dwFormatRequired,

 OUT PVOID *hProfile

);

INF format template is not affected by this change.

When opening a Jet database, if the database name is NULL and SCE_JET_FORMAT is specified, the database will be figured out by SCE engine. If SCE_JET_SYSTEM is included and admin is logged on, the system database is used; otherwise, the hidden database is “computed” based on the current logon user.

4. Remove DatabaseName from the following exported APIs (client site) and pass NULL as the database name to server (where the correct database name will be figured)

SceAnalyzeSystem

SceConfigureSystem

5. Change SceSetupGenerateTemplate to include SYSTEM_DB flag as an option:

#define SCE_EXPORT_MERGE_POLICY

0x1

DWORD

WINAPI

SceSetupGenerateTemplate(

 IN LPTSTR SystemName OPTIONAL,

 IN LPTSTR JetDbName OPTIONAL,

 IN DWORD dwExportOption,

 IN LPTSTR InfTemplateName,

 IN LPTSTR LogFileName OPTIONAL,

 IN AREA_INFORMATION Area

)

When JetDbName is NULL and an admin is logged on, if dwExportOption contains SYSTEM_DB bit, the system database is used; otherwise, the hidden database for the current user is used. If JetDbName is passed in but it points to the system database name and the current logon doesn’t belong to Administrators group, the hidden database will be used too.

6. Change SceBrowseDatabaseTable to include SYSTEM_DB flag as an option:

#define SCE_BROWSE_DOMAIN_POLICY

0x1

SCESTATUS

SceBrowseDatabaseTable(

 IN PWSTR DatabaseName OPTIONAL,

 IN SCETYPE ProfileType,

 IN AREA_INFORMATION Area,

 IN DWORD dwBrowseOption,

 IN PSCE_BROWSE_CALLBACK_ROUTINE pCallback OPTIONAL

);

When DatabaseName is NULL and dwBrowseOption contains SCE_SYSTEM_DB, the system database is used; otherwise, the hidden database is used.

13.1.2 RPC Interface Changes

7. Allows system flag to be passed in as a bit in the option field

DWORD

SceRpcGenerateTemplate(

 IN handle_t binding_h,

 IN wchar_t *JetDbName OPTIONAL,

 IN DWORD dwOption,

 IN wchar_t *LogFileName OPTIONAL,

 OUT SCEPR_CONTEXT __RPC_FAR *pContext

);

SCEPR_STATUS

SceRpcOpenDatabase(

 [in] handle_t binding_h,

 [in,string,unique] wchar_t *DatabaseName,

 [in] DWORD dwOpenOption,

 [out] SCEPR_CONTEXT *pContext

);

SCEPR_STATUS

SceRpcBrowseDatabaseTable(

 [in] handle_t binding_h,

 [in,string,unique] wchar_t *DatabaseName,

 [in] SCEPR_TYPE ProfileType,

 [in] AREAPR Area,

 [in] DWORD dwBrowseOption

);

8. Add logic to the RPC interfaces that take database name as an argument to determine if the system database, the hidden database, or the explicitly specified database should be used. Please note that the system database should only allow administrators to open (until UI supports read only mode for a normal user to view system settings).

SceRpcGenerateTemplate

SceRpcConfigureSystem

SceRpcOpenDatabase

SceRpcAnalyzeSystem

SceRpcBrowseDatabaseTable

SceRpcIsSystemDatabase

13.1.3 SCE Server Logic Changes

9. Do not allow Jet to recover user databases by setting the Jet recovery bit off for non-system database. This is required to handle if the path to user database or the database itself is deleted.

10. Change places currently uses SCE_SYSTEM_DB flag:

server.cpp, review config.cpp and analyze.cpp ScepGetDefaultDatabase

11. Remove code to query “DefaultProfile” registry value. The system database as well as users’ hidden databases will not be stored in registry anymore.

13.1.4 Database Changes

12. Database info clean up:

Configuration/Analysis with a template name and without SCE_NO_CONFIG option will always assume SCE_OVERWRITE_DB, which means that the database is recreated with the template info first. When importing multiple templates (with SCE_NO_CONFIG option), the first template should have SCE_OVERWRITE_DB option to clean existing data in the database. Then other templates can be appended to the database (with SCE_APPEND_DB mode)

13. Recode the imported template(s) in the description field in the system table.

For single template, the template name should be saved before the description (appended). For multiple templates, the list of template names is stored in the field.

13.2 Command Tool “secedit.exe”:

1. Hide /db option (to be used with the hidden /browse option only)

2. Provide a list of templates to configure/analyze

/cfg file1 [,file2,file3…]

The first template (file1) is imported to the database with SCE_OVERWRITE_DB option while the rest of templates are imported into the database with SCE_APPEND_DB option. After the last template is imported, appropriate configuration/analysis task will be invoked.

13.3 Notes for UI

2. Remove global variable “SadName” and pass NULL as the database name to all engine APIs. For system database, pass SCE_JET_SYSTEM as one of the open type.

3. Remove “Open database” from Security Configuration & Analysis tool. When the root node is clicked, call SceOpenProfile automatically with NULL database name.

4. “Import” should allow importing a single template or a list of templates. For a single template or the first template in the list, SCE_OVERWRITE_DB should be passed to engine; otherwise, SCE_APPEND_DB should be passed to engine.

5. If database name is requested somewhere, call SceGetHiddenDatabaseName.

6. To get the template or the list of templates imported into the database, call SceGetScpProfileDescription. The template name(s) will be stored in the description field.

14 Code Independent Upgrade Scenarios

In Windows 2000, security configured in setup is hard-linked into setup/dcpromo and security templates/group configuration for various products are also hard-coded. Progress indicator during security setup is not displayed friendly (at one point it “freezes” for 3 minutes on a PII 400 machine). Various security aspects are configured at different times. Security backup template doesn’t contain all files (which may run into the INF size limitation). Security configured in dcpromo is not cancelable and a lot of hardcode exists for the special case of the new SAM not available.

This task is to make security configuration in setup smarter to remove the hard links mentioned above.

14.1 Implementation Design

14.1.1 Progress ticker

Work with setup team (VijeshS) to provide callbacks to the following calls so we could post progress. Detail is to be determined.

SceSetupBackupSecurity

SceSetupConfigureServices

14.1.2 Marta support

Use marta GetNamedSecurityInfo to query security of an object so that NT4 style security descriptor can be handled properly. This is to support the “0” mode in SCTS – a bug fix.

14.1.3 Security install template

Define a new security install template to dynamically determine templates to apply and areas to apply within setup. This will remove the hardcode template names and hardcode group membership within setup.

 [Clean Install]

; choice of workstation or server

InitialSecurity=defltxx.inf, areas

ServiceSecurity=defltxx.inf, areas

OCSecurity=syscomp.inf, areas

DCSecurity=defltdc.inf, areas

NT4DCSecurity=dcup.inf, areas

[Upgrade NT4] ; wks/srv

SnapshotSecurity=1 or 0, areas

InitialSecurity=dxup.inf, areas

ServiceSecurity=<a security template>, areas
; currently none

OCSecurity=syscomp.inf, areas

[Upgrade NT5] ; wks/srv

SnapshotSecurity=1 or 0, areas

InitialSecurity=dxup.inf, areas

ServiceSecurity=<a security template>, areas
; currently none

OCSecurity=syscomp.inf, areas

[Upgrade DC] ;; must be NT5 DC because upgrade NT4 DC is treated as clean install server

SnapshotSecurity=1 or 0, areas

InitialSecurity=dcup5.inf, areas

ServiceSecurity=<a security template>, areas
; currently none

OCSecurity=<a security template>,areas
; currently none

[Upgrade TS] ;; terminal server upgrade

SnapshotSecurity=1 or 0, areas

InitialSecurity=dsupt.inf, areas

ServiceSecurity=<a security template>, areas
; currently none

OCSecurity=syscomp.,inf, areas

14.1.4 Re-engineering dcpromo

TBD (dependency with DS group). This is to fix hard links between various components and make new SAM available during dcpromo (so account/policy change can be managed). SCTS should also be cancelable.

14.1.5 Handle Domain Accounts in setup

Since there is no network capability in setup, any domain accounts (or anything that goes off the network cable) can’t be resolved. In Windows 2000 upgrade, SCTS didn’t handle these accounts correctly in user right area if the system database already exists with domain accounts in name format (such as NT4 boxes with SCTS installed).

We need to handle domain accounts properly in setup. If there is account in name format and can’t be resolved in setup, don’t remove the user rights. Instead, the user rights for nonresolvable accounts should be left alone.

14.1.6 Backup system security

When template is imported into the system database with append mode, existing configuration should be back’ed up to the backup security template and removed from the system database before new template is imported. This rule applies to all areas except security policy and user rights area because info for these two areas becomes the local security policy after the system is installed.

The configuration to backup must be appended to the existing backup security template using SceAppendSecurityProfileInfo.

42

