24

Microsoft MimeOLE

Microsoft MimeOLE 1.0 - Draft

Steven J. Bailey, Microsoft Outlook Express, May 8, 1997 Draft

Microsoft Confidential

Table of Contents

1.0 Overview

MimeOLE is a collection of COM objects used for manipulating Internet Messages. It provides the messaging infrastructure for Microsoft Outlook Express, as well as other Microsoft products. It supports RFC822 (uuencode), MIME, SMIME, and MHTML.

MimeOLE maps very closely to MIME such that it

2.0 Object Model

2.1 Interfaces

Interface
Description

IMimeInternational
Used to perform character set translations

IMimeSecurity
Used for SMIME support (message signing and encryption)

IMimeHeaderTable
Used for manipulate a message header as a table of rows

IMimePropertySchema
Used to create and change message header properties

IMimePropertySet
Used to manipulate a message header as a set of properties

IMimeAddressTable
Used to manipulate message header address properties

IMimeWebDocument
Used to resolve Web-Based message content

IMimeBody
Used to get and set message content

IMimeMessageTree
Used to manipulate a message as a tree of content items

IMimeMessage
Used to manage a message

IMimeMessageParts
Used to combine partial messages and to enumerate partials

IMimeEnumHeaderRows
Used to enumerate IMimeHeaderTable

IMimeEnumProperties
Used to enumerate IMimePropertySet

IMimeEnumAddressTypes
Used to enumerate IMimeAddressTable

IMimeAllocator
Used to allocate and de-allocate MimeOLE objects (not required)

2.2 Inheritance Tree

IUnknown

IMimeInternational

IMimeSecurity

IMimePropertySchema

IMimeAddressTable

IMimeWebDocument

IPersistStream

IMimeHeaderTable

IPersistStreamInit

IMimePropertySet

IMimeBody

IMimeMessageTree

IMimeMessage

IMimeMessageParts

IMimeEnumHeaderRows

IMimeEnumProperties

IMimeEnumAddressTypes

IMalloc

IMimeAllocator

2.3 Overview

The primary interface in MimeOLE is IMimeMessage. This interface inherits from IMimeMessageTree and IMimeMessageTree inherits from IPersistStreamInit. IMimeMessage is a container for a hierarchial collection of message bodies and headers. IMimeMessage allows clients to Load (parse) messages, Save (create) messages and manipulate the content of a message.

A MIME message

3.0 General Data Types

3.1 MIMESAVETYPE

This enumerated type is used by Options (see the section Options for more information). The MIMESAVETYPE affects the format in which objects persist themselves.

typedef enum tagMIMESAVETYPE {

SAVE_RFC822,

SAVE_RFC1521

} MIMESAVETYPE;

SAVE_RFC822
This save format specifies the RFC822 (non-MIME) format. This means that message attachments will be encoded in UUENCODE, and no MIME-specific headers will be written into the message. It also means that no content hierarchy information will be preserved, such as multipart information. The RFC822 format also does not support MHTML. However, using MimeOLE, you can switch between RFC822 and RFC1521 without losing information.

SAVE_RFC1521
This save format specifies the RFC1521 (MIME) format. This is the richest format the MimeOLE supports.

3.2 CSETAPPLYTYPE

This enumerated type is used by the SetCharset method that is exposed on the IMimePropertySet and IMimeMessageTree interfaces. The CSETAPPLYTYPE affects how a charset is used in a call to SetCharset.

typedef enum tagCSETAPPLYTYPE {

CSET_APPLY_UNTAGGED,

CSET_APPLY_ALL

} CSETAPPLYTYPE;

CSET_APPLY_UNTAGGED

This charset apply type specifies that the client wants to use the new charset only for items that are not explicitly tagged with a charset. For a header to be tagged with a charset, it must be encoded in RFC1522. For a body to be tagged with a charset, it’s Content-Type header must contain the charset parameter.

CSET_APPLY_ALL

This charset apply type specifies that the client wants to override the current charset. All headers and bodies will assume the new charset. When header or body data is requested, it will be translated using the new charset.

3.3 ENCODINGTYPE

typedef enum tagENCODINGTYPE {

IET_BINARY,

IET_BASE64,

IET_UUENCODE,

IET_QP,

IET_7BIT,

IET_8BIT,

IET_INETCSET,

IET_UNICODE,

IET_RFC1522,

IET_ENCODED,

IET_CURRENT,

IET_UNKNOWN

} ENCODINGTYPE;

IET_BINARY (aka. IET_DECODED)

IET_BASE64

IET_UUENCODE

IET_QP

IET_7BIT

IET_8BIT

IET_INETCSET

IET_UNICODE

IET_RFC1522

IET_ENCODED

IET_CURRENT

IET_UNKNOWN

4.0 Persistence

IMimePropertySet and IMimeMessageTree are the main persistable interfaces in MimeOLE. IMimePropertySet knows how to read and write an Internet message header and IMimeMessageTree knows how to read and write entire Internet messages. Persistence is primarily support through the IPersistStreamInit interface. However, IMimeMessageTree supports other IPersistXXX OLE interfaces (see IMimeMessageTree for more information).

Also see the Options section for more information on persistence.

5.0 Options

The following interfaces support options:

· IMimePropertySet

· IMimeBody

· IMimeMessageTree

· IMimeMessage

Each of these interfaces has two methods, SetOption and GetOption. IMimeBody and IMimeMessage don’t actually define these methods, they are inherited from IMimePropertySet and IMimeMessageTree, respectively. SetOption and GetOption allow the client to control various behavior of an interface. Most of the options affect object persistence.

5.1 OID_NO_DEFAULT_CNTTYPE

ID
0x0034

Variant Type
VT_BOOL

Default
DEF_NO_DEFAULT_CNTTYPE (FALSE)

Supported By
IMimePropertySet, IMimeBody

Description
If this option is TRUE, then when an IMimePropertySet is saved, if the Content-Type header has not been set, MimeOLE will set it to text/plain, the default Content-Type.

5.2 OID_ALLOW_8BIT_HEADER

ID
0x0001

Variant Type
VT_BOOL

Default
DEF_ALLOW_8BIT_HEADER (FALSE)

Supported By
IMimePropertySet, IMimeBody

Description
If this option is FALSE, then when an IMimePropertySet is saved, if a header value contains 8bit and the property has the MPF_RFC1522 flag, the value will be encoded in RFC1522, which will remove all 8bit characters. If this option is TRUE, RFC1522 will not be used. RFC1522 is only used when the save format is MIME.

5.3 OID_CBMAX_HEADER_LINE

ID
0x0002

Variant Type
VT_UI4

Default
DEF_CBMAX_HEADERLINE (1000 bytes)

Min
76

Max
0xfffffff

Supported By
IMimePropertySet, IMimeBody

Description
This option controls how many bytes header line be when persisted. If a header line exceeds this option, it will folded according to RFC822.

5.4 OID_SAVE_FORMAT

ID
0x0003

Variant Type
VT_UI4

Default
DEF_SAVE_FORMAT (SAVE_RFC1522)

Supported By
IMimePropertySet, IMimeBody, IMimeMessageTree, IMimeMessage

Description
This option controls the persistence format, see MIMESAVETYPE for more information on save formats.

6.0 MHTML Support

7.0 International Support

8.0 IMimeInternational

8.1 COM Information

Inherits From:

IUnknown

Supports Aggregation:

No

Class ID:

CLSID_IMimeInternational

{FD853CD9-7F86-11d0-8252-00C04FD85AB4}

Interface ID:

IID_IMimeInternational

{C5588349-7F86-11d0-8252-00C04FD85AB4}

8.2 Overview

This interface is used to perform character set translations and to manage character set and codepage information. MimeOLE uses a component called MLANG (Multi-LANGuage) to perform character set translations. IMimeInternational is a wrapper interface for MLANG. Character set and codepage information is stored in the Windows registry under:

HKEY_CLASSES_ROOT\MIME\Database\Charset

HKEY_CLASSES_ROOT\MIME\Database\Codepage

This registry information is setup by MLANG.DLL. MLANG.DLL is a self-registering COM object. To register MLANG, run regsvr32.exe mlang.dll from a Command prompt.

8.3 When To Use

A client would use this interface if they had a specific need to convert text from one codepage to another or a client wanted to get character set or codepage information. It is likely that a client may not ever use this interface, since many other MimeOLE interfaces support character set translations.

8.4 Data Structures and Data Types

8.4.1 CODEPAGEID

Defined as a DWORD. This data type represents a codepage id. A codepage id can be a valid Windows codepage number or a codepage id defined in the MIME database.

8.4.2 HCHARSET

Defined as a HANDLE. This data type represents a character set. A character set consists of two CODEPAGEIDs, an Internet Codepage and a Windows Codepage. A character set translation consists of conversions between the Internet Codepage and the Windows Codepage.

Internet Codepage

->

Windows Codepage
Decode

Windows Codepage

->

Internet Codepage
Encode
8.4.3 INETCSETINFO

typedef struct tagINETCSETINFO {

CHAR

szName[CCHMAX_CSET_NAME];

HCHARSET
hCharset;

CODEPAGEID
cpiWindows;

CODEPAGEID
cpiInternet;

DWORD

dwReserved1;

} INETCSETINFO, *LPINETCSETINFO;

szName
This member specifies the name of the character set, such as iso-8859-1.

hCharset
This member specifies the character set handle. The character set handle value for a specific character set can change from session to session. This means that an HCARSET is not persistable.

cpiWindows
The member specifies the Windows CODEPAGEID for the character set.

cpiInternet
This member specifies the Internet CODEPAGEID for the character set.

dwReserved1
Reserved, don’t use.

8.4.4 CODEPAGEINFO

typedef enum tagINETLANGMASK {

ILM_FAMILY

= 0x00000001,

ILM_NAME

= 0x00000002,

ILM_BODYCSET

= 0x00000004,

ILM_HEADERCSET
= 0x00000008,

ILM_WEBCSET

= 0x00000010,

ILM_FIXEDFONT
= 0x00000020,

ILM_VARIABLEFONT
= 0x00000040

} INETLANGMASK;

typedef struct tagCODEPAGEINFO {

DWORD

dwMask;

CODEPAGEID

cpiCodePage;

BOOL

fIsValidCodePage;

ULONG

ulMaxCharSize;

BOOL

fInternetCP;

CODEPAGEID

cpiFamily;

CHAR

szName[CCHMAX_LANG_NAME];

CHAR

szBodyCset[CCHMAX_CSET_NAME];

CHAR

szHeaderCset[CCHMAX_CSET_NAME];

CHAR

szWebCset[CCHMAX_CSET_NAME];

CHAR

szFixedFont[CCHMAX_FACE_NAME];

CHAR

szVariableFont[CCHMAX_FACE_NAME];

ENCODINGTYPE

ietNewsDefault;

ENCODINGTYPE

ietMailDefault;

DWORD

dwReserved1;

} CODEPAGEINFO, *LPCODEPAGEINFO;

dwMask
This member specifies what other members in the structure are valid. This member is a bit-mask of the flags specified by the INETLANGMASK enumerated type (below).

cpiCodePage
This member specifies the CODEPAGEID of this codepage.

fIsValidCodePage
This member specifies if the value cpiCodePage is a valid Windows codepage. This member is the result of calling the Win32 API, IsValidCodePage(cpiCodePage). Calls to IsValidCodePage can be slow, so this value is cached in this structure. Note, do not call GetCPInfo if fIsValidCodePage is FALSE.

ulMaxCharSize

This member specifies the maximum number of bytes a single character in this codepage can consume. For unicode and DBCS codepages, the maximum char size is two bytes.

fInternetCP
This member specifies whether or not this codepage is a Internet CodePage (TRUE) or not (FALSE).

cpiFamily
This member specifies the CODEPAGEID of the Windows CodePage, if fInternetCP is TRUE. This member is valid only if dwMask has the ILM_FAMILY bit set.

szName
This member specifies the name or description of this codepage, (i.e. Western European). This member is valid only if dwMask has the ILM_NAME bit set.

szBodyCset
This member specifies the name of the default character set that should be used for encoding content. This member is valid only if dwMask has the ILM_BODYCSET bit set.

szHeaderCset
This member specifies the name of the character set that should used to encode header properties. If this member is not valid, then a client should use the szBodyCset member. This member is valid only if dwMask has the ILM_HEADERCSET bit set.

szWebCset

This member specifies the default character set to be used by Web Browsers. If this member is not valid, then a client should use the szBodyCset member. This member is valid only if dwMask has the ILM_WEBCSET bit set.

szFixedFont

This member specifies the default fixed size font face name. This member is valid only if dwMask has the ILM_FIXEDFONT bit set.

szVariableFont

This member specifies the default variable size font face name. This member is valid only if dwMask has the ILM_VARIABLEFONT bit set.

ietNewsDefault

This member specifies the default Internet encoding to be used for news text bodies. If this member is set to IET_BINARY, the client should default to something pratical, such as IET_QP, IET_7BIT, or IET_8BIT.

ietMailDefault

This member specifies the default Internet encoding to be used for mail text bodies. If this member is set to IET_BINARY, the client should default to something pratical, such as IET_QP, IET_7BIT, or IET_8BIT.

dwReserved1
Reserved, don’t use.

8.4.5 RFC1522INFO

typedef struct tagRFC1522INFO {

BOOL

fRfc1522Allowed;

BOOL

fRfc1522Used;

BOOL

fAllow8bit;

HCHARSET
hRfc1522Cset;

} RFC1522INFO, *LPRFC1522INFO;

fRfc1522Allowed
This member specifies if RFC1522 encoding is allowed can be used to encode 8bit characters. If this member is set to TRUE and fAllow8bit is set to FALSE and the text being encoded has 8bit characters, then RFC1522 encoding will be used.

fRfc1522Used
This member specifies if RFC1522 was used. This member is set when text is encoded and when text is decoded.

fAllow8bit
This member specifies if 8bit character are allowed to be in the encoded text. If this member is set to TRUE, RFC1522 encoding will not be used.

hRfc1522Cset
This member specifies the HCHARSET that the text was encoded in. This member is set only when decoding an RFC1522 encoded string. MimeOLE currently only supports one charset for an encoded header.

8.4.6 CHARSETTYPE

typedef enum tagCHARSETTYPE {

CHARSET_BODY,

CHARSET_HEADER,

CHARSET_WEB

} CHARSETTYPE;

CHARSET_BODY
This charset type is used to get the CODEPAGEINFO::szBodyCset member for cpiCodePage.

CHARSET_HEADER
This charset type is used to get the CODEPAGEINFO::szHeaderCset member for cpiCodePage.

CHARSET_WEB
This charset type is used to get the CODEPAGEINFO::szWebCset member for cpiCodePage.

8.5 Methods

Method Name
Description

SetDefaultCharset
Set default process charset

GetDefaultCharset
Get default process charset

GetCodePageCharset
Get a codepage charset

FindCharset
Find a charset handle from a charset name

GetCharsetInfo
Get character set information

GetCodePageInfo
Get codepage information

CanConvertCodePages
Determine if conversion between two codepages can be done

DecodeHeader
Decode message header text (can include RFC1522 decode)

EncodeHeader
Encode message header text (can include RFC1522 encode)

ConvertBuffer
Convert a buffer from one codepage to another

ConvertString
Convert a string from one codepage to another

MLANG_ConvertInetReset
Maps directly to MLANG

MLANG_ConvertInetString
Maps directly to MLANG

Rfc1522Decode
Perform an RFC1522 Decode

Rfc1522Encode
Perform an RFC1522 Encode

HRESULT SetDefaultCharset(

[in]

HCHARSET
hCharset)

Description
This method is used to set the default character set for the current instance of MimeOLE. This value is not persisted by MimeOLE. MimeOLE currently supports a single default character set per process. The default character set is used when a message is parsed that does not contain character set information and when a message is saved in which the client has not called SetCharset on the message.

The default character set is initialized on startup based on the current system codepage.

Parameters

hCharset
Specifies the handle of the new default charset.

Return Values

S_OK
Success

E_INVALIDARG
If hCharset is NULL

MIME_E_INVALID_HANDLE
If hCharset is not a valid handle

See Also

GetDefaultCharset

HRESULT GetDefaultCharset(

[out]

LPHCHARSET
phCharset)

Description
This method is used to get the current default character set for the current instance of MimeOLE.

Parameters

phCharset
Upon successful return, contains the handle of the current default charset

Return Values

S_OK

Success
E_INVALIDARG

phCharset is NULL

E_FAIL

This is no current default charset

See Also

SetDefaultCharset

HRESULT GetCodePageCharset(

[in]

CODEPAGEID
cpiCodePage,

[in]

CHARSETTYPE
ctCsetType,

[out]

LPHCHARSET
phCharset)

Description
This method is used to get a charset for a specific codepage. You can achieve the same behavior by calling IMimeInternational::GetCodePageInfo and then accessing the corresponding member of the CODEPAGEINFO structure.

Parameters

cpiCodePage

Codepage in which to get the charset from

ctCsetType

Specifies the type of charset.

phCharset

Upon successful return, contains the handle of the charset.

Return Values

S_OK

Success

E_INVALIDARG

phCharset is NULL

MIME_E_REG_OPEN_KEY
The MIME Database charset registry key can not be opened. MLANG may need to be registered.

MIME_E_NOT_FOUND
The charset in the codepage information specified by cpiCodePage could not be found in the MIME database charset key. MLANG might not be fully registered.

E_OUTOFMEMORY
A memory allocation failed.

See Also

GetCodePageInfo

HRESULT FindCharset(

[in]

LPCSTR

pszCharset,

[out]

LPHCHARSET

phCharset)

Description
This method is used to find a charset handle from a charset name. For performance reasons, most functions in MimeOLE use an HCHARSET to represent a character set.

Parameters
pszCharset
The character set name (i.e. “iso-8859-1”). Names are case-insensitive.

phCharset
Upon successful return, contains the handle of the charset.

Return Values

S_OK
Success
E_INVALIDARG
If pszCharset or phCharset is NULL

MIME_E_REG_OPEN_KEY
The MIME Database charset registry key can not be opened. MLANG may need to be registered.

MIME_E_NOT_FOUND
The charset in the codepage information specified by cpiCodePage could not be found in the MIME database charset key. MLANG might not be fully registered.

E_OUTOFMEMORY
A memory allocation failed.

See Also

GetCharsetInfo

HRESULT GetCharsetInfo(

[in]

HCHARSET

hCharset,

[in,out]

LPINETCSETINFO
pCsetInfo)

Description
This method is used retrieve information about a character set.

Parameters
hCharset
Specifies the handle in which information is to be retrieved.

pCsetInfo
Points to an INETCSETINFO structure that receives information about the character set.

Return Values
S_OK
Success

E_INVALIDARG
If hCharset or pCsetInfo is NULL

MIME_E_INVALID_HANDLE
If hCharset is not a valid handle

See Also
FindCharset
HRESULT GetCodePageInfo(

[in]

CODEPAGEID

cpiCodePage,

[in,out]

LPCODEPAGEINFO
pCodePageInfo)

Description
This method is used to retrieve information about a codepage.
Parameters
cpiCodePage
Specifies the codepage in which information is to be retrieved. If this parameter is equal to CP_ACP, then the system codepage will be used.

pCodePageInfo
Points to a CODEPAGEINFO structure that receives the information about the codepage.

Return Values

S_OK
Success

E_INVALIDARG
If pCodePage is NULL

MIME_E_REG_OPEN_KEY
The MIME Database CodePage registry key can not be opened. MLANG may need to be registered.

MIME_E_NOT_FOUND
The CodePage is not in the MIME Database CodePage registry.

E_OUTOFMEMORY
A memory allocation failed

See Also

GetCodePageCharset

HRESULT CanConvertCodePages(

[in]

CODEPAGEID

cpiSource,

[in]

CODEPAGEID

cpiDest)

Description
This method is used to determine if a conversion between two codepages can be done. This method should be called before calling ConvertString or CovnertBuffer. Not that an HCHARSET represents two codepages that can always be converted between, unless a system codepage is not installed.

There are two reasons why a conversion between two codepages could not be done:

1) cpiSource orcpiDest represents a Windows codepage that is not installed.

2) cpiSource and cpiDest represent an illegal conversion.

Parameters
cpiSource

Codepage of the source

cpiDest

Codepage to convert to

Return Values
S_OK

Success, the conversion can be performed

S_FALSE

Failure, the conversion can NOT be performed

HRESULT DecodeHeader(

[in]

HCHARSET

hCharset,

[in]

LPCSTR

pszData,

[in,out]

LPPROPVARIANT
pDecoded,

[in,out]

LPRFC1522INFO
pRfc1522Info)

Description
This method is used to decode message header text, such as the Subject header. IMimePropertySet performs header decoding automatically via the GetProp method. A header decode consists of removing any RFC1522 encoding and then converting from an Internet codepage to a Windows codepage.

Parameters
hCharset
Specifies the character set to be used to decode the header text. If this parameter is NULL, and pszData is RFC1522 encoded, then the RFC1522 charset will be used to convert the data to a Windows codepage. If pszData has multiple RFC1522 encoded words, the character set of the first encoded word will be used. If hCharset is NULL, and the pszData is not RFC1522 encoded, then the current default character set will be used to convert the data to a Windows codepage.

pszData
Specifies the text to be decoded. The text is assumed to be in an Internet Codepage, as specified by hCharset. pszData can contain multiple RFC1522 encoded words.

pDecoded
Points to a PROPVARIANT that will received the decoded text. The client must set the vt member to VT_LPSTR (for multibyte) or VT_LPWSTR (for Unicode). If VT_LPSTR, then the pszVal member will be set, otherwise, if VT_LPWSTR, then the pwszVal member will be set.

pRfc1522Info
Points to an RFC522INFO structure. This information is used to decode pszData.

Return Values
S_OK
Success

E_INVALIDARG
If pszData or pDecoded or pDecoded->vt is not equal to VT_LPSTR or VT_LPWSTR

MIME_E_INVALID_HANDLE
If hCharset is NULL or invalid

E_FAIL
Unknown failure

MIME_S_NO_CHARSET_CONVERT
This warning denotes the header was RFC1522 decoded, but could not be converted from the Internet codepage to the Windows codepage.

E_OUTOFMEMORY
A memory allocation failed

See Also

SetDefaultCharset

FindCharset

HRESULT EncodeHeader(

[in]

HCHARSET

hCharset,

[in]

LPPROPVARIANT
pData,

[out]

LPSTR

*ppszEncoded,

[in,out]

LPRFC1522INFO
pRfc1522Info)

Description
This method is used to encode message header text, such as the subject header. IMimePropertySet performs header encoding when the property set is saved. A header encode consists of performing an RFC1522 encode, if needed, and a conversion from a Windows codepage to an Internet codepage.

If Unicode data is passed in pData and hCharset does not specify a Unicode translation (i.e. the Windows codepage is not 1200, Unicode), then this method will automatically decide to convert from Unicode to the Internet codepage specified by hCharset. If multibyte data is passed in pData and hCharset specifies a Unicode translation (i.e. the Windows codepage is 1200, Unicode), then this method will automatically decide to convert from the system codepage to the Internet codepage specified by hCharset.

Parameters
hCharset
Specifies the character set to be used to encode pData. If this parameter is NULL, the current default character set will be used to encode pData. (See SetDefaultCharset).

pData
Points to a PROPVARIANT that contains the text string to be encoded. pData->vt can be set to VT_LPSTR or VT_LPWSTR. If VT_LPSTR is specified, then the pszVal member must point to a valid multibyte string, if VT_LPWSTR is specified, then the pwszVal member must point to a valid Unicode string.

ppszEncoded
Upon success, contains a pointer to the null-terminated encoded string. The client must free this string by calling CoTaskMemFree.

pRfc1522Info
Points to an RFC1522INFO structure. Before calling this method, the client should set the fAllow8bit and the fRfc1522Allowed members. This will effect whether or not RFC1522 encoding is applied. If the data pointed to by pData does not contain 8bit, RFC1522 will not be used.

Return Values
S_OK
Success

E_INVALIDARG
If pData, ppszEncoded, or pData->vt is not equal to VT_LPSTR or VT_LPWSTR

MIME_E_INVALID_HANDLE
If hCharset is NULL or invalid

E_FAIL
Unknown error

E_OUTOFMEMORY
A memory allocation failed

See Also

SetDefaultCharset

FindCharset

HRESULT ConvertBuffer(

[in]

CODEPAGEID

cpiSource,

[in]

CODEPAGEID

cpiDest,

[in]

LPBLOB

pIn,

[in,out]

LPBLOB

pOut,

[out]

ULONG

*pcbRead)

Description
This method is used to perform a codepage translation on a buffer. A client should call CanConvertCodePages before calling this function.

Parameters
cpiSource

Specifies the source codepage of pIn
cpiDest

Specifies the destination codepage of pOut

pIn

Points to a BLOB structure that contains the data to be encoded

pOut
Points to a BLOB structure which will received the translated data. MimeOLE set pOut->pBlobData to an allocated buffer and pOut->cbSize to the size of the buffer. The client must call CoTaskMemFree to free pOut->pBlobData.
pcbRead
(Optional) Points to a ULONG. MimeOLE sets this parameter to the number of bytes that were converted from pIn. It is possible that not all of the bytes will be converted (eg. when the buffer ends between a DBCS lead byte and trail byte).

Return Values
S_OK
Success

E_INVALIDARG
If pIn or pIn->pBlobData or pOut are NULL

E_FAIL
The data can not be converted

E_OUTOFMEMORY
A memory allocation failed

MIME_S_CHARSET_CONFLICT
The conversion succeeded, but some of the characters could not be converted. Those characters will likely be replaced with a question mark.

See Also
ConvertString

CanConvertCodePages

HRESULT ConvertString(

[in]

CODEPAGEID

cpiSource,

[in]

CODEPAGEID

cpiDest,

[in]

LPPROPVARIANT
pIn,

[in,out]

LPPROPVARIANT
pOut)

Description
This method is used to convert a multibyte or Unicode string from one codepage to another codepage.

If Unicode data is passed in pIn, by setting pIn->vt equal to VT_LPWSTR, and cpiSource is not equal to 1200 (Unicode), then this method will automatically decide to convert from Unicode to the codepage specified by cpiDest. If multibyte data is passed in pIn, by setting pIn->vt equal to VT_LPSTR, and cpiSource is equal to 1200 (Unicode), then this method will automatically decide to convert from the system codepage to the codepage specified by cpiDest.

If pOut->vt is equal to 1200 (Unicode), then this method will always convert from cpiSource to 1200 (Unicode).

Parameters
cpiSource

Codepage of string in pIn
cpiDest

Desired codepage to convert to

pIn
Points to a PROPVARIANT that contains the string to be converted. pIn->vt must equal VT_LPSTR or VT_LPWSTR.

pOut
Points to a PROPVARIANT that is to receive the converted string. If pOut->vt is not set to VT_LPSTR or VT_LPWSTR, MimeOLE will default to VT_LPSTR.

Return Values
S_OK
Success

E_INVALIDARG
If pIn or pOut is NULL or pIn->vt is not equal to VT_LPSTR or VT_LPWSTR.

E_OUTOFMEMORY
A memory allocation failed

E_FAIL

The string could not be converted from cpiSource to cpiDest
HRESULT MLANG_ConvertInetReset(void)

Description
This method maps directly to MLANG’s ConvertInetReset API. For more information on this function, see the MLANG specification.

See Also

MLANG_ConvertInetString

HRESULT MLANG_ConvertInetString(

[in]

CODEPAGEID

cpiSource,

[in]

CODEPAGEID
cpiDest,

[in]

LPCSTR

pSource,

[in]

int

*pnSizeOfSource,

[out]

LPSTR

pDestination,

[in]

int

*pnDstSize)

Description
This method maps directly to MLANG’s ConvertInetString API. This function is very similar to ConvertBuffer. For more information on this function, see the MLANG specification.

See Also

MLANG_ConvertInetReset

ConvertBuffer

HRESULT Rfc1522Decode(

[in]

LPCSTR

pszValue,

[in,ref]

LPSTR

pszCharset,

[in]

ULONG

cchmax,

[out]

LPSTR

*ppszDecoded)

Description
This method performs an RFC1522 decoding operation on pszValue. MimeOLE does not support character set switching within an RFC1522 encoded string. MimeOLE does support multiple RFC1522 encoded words within pszValue.

Parameters

pszValue

Points to an LPCSTR that is to be RFC1522 decoded

pszCharset
Points to a client allocated buffer. If this method returns S_OK, this buffer will contain the name of the first RFC1522 charset that is found in pszValue.

cchMax
Specifies the maximum number of characters, inlcuding the null-terminator that can be written into pszCharset. cchMax should be at least CCHMAX_CSET_NAME.

ppszDecoded
(Optional) Points to a pointer to an LPSTR. If this method returns S_OK, *ppszDecoded is set to the RFC1522 decoded version of pszValue. A codepage translation my still be needed to convert ppszDecoded to a Windows codepage. The client must free *ppszDecoded.

Return Values
S_OK
Success, pszValue is RFC1522 encoded. pszCharset is valid, and if ppszDecoded is not NULL, it is also valid.

E_INVALIDARG
If pszValue is NULL

E_FAIL
pszValue is NOT RFC1522 encoded

HRESULT Rfc1522Encode(

[in]

LPCSTR

pszValue,

[in]

HCHARSET

hCharset,

[out]

LPSTR

*ppszEncoded)

Description

This method is used to perform an RFC1522 encoding operation. If pszValue does not contain 8bit, this function will return E_FAIL. An RFC1522 encoding consists of performing a Windows codepage to Internet codepage translation, and then applying an RFC1522 encoding. An RFC1522 encoded word can not contain more than 76 characters. Multiple RFC1522 encoded words are needed to encode pszValue, the encoded words are separated by a CRLFTAB.

Parameters
pszValue

Points to a string to be RFC1522 encoded.

hCharset
Specifies the character set to use to perform the RFC1522 encoding. pszValue is assumed to be in the Windows codepage specified by hCharset.

ppszEncoded
Upon successful completion, MimeOLE will set ppszEncoded to a pointer to the RFC1522 encoded version of pszValue. The client must free ppszEncoded.

Return Values
S_OK
Success, *ppszEncoded points to the encoded string

E_FAIL
pszValue does not contain any 8bit data, no need to encode it

E_OUTOFMEMORY
A memory allocation failed

9.0 IMimePropertySchema

9.1 COM Information

Inherits From:

IUnknown

Supports Aggregation:

No

Class ID:

CLSID_IMimePropertySchema

{FD853CED-7F86-11d0-8252-00C04FD85AB4}

Interface ID:

IID_IMimePropertySchema

{FD853CEC-7F86-11d0-8252-00C04FD85AB4}

9.2 Overview

This interface is used to create, modify and manage properties and address types. MimeOLE has a per-process cache that contains all known properties and information about those properties. MimeOLE has a fixed set of known properties that this cache is populated with at runtime. The set of known properties is defined in mimeole.h. This interface allows a client to manage that cache by adding to it, and changing things that are already in it. This interface affects how IMimePropertySet and IMimeAddressTable work.

9.3 When To Use

A client would use this interface in the following situations:

1. To define custom properties that can be referenced by ID using the PIDTOSTR macro.

2. To modify property type information

3. To define a new address type

4. To lookup a property ID from a property name

5. To lookup a property name from a property ID

Note: A client should perform all property schema work before all other MimeOLE activity. This is because it insures that all properties are registered and configured according to the clients needs, before MimeOLE starts using properties.

9.4 Property Overview

There are three types of properties in MimeOLE:

9.4.1 Header Properties

A header property maps directly to a row in a message header, such as the Subject header. There is no special naming convention for header properties, they are referred to by name.

9.4.2 Parameter Properties

A parameter property is a piece of data that is related to a header property. Parameter property names have the following syntax:

par:<Header_Property_Name>:<Parameter_Name>

For example, to refer to the boundary parameter, I would use the following name:

par:content-type:boundary

This assumes that there is a header property named content-type and that the content-type property has the MPF_HASPARAMS flag (see IMimePropertySchema).

9.4.3 Attribute Properties

An attribute property is a piece of data that is not persisted into a message header. Some of the MimeOLE defined attrbutes are computed from header and/or parameter properties. Attribute property names have the following syntax:

att:<Attribute_Name>

A client would use attribute properties to store non-persisting information into an instance of a property set. A client can define their own att: names.

9.5 Data Structures and Types

9.5.1 MIMEPROPFLAGS

Every property in MimeOLE has associated property flags. These flags affect various aspects of how a property is used and treated. Various combinations of these flags are not legal and can result in a return value of MIME_E_INVALID_PROP_FLAGS from some methods. Illegal combinations include:

1. If MPF_HASPARAMS is set, and MPF_MIME is not set, or the property being modified is a parameter or an attribute.

2. If MPF_INETCSET is not set, and MPF_RFC1522 is set. Having MPF_RFC1522 set implies that the property can also be encoded in an Internet character set.

3. If MPF_ADDRESS is set and MPF_HASPARAMS is set. These are mutually exclusive since each flag represents a different format that can appear in a message header.

typedef enum tagMIMEPROPFLAGS {

MPF_INETCSET

= 0x00000001,

MPF_RFC1522

= 0x00000002,

MPF_ADDRESS

= 0x00000004,

MPF_HASPARAMS
= 0x00000008,

MPF_MIME

= 0x00000010,

MPF_READONLY
= 0x00000020

 } MIMEPROPFLAGS;

MPF_INETCSET

This flag specifies that the property can be encoded in an Internet character set. Properties with this flag set require a character set translation to a Windows codepage, or Unicode, before they are displayed in a client. IMimePropertySet handles property character set encoding and decoding transparently to the client.

MPF_RFC1522

This flag specifies that the property can be encoded in RFC1522. Properties with flag set can be encoded with RFC1522. IMimePropertySet handles RFC1522 encoding and decoding transparently to the client.

MPF_ADDRESS

This flag specifies that the property is in the format of an RFC822 address. For example, an RFC822 address might look something like this:

“Joe Smith” joesmith@company.com, “Steve Morgan” stevemorgan@company.com
Address properties are exposed as regular properties via the IMimePropertySet interface and are exposed as parsed address properties via the IMimeAddressTable interface.

MPF_HASPARAMS

This flag specifies that the property can have parameters as define by RFC1521 (MIME). An example of this type of property is the Content-Type property:

Content-Type: multipart/mixed; boundary=”____12345”

Were boundary is a parameter of the Content-Type property.

MPF_MIME

This flag specifies that the property is a MIME property, such as Content-Type or Content-Disposition. Properties that have this flag set will not be saved when the save format is equal to RFC822 (non-MIME).

MPF_READONLY

This flag specifies that the property is read-only and can not be modified.

9.6 Methods

Method Name
Description

RegisterProperty
Create a new user-defined property

ModifyProperty
Modify information about an existing property

GetPropertyId
Lookup a property ID from a property name

GetPropertyName
Lookup a property name from a property ID

RegisterAddressType
Create a new user-defined address property

HRESULT RegisterProperty(

[in]

LPCSTR

pszName,

[in]

DWORD

dwFlags,

[in]

DWORD

dwRowNumber,

[in]

VARTYPE

vtDefault,

[out]

LPDWORD

pdwPropId)

Description

This method is used to create a user-defined property or modify an existing property. This method allows a user to create a property that has specific MIMEPROPFLAGS, default row position, and default variant type. This method returns a PID in pdwPropId. This PID can be used in many methods that take a property name by using the PIDTOSTR(_pid_) macro.

If a property with the name pszName already exist in the MimeOLE property cache, then the existing property will be modified with the new dwFlags, dwRowNumber, and vtDefault.

This method allows client to explicity define new properties. However, properties can also be implicity created by simply setting a property with a user-defined property name (see IMimePropertySet for more information).

Parameters

pszName
Specifies the name of the new property to create, or modify. This parameter can not be NULL.

dwFlags
A bit-mask of flags defined by the MIMEPROPFLAGS enumerated type. If the property specified by pszName already exist, a client can not modify the MPF_ADDRESS flag.

dwRowNumber
Specifies the weighted position value that determines where the property will be persisted in a message header. This is not a direct index, but rather a weight. If the property should appear at the end, use a large number, such as 1000. If the property should appear at the top, use a small number, such as 1 – 10. If the property should appear in the middle use a number between 40 and 70.

vtDefault
Specifies the default variant type. This value is used in IMimePropertySet::GetProp if the vt member of the PROPVARIANT passed in is set to VT_EMPTY, then the vtDefault type should be used to return the property data.

pdwPropId
Points to a DWORD. On successful return, this will be set to the PID of the new property, or if pszName currently exist, the PID of the existing property.

Return Values

S_OK
Success

E_INVALIDARG
If pszName is NULL

E_FAIL
If pszName already exist and the MPF_ADDRESS flag is set in dwFlags and not in the existing property, or the MPF_ADDRESS flag is set in the existing property, and not in dwFlags.

MIME_E_UNSUPPORTED_VARTYPE
If vtDefault is not equal to VT_LPSTR, VT_LPWSTR, VT_FILETIME, VT_UI4 or VT_I4.

MIME_E_INVALID_PROP_FLAGS
If dwFlags has an invalid combination of flags, see MIMEPROPFLAGS information.

MIME_E_INVALID_HEADER_NAME
If creating a header property and pszName contains one of the following illegal characters: . or SPACE or TAB or CR or NL or :

E_OUTOFMEMORY
A Memory allocation failed

HRESULT GetPropertyId(

[in]

LPCSTR

pszName,

[out]

LPDWORD

pdwPropId)

Description
This method is used to lookup a property ID from a property name. Using property IDs to reference properties can be much more efficient (see IMimePropertySet for more information).

Parameters
pszName

Specifies the property name to lookup the property ID for

pdwPropId

Points to a DWORD to receive the property ID of pszName
Return Values
S_OK

Success

E_INVALIDARG

If pszName or pdwPropId is NULL

MIME_E_NOT_FOUND

If pszName could not be found in MimeOLE’s property cache

See Also
GetPropertyName

HRESULT GetPropertyName(

[in]

DWORD

dwPropId,

[out]

LPSTR

*ppszName)

Description
This method is used to lookup a property name from a property ID.

Parameters
dwPropId

Specifies the property ID to lookup the property name for

ppszName
Points to an LPSTR to receive the property name for dwPropId. The client must free *ppszName.

Return Values
S_OK
Success

E_INVALIDARG
If ppszName is NULL

MIME_E_NOT_FOUND
If dwPropId could not be found in MimeOLE’s property cache

See Also
GetPropertyName

HRESULT RegisterAddressType(

[in]

LPCSTR

pszName,

[out]

LPDWORD

pdwAdrType)

Description
This method is used to create a new MimeOLE address type. An address property has the MPF_ADDRESS MIMEPROPFLAG set. This method allows the client to create new properties that are treated as addresses. Properties addresses are exposed as parsed individual addressess through the IMimeAddressTable interface.

There is a maximum of 32 address types allowed in MimeOLE because address types are identified by a DWORD bit-mask. If the property specified pszName already exist, and has the MPF_ADDRESS flag, this method returns its address type in pdwAdrType. If pszName does not exist, and there is room for another address type, the new address property is created and registered with the MPF_ADDRESS flag, and the new address type is returned in pdwAdrType.

MimeOLE defines a set of known address types, see IMimeAddressTable fore more information.

Parameters
pszName
Specifies the name of the new address type. Address properties are by default header properties, which mean they are persisted into a message header. pszName will be the name used to persist the header.

pdwAdrType
Points to a DWORD that will receive the address type of the new address property. This value can be used with the IMimeAddressTable interface to get and set addresses of this new type.

Return Values

S_OK

Success

E_INVALIDARG

If pszName is NULL

MIME_E_INVALID_HEADER_NAME
If creating a header property and pszName contains one of the following illegal characters: . or SPACE or TAB or CR or NL or :

E_OUTOFMEMORY
A Memory allocation failed

10.0 IMimePropertySet

10.1 COM Information

Inherits From:

IPersistStreamInit

Supports Aggregation:

Yes

Class ID:

CLSID_IMimePropertySet

{ FD853CE1-7F86-11d0-8252-00C04FD85AB4}

Interface ID:

IID_IMimePropertySet

{FD853CD3-7F86-11d0-8252-00C04FD85AB4}

10.2 Overview

This interface is used to manipulate the information in an Internet message header. This interface exposes the information in a header as a set of properties that can be set, retrieved, deleted, queried, moved, copied, etc.

IMimeHeaderTable and IMimeAddressTable are exposed from IMimePropertySet::BindToObject. These three interfaces work together to give the client multiple ways of working with and viewing the data in a message header.

This interface supports persistence through the IPersistStreamInit interface. The persistence format is an RFC822 or MIME header. IMimePropertySet::Save does not write the CRLF that separates a message header from the message body. IMimePropertySet::Load reads header properties until it reads the CRLF that separates the message header from the message body.

This interface can persist as an RFC822 or MIME header. This is configured by using the IMimePropertySet::SetOption method with the OID_SAVE_FORMAT option. When saved in the RFC822 format, header properties that have the MPF_MIME flag are not saved (see IMimePropertySchema for information on property flags and property types). See the Options section for more information on what options this interface supports.

10.3 Property Name Vs. Property ID

Many of the methods in this interface take a parameter called LPCSTR pszName. MoveProps and CopyProps take an array of LPCSTR pszName. Most of the methods that take a property name can also take a property ID by using the PIDTOSTR macro. See a specific method description to see if it supports the PIDTOSTR macro.

The PIDTOSTR macro cast a DWORD (property ID) to an LPCSTR. It is more efficient to pass a property ID because MimeOLE doesn’t have to map from the property name to the property ID.

Property names are case-insensitive. Mimeole.h defines a set of known property names. For example, for the header property name “Subject”, MimeOLE defines the variable named STR_HDR_SUBJECT. The corresponding PID is PID_HDR_SUBJECT. The naming convention consistent for other properties.

To use the string definitions provided by MimeOLE, a client must put the following statement:

#define DEFINE_STRCONST

before including mimeole.h into one .c or .cpp source file in the project.

Example using a property name:

HRESULT SetSubject(IMimePropertySet *pProps, LPCSTR pszSubject)

{

HRESULT hr;

PROPVARIANT rVariant;

rVariant.vt = VT_LPSTR;

rVariant.pszVal = pszSubject;

hr = pProps->SetProp(STR_HDR_SUBJECT, 0, &rVariant);

if (FAILED(hr))

return hr;

return S_OK;

}

Example using a property ID:

HRESULT SetSubject(IMimePropertySet *pProps, LPCSTR pszSubject)

{

HRESULT hr;

PROPVARIANT rVariant;

rVariant.vt = VT_LPSTR;

rVariant.pszVal = pszSubject;

hr = pProps->SetProp(PIDTOSTR(PID_HDR_SUBJECT), 0, &rVariant);

if (FAILED(hr))

return hr;

return S_OK;

}

10.4 Predefined Properties

The following table describes all of the properties that MimeOLE understands on startup. Clients can create new properties, or change information about predefined properties by using the IMimePropertySchema object.

Note: A client should perform all property schema work before all other MimeOLE activity.

There is some notation in this table that needs to be defined. The Identifier column contains the suffix of the MimeOLE property name and property ID. Append “STR_” or “PID_” to an item in the Name column to create the actual property name or the actual property ID, respectively. For example, for HDR_NEWSGROUP, MimeOLE defines STR_HDR_NEWSGROUP, which equals the value in the Name column, and PID_HDR_NEWSGROUP, which equals the value in the ID column.

Another implied identifier naming convention in mimeole.h is that header properties are prefixed with “PID_HDR_” or “STR_HDR_”, parameter properties are prefixed with “PID_PAR_” or “STR_PAR_”, and attribute properties are prefixed with “PID_ATT_” or “STR_ATT_”.

T
Header Property (H), Parameter (P), Attribute (A)

I
MPF_INETCSET (Can be encoded in an Internet character set)

R
MPF_RFC1522 (Can be encoded in RFC1522)

A
MPF_ADDRESS (Is in an RFC822 address format)

P
MPF_HASPARAMS (Can have RFC1521, MIME, parameters)

M
MPF_MIME (Is a MIME property)

R
MPF_READONLY (Is read-only, can not SetProp or AppendProp)

Identifier
T
I
R
A
M
R
VARTYPE
ID
Name

HDR_NEWSGROUP

H

VT_LPSTR
2
X-Newsgroup

HDR_NEWSGROUPS

H
X
X

VT_LPSTR
3
Newsgroups

HDR_REFS

H
X
X

VT_LPSTR
4
References

HDR_SUBJECT

H
X
X

VT_LPSTR
5
Subject

HDR_FROM

H
X
X
X

VT_LPSTR
6
From

HDR_MESSAGEID

H

VT_LPSTR
7
Message-ID

HDR_RETURNPATH

H
X
X
X

VT_LPSTR
8
Return-Path

HDR_RR

H
X
X
X

VT_LPSTR
9
Rr

HDR_RETRCPTTO

H
X
X
X

VT_LPSTR
10
Return-Receipt-To

HDR_APPARTO

H
X
X
X

VT_LPSTR
11
Apparently-To

HDR_DATE

H

VT_LPSTR
12
Date

HDR_RECEIVED

H

VT_LPSTR
13
Received

HDR_REPLYTO

H
X
X
X

VT_LPSTR
14
Reply-To

HDR_XMAILER

H

VT_LPSTR
15
X-Mailer

HDR_BCC

H
X
X
X

VT_LPSTR
16
Bcc

HDR_MIMEVER

H

X

VT_LPSTR
17
MIME-Version

HDR_CNTTYPE

H

X
X
VT_LPSTR
18
Content-Type

HDR_CNTXFER

H

X

VT_LPSTR
19
Content-Transfer-Encoding

HDR_CNTID

H

X

VT_LPSTR
20
Content-ID

HDR_CNTDESC

H
X
X

X

VT_LPSTR
21
Content-Description

HDR_CNTDISP

H

X
X
VT_LPSTR
22
Content-Disposition

HDR_CNTBASE

H
X
X

X

VT_LPSTR
23
Content-Base

HDR_CNTLOC

H
X
X

X

VT_LPSTR
24
Content-Location

HDR_TO

H
X
X
X

VT_LPSTR
25
To

HDR_PATH

H
X
X

VT_LPSTR
26
Path

HDR_FOLLOWUPTO

H
X
X

VT_LPSTR
27
Followup-To

HDR_EXPIRES

H

VT_LPSTR
28
Expires

HDR_CC

H
X
X
X

VT_LPSTR
29
Cc

HDR_CONTROL

H

VT_LPSTR
30
Control

HDR_DISTRIB

H

VT_LPSTR
31
Distribution

HDR_KEYWORDS

H
X
X

VT_LPSTR
32
Keywords

HDR_SUMMARY

H

VT_LPSTR
33
Summary

HDR_APPROVED

H

VT_LPSTR
34
Approved

HDR_LINES

H

VT_LPSTR
35
Lines

HDR_XREF

H

VT_LPSTR
36
Xref

HDR_ORG

H
X
X

VT_LPSTR
37
Organization

HDR_XNEWSRDR

H

VT_LPSTR
38
X-Newsreader

HDR_XPRI

H

VT_LPSTR
39
X-Priority

HDR_XMSPRI

H

VT_LPSTR
40
X-MSMail-Priority

HDR_COMMENT

H
X
X

VT_LPSTR
55
Comment

HDR_ENCODING

H

VT_LPSTR
56
Encoding

HDR_ENCRYPTED

H

VT_LPSTR
57
Encrypted

HDR_XUNSENT

H

VT_LPSTR
59
X-Unsent

HDR_ARTICLEID

H

VT_LPSTR
60
X-ArticleId

HDR_SENDER

H
X
X
X

VT_LPSTR
61
Sender

PAR_FILENAME

P
X
X

X

VT_LPSTR
41
par:content-disposition:filename

PAR_BOUNDARY

P

X

VT_LPSTR
42
par:content-type:boundary

PAR_CHARSET

P

X

VT_LPSTR
43
par:content-type:charset

PAR_NAME

P
X
X

X

VT_LPSTR
44
par:content-type:name

ATT_FILENAME

A
X
X

VT_LPSTR
45
att:filename

ATT_GENFNAME

A
X
X

VT_LPSTR
46
att:generated-filename

ATT_PRITYPE

A

VT_LPSTR
47
att:pri-content-type

ATT_SUBTYPE

A

VT_LPSTR
48
att:sub-content-type

ATT_NORMSUBJ

A
X
X

VT_LPSTR
49
att:normalized-subject

ATT_ILLEGAL

A
X
X

VT_LPSTR
50
att:illegal-lines

ATT_RENDERED

A

VT_UI4
51
att:rendered

ATT_SENTTIME

A

VT_FILETIME
52
att:sent-time

ATT_RECVTIME

A

VT_FILETIME
53
att:received-time

ATT_PRIORITY

A

VT_UI4
54
att:priority

10.5 Property Descriptions

Most of the properties in the above table are header properties which map one-to-one with rows in a message header. Header properties are defined by Internet RFC822 and RFC1521 (MIME). However, some of the properties require further description, such as the attributes and X- headers that are defined by MimeOLE.

10.5.1 PID_ATT_FILENAME

10.5.2 PID_ATT_GENFNAME

10.5.3 PID_ATT_PRITYPE

10.5.4 PID_ATT_SUBTYPE

10.5.5 PID_ATT_NORMSUBJ

10.5.6 PID_ATT_ILLEGAL

10.5.7 PID_ATT_RENDERED

10.5.8 PID_ATT_SENTTIME

10.5.9 PID_ATT_RECVTIME

10.5.10 PID_ATT_PRIORITY

10.5.11 PID_HDR_XUNSENT

10.5.12 PID_HDR_XPRI and PID_HDR_XMSPRI

10.5.13 MHTML Headers

10.6 Understanding Properties

It is very important to understand that a client can pass any client-defined property name into the various IMimePropertySet methods. This is how a client can set its own custom properties. For example, if a client wanted to set and get the X-Foo property:

HRESULT SetAndGetXFoo(IMimePropertySet *pProps, LPCSTR pszXFoo)

{

HRESULT hr;

PROPVARIANT rVariant;

rVariant.vt = VT_LPSTR;

rVariant.pszVal = pszXFoo;

hr = pProps->SetProp(“X-Foo”, 0, &rVariant);

if (FAILED(hr))

return hr;

hr = pProps->GetProp(“X-Foo”, 0, &rVariant);

if (FAILED(hr))

return hr;

CoTaskMemFree(rVariant.pszVal);

return S_OK;

}

The sequence of code will cause MimeOLE to create the X-Foo property, if it doesn’t already exist.

10.7 The OLE PROPVARIANT Structure

MimeOLE uses the OLE PROPVARIANT structure to pass property data in and out of methods. This structure as used because it contains both a LPSTR and an LPWSTR, where as the standard VARIANT structure only supports BSTR. The PROPVARIANT structure is defined as follows:

struct tagPROPVARIANT

 {

 VARTYPE vt;

 WORD wReserved1;

 WORD wReserved2;

 WORD wReserved3;

 /* [switch_is] */ /* [switch_type] */ union

 {

 /* [case()] */ /* Empty union arm */

 /* [case()] */ UCHAR bVal;

 /* [case()] */ short iVal;

 /* [case()] */ USHORT uiVal;

 /* [case()] */ VARIANT_BOOL boolVal;

 /* [case()] */ _VARIANT_BOOL bool;

 /* [case()] */ long lVal;

 /* [case()] */ ULONG ulVal;

 /* [case()] */ float fltVal;

 /* [case()] */ SCODE scode;

 /* [case()] */ LARGE_INTEGER hVal;

 /* [case()] */ ULARGE_INTEGER uhVal;

 /* [case()] */ double dblVal;

 /* [case()] */ CY cyVal;

 /* [case()] */ DATE date;

 /* [case()] */ FILETIME filetime;

 /* [case()] */ CLSID __RPC_FAR *puuid;

 /* [case()] */ BLOB blob;

 /* [case()] */ CLIPDATA __RPC_FAR *pclipdata;

 /* [case()] */ IStream __RPC_FAR *pStream;

 /* [case()] */ IStorage __RPC_FAR *pStorage;

 /* [case()] */ BSTR bstrVal;

 /* [case()] */ BSTRBLOB bstrblobVal;

 /* [case()] */ LPSTR pszVal;

 /* [case()] */ LPWSTR pwszVal;

 /* [case()] */ CAUB caub;

 /* [case()] */ CAI cai;

 /* [case()] */ CAUI caui;

 /* [case()] */ CABOOL cabool;

 /* [case()] */ CAL cal;

 /* [case()] */ CAUL caul;

 /* [case()] */ CAFLT caflt;

 /* [case()] */ CASCODE cascode;

 /* [case()] */ CAH cah;

 /* [case()] */ CAUH cauh;

 /* [case()] */ CADBL cadbl;

 /* [case()] */ CACY cacy;

 /* [case()] */ CADATE cadate;

 /* [case()] */ CAFILETIME cafiletime;

 /* [case()] */ CACLSID cauuid;

 /* [case()] */ CACLIPDATA caclipdata;

 /* [case()] */ CABSTR cabstr;

 /* [case()] */ CABSTRBLOB cabstrblob;

 /* [case()] */ CALPSTR calpstr;

 /* [case()] */ CALPWSTR calpwstr;

 /* [case()] */ CAPROPVARIANT capropvar;

 }
;

 };

The vt member indicates what item in the union is valid. MimeOLE supports a small subset of the available VARTYPEs.

· VT_LPSTR

Corresponds to PROPVARIANT::pszVal

· VT_LPWSTR
Corresponds to PROPVARIANT::pwszVal

· VT_FILETIME
Corresponds to PROPVARIANT::filetime

· VT_UI4

Corresponds to PROPVARIANT::ulVal

· VT_I4

Corresponds to PROPVARIANT::lVal

OLE has a few utility functions for working with a PROPVARIANT structure:

· PropVariantClear -

10.8 IMimeMessageTree and IMimeMessage Property Methods

10.9 Data Structures and Data Types

10.9.1 PROPDATAFLAGS

#define PDF_ENCODED

0x00000001

#define PDF_NAMEINDATA

0x00000002

#define PDF_HEADERFORMAT
0x00000004 | PDF_ENCODED

#define PDF_NOCOMMENTS
0x00000008

#define PDF_SAVENOENCODE
0x00000010

#define PDF_VECTOR

0x00000020

PDF_ENCODED

PDF_NAMEINDATA

PDF_HEADERFORMAT

PDF_NOCOMMENTS

PDF_SAVENOENCODE

PDF_VECTOR

10.9.2 MIMEPARAMINFO

typedef struct tagMIMEPARAMINFO {

LPSTR pszName;

LPSTR pszData;

} MIMEPARAMINFO, *LPMIMEPARAMINFO;

pszName

pszData

10.9.3 MIMEPROPINFO

typedef enum tagPROPINFOMASK {

PIM_CHARSET

= 0x00000001,

PIM_ENCODINGTYPE
= 0x00000002,

PIM_ROWNUMBER
= 0x00000004,

PIM_FLAGS

= 0x00000008,

PIM_PROPID

= 0x00000010,

PIM_VALUES

= 0x00000020,

PIM_VTDEFAULT
= 0x00000040,

PIM_VTCURRENT
= 0x00000080

} PROPINFOMASK;

typedef struct tagMIMEPROPINFO {

DWORD

dwMask;

HCHARSET

hCharset;

ENCODINGTYPE

ietEncoding;

DWORD

dwRowNumber;

DWORD

dwFlags;

DWORD

dwPropId;

DWORD

cValues;

VARTYPE

vtDefault;

VARTYPE

vtCurrent;

} MIMEPROPINFO, *LPMIMEPROPINFO;

dwMask

hCharset

ietEncoding

dwRowNumber

dwFlags

dwPropId

cValues

vtDefault

vtCurrent

10.10 Methods

Method Name
Description

GetPropInfo
Used to get information about a specific property

SetPropInfo
Used to set information about a specific property

GetProp
Used to get a property value

SetProp
Used to set a property value

AppendProp
Used to append a value to a property

DeleteProp
Used to delete a property

CopyProps
Used to copy properties to another IMimePropertySet

MoveProps
Used to move properties to another IMimePropertySet

DeleteExcept
Used to delete all properties except for a specified group

QueryProp
Used to query the value of a property

GetCharset
Used to get the charset of the IMimePropertySet

SetCharset
Used to set the charset of the IMimePropertySet

GetParameters
Used to get an array of parameters for a header property

IsContentType
Used to query the primary and secondary content-type

BindToObject
Used to get an object such as IMimeAddressTable and IMimeHeaderTable

Clone
Used to create another IMimePropertySet with the same data and state

SetOption
Used to set an option

GetOption
Used to get the value of an option

EnumProps
Used to get an IMimeEnumProperties interface to enumerate properties

HRESULT GetPropInfo(

[in]

LPCSTR

pszName,

[in,out]

LPMIMEPROPINFO
pInfo)

Description
Parameters
Return Values

See Also

HRESULT SetPropInfo(

[in]

LPCSTR

pszName,

[in]

LPCMIMEPROPINFO
pInfo)

Description
Parameters
Return Values

See Also

HRESULT GetProp(

[in]

LPCSTR

pszName,

[in]

DWORD

dwFlags,

[in,out]

LPPROPVARIANT
pValue)

Description
Parameters
Return Values

See Also

HRESULT SetProp(

[in]

LPCSTR

pszName,

[in]

DWORD

dwFlags,

[in]

LPCPROPVARIANT
pValue)

Description
Parameters
Return Values

See Also

HRESULT AppendProp(

[in]

LPCSTR

pszName,

[in]

DWORD

dwFlags,

[in]

LPPROPVARIANT
pValue)

Description
Parameters
Return Values

See Also

HRESULT DeleteProp(

[in]

LPCSTR

pszName)

Description
Parameters
Return Values

See Also

HRESULT CopyProps(

[in]

ULONG

cNames,

[in]

LPCSTR

*prgszName,

[in]

IMimePropertySet
*pPropertySet)

Description
Parameters
Return Values

See Also

HRESULT MoveProps(

[in]

ULONG

cNames,

[in]

LPCSTR

*prgszName,

[in]

IMimePropertySet
*pPropertySet)

Description
Parameters
Return Values

See Also

HRESULT DeleteExcept(

[in]

ULONG

cNames,

[in]

LPCSTR

*prgszName)

Description
Parameters
Return Values

See Also

HRESULT QueryProp(

[in]

LPCSTR

pszName,

[in]

LPCSTR

pszCriteria,

[in]

boolean

fSubString,

[in]

boolean

fCaseSensitive)

Description
Parameters
Return Values

See Also

HRESULT GetCharset(

[out]

LPHCHARSET

phCharset)

Description
Parameters
Return Values

See Also

HRESULT SetCharset(

[in]

HCHARSET

hCharset,

[in]

CSETAPPLYTYPE
applytype)

Description
Parameters
Return Values

See Also

HRESULT GetParameters(

[in]

LPCSTR

pszName,

[out]

ULONG

*pcParams,

[out]

LPMIMEPARAMINFO
*pprgParam)

Description
Parameters
Return Values

See Also

HRESULT IsContentType(

[in]

LPCSTR

pszPriType,

[in]

LPCSTR

pszSubType)

Description
Parameters
Return Values

See Also

HRESULT BindToObject(

[in]

REFIID

riid,

[out, iid_is(riid)] void

**ppvObject)

Description
Parameters
Return Values

See Also

HRESULT Clone(

[out]

IMimePropertySet
**ppPropertySet)

Description
Parameters
Return Values

See Also

HRESULT SetOption(

[in]

const TYPEDID

oid,

[in]

LPCPROPVARIANT
pValue)

Description
Parameters
Return Values

See Also

HRESULT GetOption(

[in]

const TYPEDID

oid,

[in,out]

LPPROPVARIANT
pValue)

Description
Parameters
Return Values

See Also

HRESULT EnumProps(

[in]

DWORD

dwFlags,

[out]

IMimeEnumProperties
**ppEnum)

Description
cpp_quote("#define EPF_NONAME 0x00000001")

Parameters
Return Values

See Also

11.0 IMimeHeaderTable

12.0 IMimeAddressTable

12.1 Overview

This interface is used to manage a table of Internet message addresses. This interface represents the address header properties as a table of individual addresses. If a header property has the MPF_ADDRESS flag, it will show up in an IMimeAddressTable.

Each address has associated properties, defined by the ADDRESSPROPS structure. A single address is identified by the HANDLE type HADDRESS, which is unique for an instance of an IMimeAddressTable.

A client can obtain an IMimeAddressTable in multiple ways:

1. By calling IMimeMessage::GetAddressTable(&pAdrTable)

2. By calling IMimeMessageTree::BindToObject(HBODY_ROOT, IID_IMimeAddressTable, (LPVOID *)&pAdrTable)

3. By calling IMimePropertySet::BindToObject(IID_IMimeAddressTable, (LPVOID *)&pAdrTable)

A client can extend the base set of support address types by using the IMimePropertySchema interface.

12.2 Address Types

These address types correspond one-to-one with header properties that are defined to be in the format of an rfc822 address.

#define IAT_FROM

0x00000001

#define IAT_SENDER

0x00000002

#define IAT_TO

0x00000004

#define IAT_CC

0x00000008

#define IAT_BCC
0x00000010

#define IAT_REPLYTO 0x00000020

#define IAT_RETURNPATH
0x00000040

#define IAT_RETRCPTTO
0x00000080

#define IAT_RR

0x00000100

#define IAT_APPARTO 0x00000200

The following IAT types are special types. IAT_UNKNOWN should never be used, it simply here to reserve 0.

#define IAT_UNKNOWN

0x00000000

#define IAT_ALL

0xFFFFFFFF

#define IAT_KNOWN
IAT_FROM | IAT_TO | IAT_CC | IAT_BCC | IAT_REPLYTO | IAT_SENDER

#define IAT_RECIPS

IAT_TO | IAT_CC | IAT_BCC

13.0 Address Format

The following enumerated type is used the IMimeAddressTable::GetFormat method and the IMimeMessage::GetAddressFormat method.

typedef enum tagADDRESSFORMAT {

AFT_DISPLAY_FRIENDLY,

 AFT_DISPLAY_EMAIL,

 AFT_DISPLAY_BOTH,

 AFT_RFC822_DECODED,

 AFT_RFC822_ENCODED,

AFT_RFC822_TRANSMIT

} ADDRESSFORMAT;

14.0 Address Properties

#define IAP_CHARSET

0x00000001

#define IAP_HANDLE

0x00000002

#define IAP_ADRTYPE

0x00000004

#define IAP_FRIENDLY

0x00000008

#define IAP_EMAIL

0x00000020

#define IAP_CERTSTATE
0x00000100

#define IAP_SIGNED

0x00000200

#define IAP_ENCRYPTED
0x00000400

#define IAP_ENCODING

0x00000800

#define IAP_COOKIE

0x00001000

#define IAP_ALL

0xffffffff

typedef struct tagADDRESSPROPS {

DWORD

dwProps;

HADDRESS

hAddress;

ENCODINGTYPE

ietFriendly;

HCHARSET

hCharset;

DWORD

dwAdrType;

LPSTR

pszFriendly;

LPWSTR

pwszReserved;

LPSTR

pszEmail;

CERTSTATE

certstate;

THUMBBLOB

tbSigned;

THUMBBLOB

tbEncrypted;

DWORD

dwCookie;

DWORD

dwReserved1;

DWORD

dwReserved2;

} ADDRESSPROPS, *LPADDRESSPROPS;

typedef struct tagADDRESSLIST {

 ULONG

cAdrs;

 LPADDRESSPROPS
prgAdr;

} ADDRESSLIST, *LPADDRESSLIST;

14.1.1 HRESULT IMimeAddressTable::Append(

[in]
DWORD
dwAdrType,

[in]
ENCODINGTYPE ietFriendly,

[in]
LPCSTR
pszFriendly,

[in]
LPCSTR
pszEmail,

[out]
LPHADDRESS

phAddress)

15.0 Description

This method is used to append a new address to the address table.

16.0 Parameters

dwAdrType
Specifies an address type, must be equal to one IAP_xxx type.

ietFriendly
Specifies whether pszFriendly is encoded in an Internet character set. Must be equal to IET_ENCODED or IET_DECODED. This parameter sets the IAP_ENCODING property of an address. The IAP_CHARSET address property is used to encode/decode to and from and Internet character set.

pszFriendly
The friendly name of the address (e.g. “Joe Smith”). This parameter sets the IAP_FRIENDLY address property. This parameter can be NULL.

pszEmail
The Internet e-mail address (e.g. joesmith@company.com). This parameter sets the IAP_EMAIL address property. This parameter is required.

phAddress
On success, this parameter contains the handle to the new address. This handle can be used in other IMimeAddressTable methods

16.1.1.1 Return Values

E_FAIL

An unknown error occurred

E_INVALIDARG
pszEmail was NULL

E_OUTOFMEMORY
A memory allocation failed

MIME_E_NOT_FOUND
dwAdrType is not valid

16.1.2 HRESULT IMimeAddressTable::Insert(

[in]
LPADDRESSPROPS
pAddress,

[out]
LPHADDRESS

phAddress)

17.0 Description

This method is used to insert an ADDRESSPROPS structure into the address table. This always results in a new address being append to the table. pAddress must have the IAP_ADRTYPE and IAP_EMAIL property specified, otherwise E_INVALIDARG will be returned.

18.0 Parameters

pAddress
The ADDRESSPROPS to insert. The dwProps member must be set to specify the valid entries. IAP_ADRTYPE and IAP_EMAIL must be specified.

phAddress
(Optional) On successful return, contains the handle to the new address in the address table.

18.1.1.1 Return Values

E_FAIL
An unknown error occurred.

E_INVALIDARG
pAddress is NULL, or pAddress does not have the IAP_ADRTYPE or IAP_EMAIL property specified.

E_OUTOFMEMORY
A memory allocation failed

MIME_E_NOT_FOUND
The ADDRESSPROPS::dwAdrType is not valid

18.1.2 HRESULT IMimeAddressTable::SetProps(

[in]
HADDRESS

hAddress,

[in]
LPADDRESSPROPS
pAddress)

19.0 Description

This method is used to modify the address properties of an existing address in the address table. The address is identified by the hAddress parameter. The pAddress->dwProps bit-mask must be initialized to specify the valid members of the pAddress structure.

20.0 Parameters

hAddress
Handle to the address to modify.

pAddress
The ADDRESSPROPS to modify. The dwProps member must be set to specify the valid entries.

21.0 Return Values

E_INVALIDARG
pAddress is NULL

E_OUTOFMEMORY

A memory allocation failed

MIME_E_INVALID_HANDLE
The value specified by hAddress is not valid

21.1.1 HRESULT IMimeAddressTable::GetProps(

[in]
HADDRESS

hAddress,

[in]
LPADDRESSPROPS
pAddress)

22.0 Description

This method is used to get properties for an existing address in the address table. The address is identified by the hAddress parameter. The pAddress->dwProps bit-mask must be initialized to specify the properties that the client wants returned.

This method can return S_OK, even though not all of the properties requested were returned. If a requested property could not be returned then the property bit field is removed from pAddress->dwProps and the property member is set to NULL. This requires a client to check the property member or the property bit-mask for validity.

HRESULT IMimeAddressTable::GetSender(

[in,out]
LPADDRESSPROPS
pAddress)

HRESULT IMimeAddressTable::CountTypes(

[in]
DWORD

dwAdrTypes,

[out]
ULONG

*pcAdrs)

HRESULT IMimeAddressTable::GetTypes(

[in]
DWORD

dwAdrTypes,

[in]
DWORD

dwProps,

[in,out]
LPADDRESSLIST
pList)

HRESULT IMimeAddressTable::EnumTypes(

[in]
DWORD

dwAdrTypes,

[in]
DWORD

dwProps,

[out]
IMimeEnumAddressTypes **ppEnum)

HRESULT IMimeAddressTable::Delete(

[in]
HADDRESS

hAddress)

HRESULT IMimeAddressTable::DeleteTypes(

[in]
DWORD

dwAdrTypes)

HRESULT IMimeAddressTable::GetFormat(

[in]
DWORD

dwAdrType,

[in]
ADDRESSFORMAT
format,

[out]
LPSTR

*ppszFormat)

HRESULT IMimeAddressTable::AppendRfc822(

[in]
DWORD

dwAdrType,

[in]
ENCODINGTYPE

ietEncoding,

[in]
LPCSTR

pszRfc822Adr)

HRESULT IMimeAddressTable::ParseRfc822(

[in]
DWORD

dwAdrType,

[in]
ENCODINGTYPE

ietEncoding,

[in]
LPCSTR

pszRfc822Adr,

[in,out]
LPADDRESSLIST pList)

HRESULT IMimeAddressTable::Clone(

[out]
IMimeAddressTable
**ppTable)

HRESULT IMimeAddressTable::BindToObject(

[in]
REFIID

riid,

[out, iid_is(riid)] void

**ppvObject)

23.0 IMimeWebDocument

24.0 IMimeBody

25.0 IMimeMessageTree

26.0 IMimeMessage

27.0 IMimeMessageParts

28.0 IMimeEnumHeaderRows

29.0 IMimeEnumProperties

30.0 IMimeEnumAddressTypes

31.0 IMimeAllocator

32.0 IMimeSecurity

33.0 Installation

MimeOLE resides in a Dynamic Link Library called INETCOMM.DLL. This DLL is a COM In-Process server. MimeOLE does not support automation or scripting. MimeOLE does not ever write information to the Windows registry, except for during self-registration.

Daily builds of INETCOMM.DLL are available from:

file:\\athbld\inetcomm or file:\\iptdalpha3\pubs.ie4
To use MimeOLE with COM, you must register INETCOMM.DLL. To do this, follow these steps:

1. Copy INETCOMM.DLL to the desired directory.

2. Go to the directory which contains INETCOMM.DLL

3. Type the following at the command line regsvr32.exe inetcomm.dll
This will cause INETCOMM.DLL to perform its self-registration. INETCOMM.DLL registers all of the CLSDIDs in the registry during this registration. See the next section for information on dependencies that may also require installation.

34.0 Usage

MimeOLE supports two types of runtime usage. The first method is by using COM. This implies calling CoCreateInstance or some form of COM object creation functions. The other method, which can be more efficient, is by statically or dynamically linking to INETCOMM and using the ‘C’ functions to create objects.

35.0 Required Files

To use MimeOLE, a client must have the mimeole.h file. This file is generated from mimeole.idl using the MIDL compiler. If a client chooses to statically link to INETCOMM.DLL, the file INETCOMM.LIB is required.

INETCOMM.DLL statically links to SHLWAPI.DLL and MSOERT.DLL, these two DLLs are required as stated in the Dependencies section.

Internal source code for MimOLE can be found on file:\\athbld\inetcomm. MimeOLE is enlisted in a SLM project on a server named FBI. To gain access to this server, mailto:sungr.

36.0 Dependencies

INETCOMM.DLL links to the following DLLs:

1. SHLWAPI.DLL – This DLL is used for various string and URL parsing. SHLWAPI is normally installed as part of IE. SHLWAPI requires no installation, it needs to be in your Windows system directory, or a directory in your PATH.

2. MSOERT.DLL (Microsoft Outlook Express Runtime) – This DLL is a utility DLL shared between all of the Outlook Express components. MSOERT is normally installed as part of Outlook Express. MSOERT requires no installation, it needs to be in your Windows system directory, or a directory in your PATH.

INETCOMM.DLL dynamically loads the following DLLs:

1. CRYPT32.DLL – This DLL is used for SMIME (Internet message signing and encryption). If this DLL is not installed, SMIME will be disabled. This DLL is installed as part of IE4.

2. ADVAPI32.DLL – This DLL is also used for SMIME. There is a newer version of this DLL that is shipping with IE4 and later. If this DLL is not installed, SMIME will be disabled. This DLL is installed as part of IE4. ADVAPI32 is also used for the registry API, which is supported in earlier versions.

3. WININET.DLL and URLMON.DLL – These DLLs are used for rendering messages in MSHTML and for creating and viewing MHTML messages. If either of these DLLs is not installed, some MHTML functionality will be disabled and certain methods will return error results. Both of these DLLs are installed as part of IE4.

4. WSOCK32.DLL – This DLL is used to generate globally unique, valid message and content IDs by querying the current machines IP address. If this DLL is not installed, invalid message and content IDs may be generated. This is a system DLL.

5. MLANG.DLL – This DLL is used for conversion between Windows codepages and Internet character sets. If this DLL is not installed, international support will be disabled. MLANG is a COM DLL. To install it, run regsvr32.exe on MLANG.DLL (see also IMimeInternational).

37.0 Memory Allocations

Many of MimeOLE’s interface methods allocate memory that the client is responsible for freeing. A client must call CoTaskMemFree to free memory that was returned from MimeOLE. A client can also call CoGetMalloc(&pMalloc) and use IMalloc::Free to free memory that was returned from MimeOLE.

38.0 OLE Compliance

MimeOLE adheres to all of the OLE rules as defined in the Win32 SDK or MSDN, except that all of the methods in MimeOLE that take a string as a parameter, take a multibyte string, not Unicode. However, the property objects, such as IMimePropertySet, support the Setting and Getting of Unicode properties.

�PAGE \# "'Page: '#'�'" �PID_HDR_NEWSGROUP and STR_HDR_NEWSGROUP

�PAGE \# "'Page: '#'�'" ��PID_HDR_NEWSGROUPS and STR_HDR_NEWSGROUPS

�PAGE \# "'Page: '#'�'" ��PID_HDR_REFS and STR_HDR_REFS

�PAGE \# "'Page: '#'�'" ��PID_HDR_SUBJECT and STR_HDR_SUBJECT

�PAGE \# "'Page: '#'�'" ��PID_HDR_FROM and STR_HDR_FROM

�PAGE \# "'Page: '#'�'" ��PID_HDR_MESSAGEID �
�

�PAGE \# "'Page: '#'�'" ��PID_HDR_RETURNPATH and STR_HDR_RETURNPATH

�PAGE \# "'Page: '#'�'" ��PID_HDR_RR and STR_HDR_RR

�PAGE \# "'Page: '#'�'" ��PID_HDR_RETRCPTTO and STR_HDR_RETRCPTTO

�PAGE \# "'Page: '#'�'" ��PID_HDR_APPARTO and STR_HDR_APPARTO

�PAGE \# "'Page: '#'�'" ��PID_HDR_DATE and STR_HDR_DATE

�PAGE \# "'Page: '#'�'" ��PID_HDR_RECEIVED and STR_HDR_RECEIVED

�PAGE \# "'Page: '#'�'" ��PID_HDR_REPLYTO and STR_HDR_REPLYTO

�PAGE \# "'Page: '#'�'" ��PID_HDR_XMAILER and STR_HDR_XMAILER

�PAGE \# "'Page: '#'�'" ��PID_HDR_BCC and STR_HDR_BCC

�PAGE \# "'Page: '#'�'" ��PID_HDR_MIMEVER and STR_HDR_MIMEVER

�PAGE \# "'Page: '#'�'" ��PID_HDR_CNTTYPE and STR_HDR_CNTTYPE

�PAGE \# "'Page: '#'�'" ��PID_HDR_CNTXFER and STR_HDR_CNTXFER

�PAGE \# "'Page: '#'�'" ��PID_HDR_CNTID and STR_HDR_CNTID

�PAGE \# "'Page: '#'�'" ��PID_HDR_CNTDESC and STR_HDR_CNTDESC

�PAGE \# "'Page: '#'�'" ��PID_HDR_CNTDISP and STR_HDR_CNTDISP

�PAGE \# "'Page: '#'�'" ��PID_HDR_CNTBASE and STR_HDR_CNTBASE

�PAGE \# "'Page: '#'�'" ��PID_HDR_CNTLOC and STR_HDR_CNTLOC

�PAGE \# "'Page: '#'�'" ��PID_

�PAGE \# "'Page: '#'�'" ��PID_HDR_TO and STR_HDR_TO

�PAGE \# "'Page: '#'�'" ��PID_HDR_PATH and STR_HDR_PATH

�PAGE \# "'Page: '#'�'" ��PID_HDR_FOLLOWUPTO and STR_HDR_FOLLOWUPTO

�PAGE \# "'Page: '#'�'" ��PID_HDR_EXPIRES and STR_HDR_EXPIRES

�PAGE \# "'Page: '#'�'" ��PID_HDR_CC and STR_HDR_CC

�PAGE \# "'Page: '#'�'" ��PID_HDR_CONTROL and STR_HDR_CONTROL

�PAGE \# "'Page: '#'�'" ��PID_HDR_DISTRIB and STR_HDR_DISTRIB

�PAGE \# "'Page: '#'�'" ��PID_HDR_KEYWORDS and STR_HDR_KEYWORDS

�PAGE \# "'Page: '#'�'" ��PID_HDR_SUMMARY and STR_HDR_SUMMARY

�PAGE \# "'Page: '#'�'" ��PID_HDR_APPROVED and STR_HDR_APPROVED

�PAGE \# "'Page: '#'�'" ��PID_HDR_LINES and STR_HDR_LINES

�PAGE \# "'Page: '#'�'" ��PID_HDR_XREF and STR_HDR_XREF

�PAGE \# "'Page: '#'�'" ��PID_HDR_ORG and STR_HDR_ORG

�PAGE \# "'Page: '#'�'" ��PID_HDR_XNEWSRDR and STR_HDR_XNEWSRDR

�PAGE \# "'Page: '#'�'" ��PID_HDR_XPRI and STR_HDR_XPRI

�PAGE \# "'Page: '#'�'" ��PID_HDR_XMSPRI and STR_HDR_XMSPRI

�PAGE \# "'Page: '#'�'" ��PID_HDR_COMMENT and STR_HDR_COMMENT

�PAGE \# "'Page: '#'�'" ��PID_HDR_ENCODING and STR_HDR_ENCODING

�PAGE \# "'Page: '#'�'" ��PID_HDR_ENCRYPTED and STR_HDR_ENCRYPTED

�PAGE \# "'Page: '#'�'" ��PID_HDR_XUNSENT and STR_HDR_XUNSENT

�PAGE \# "'Page: '#'�'" ��PID_HDR_ARTICLEID and STR_HDR_ARTICLEID

�PAGE \# "'Page: '#'�'" ��PID_HDR_SENDER and STR_HDR_SENDER

�PAGE \# "'Page: '#'�'" ��PID_PAR_FILENAME and STR_PAR_FILENAME

�PAGE \# "'Page: '#'�'" ��PID_PAR_BOUNDARY and STR_PAR_BOUNDARY

�PAGE \# "'Page: '#'�'" ��PID_PAR_CHARSET and STR_PAR_CHARSET

�PAGE \# "'Page: '#'�'" ��PID_PAR_NAME and STR_PAR_NAME

�PAGE \# "'Page: '#'�'" ��PID_ATT_FILENAME and STR_ATT_FILENAME

�PAGE \# "'Page: '#'�'" ��PID_ATT_GENFNAME and STR_ATT_GENFNAME

�PAGE \# "'Page: '#'�'" ��PID_ATT_PRITYPE and STR_ATT_PRITYPE

�PAGE \# "'Page: '#'�'" ��PID_ATT_SUBTYPE and STR_ATT_SUBTYPE

�PAGE \# "'Page: '#'�'" ��PID_ATT_NORMSUBJ and STR_ATT_NORMSUBJ

�PAGE \# "'Page: '#'�'" ��PID_ATT_ILLEGAL and STR_ATT_ILLEGAL

�PAGE \# "'Page: '#'�'" ��PID_ATT_RENDERED and STR_ATT_RENDERED

�PAGE \# "'Page: '#'�'" ��PID_ATT_SENTTIME and STR_ATT_SENTTIME

�PAGE \# "'Page: '#'�'" ��PID_ATT_RECVTIME and STR_ATT_RECVTIME

�PAGE \# "'Page: '#'�'" ��PID_ATT_PRIORITY and STR_ATT_PRIORITY

Draft 07/10/97

Microsoft Outlook Express

