\nt\private\setup\ieak4\brandll\brandme.cpp
(1) The processing related to registering download URLs as safe for updating IE is now implemented differently from what it was in the days of Win32 only. It used to rely on awchMSIE4GUID from advpub.h with a subsequent call to WideCharToMultiByte if needed. The new approach is a little slower and takes a little more memory.

(2) There is a new global variable g_szModule that is global by nature. It’s surrounded by #ifdef’s.

(3) There is a bunch of #ifdef Win16 to disable features that weren’t immediately clear how to get to compile. They are going to be uncommented at their good time.

\nt\private\setup\ieak4\brandll\crtfree.h
(1) This file is used on both platforms (Win32 and Win16). This makes me a little uncomfortable because of the CRT issues. Moreover, operator delete inside of it was forked because Win16 needed OFFSETOF macro and Win32 didn’t understand it.

\nt\private\setup\ieak4\brandll\custom.rcv
(1) One file (winver.h) is conditionally included. It was not anywhere in Win16 and everything works without it.

\nt\private\setup\ieak4\brandll\debug.cpp and \nt\private\setup\ieak4\brandll\debug.h
(1) Internal definition of ASSERT in debug.cpp. MS compilers have some intimate understanding about ASSERT macro even if its not “properly” defined (for reference look in \nt\private\shell\lib\debug.c at how ASSERT is defined). In any case, Watcom doesn’t have this knowledge. Hence the hack.

(2) Definition of c_wszAssertFailed in debug.cpp. In Win16 land WCHAR is resolved to regular CHAR for simplicity (for reference look in http://mblain1/ie16dev/w32to16x.htm - #TypeIssues). This makes it incompatible with L macro.

(3) DEBUG_BREAK macro in debug.h is special for Win16. Watcom claims that it supports __try, but I couldn’t make it to do so. C8 doesn’t come anywhere near supporting it, hence the general DebugBreak that suits them;

\nt\private\setup\ieak4\brandll\exports.cpp
DllMain is defined only in Win32. It calls into LibMain and WEP, which are defined on all platforms using them as a constructor and destructor of the DLL respectively. Same deal is in \nt\private\setup\ieak4\brandll\exports.h.
CRT issues

(1) Settings in sources. are not so polished for Win16 as they are for Win32. For example, after USE_NOLIBS = 1 is set, libraries are inserted directly into TARGETLIBS. Per ScottH this is to be avoided.

(2) There used to be some leftover crap in brandme.c related to removing the CRT. It’s commented out now.

(3) Some file (forgot its name) required private to the class in that file operators new and delete. Otherwise it was blowing up.

(4) Just so it’s absolutely clear. Win32 uses iert.lib, which is a stripped down version of CRT whereas Win16 both C8 and Watcom use their own versions of normal CRT.

Everything else

(1) Logitem2.h and logitem2.cpp. There are hacks at their best. Logitem2.h was conceived from the beginning as a way to work around C8 limitation with templates. Logitem2.cpp was brought to live after I discovered that build.exe doesn’t support conditional statements in the SOURCES macro, so I couldn’t have logitem.cpp for Watcom build and not for C8. So the need arouse to have a file that is empty for C8 and logitem.cpp for Win32 and Watcom. That is how logitem2.cpp came to be.

(2) CreateDirectory returns the opposite on Win16 compare to Win32. The reasoning was to be able to return multiple error codes. So on Win16 on success it’s 0, on failure it’s the error code. On Win32 on success it’s non-zero, on failure it’s zero and one must call GetLastError to get more information.

