IIS Migration Tool Design and implementation
This document describes the design and implementation of the IIS Migr Tool Core project

The Migration Tools is a STA COM object. There are two COM objects exposed – ExportPackage and ImportPackage, implementing the interfaces IExpportPackage and IImprotPackage. Object’s implementation is in ExportPackage.cpp/h and ImportPackage.cpp/h files. The C++ classes are CExprotPackage and CImportPackage.

Tool general design and:
This tool is intended for migrating web site’s content and configuration between different versions of IIS (4, 5 and 6).

The tool migrates these type of data:

· Site’s metabase configuration – everything under LM/W3SVC/# where # is the SiteID will be migrated.

· Site’s content – all files, located in all of the site’s virtual dirs will be migrated

· Site’s SSL certificate – the SSL certificate as well as the certificate chain will be migrated

All the code is designed to be exception-safe. Exceptions are used to indicate error conditions. Currently all exceptions are catch at the top-most function level – the COM entry method and the exception is converted to COM error info which is returned to the client. The class THandle in Wrappers.h is used for safe resource management of all the kind of handles in the project (file, search, cert, crypt, etc). Also STL is used for all the containers and memory resource management (class auto_ptr).
Package Info:
All the data is stored in a file, called package. The package consist of some header data, the content of all the files included in the package and the XML document containing all additional settings.
The format of the package is the following:

1. GUID – this GUID is intended to describe the file as Migr Tool package file. This is a constant hard-coded value

2. The package options (DWORD). These are the options, specified when the package was generated. The value is exactly the same as the one passed to IExprotPackage::WritePackage and is a bit mask of the flags described in the enWritePkgOptions enumeration.

3. The position in the file where the XML document begins (__int64). This is a DWORDLONG value which specifies at what offset from the beginning of the file the XML data is located

4. The rest of the package file is all the contained files’ data. Each file’s data starts with the mark “FD” (the string is made of char, not WCHAR). This mark is included to catch corruption in the package as well as for debugging purposes. At the end of the file is stored the XML document
Post-process:

This is may be the only term, specific to this tool. Post-process is the thing that takes place after a site is imported. It is per site rather then per package.

The post-process consist of two things:

· Files

· Commands

Files – this is a set of files. The only restriction here is that each file have a unique name.

Commands – a command is just that – command. Exactly like the ones CMD.EXE (the NT command processor) executes.

For details of how the post-process works, see the details about the Import bellow
How it works:

These is step-by-step description of the tool operations:

1. Export:

a. IExportPackage is obtained

b. AddSite is called with a valid SiteID. Additional options can be included when adding a site (like excluding the site’s content and/or certificate when exporting

c. AddSite is called for any number of additional web site’s that should be exported

d. PostProcesAddFile is called zero or more times to associate a file with the site

e. PostProcessAddCommand is called zero or more times to associate a command with the site

f. WritePackage is called to create the export package. Here is what happens then:

1. The XML document root elements are created
2. The output file is created and the header information (GUID, Package options) are written to it

3. An encryption key is created. We have two cases here – we encrypt all the data in the package, or we encrypt only the secure metabase properties. If wpkgEncrypt is specified in the options passed to Write package – the whole package is encrypted (actually only the file data and the XML document are encrypted)

4. For each site included for export:
a. The site’s configuration is exported for the metabase. This is done using the CIISSite class. This class deals with the configuration and it writes to the XML document all that needs to be written. Each metabase key under the site’s root metabase key is exported as well as all the properties for the particular key (without the inherited ones). Also, all the properties that the root key inherits from it’s parent (the W3SVC node) are also exported but to a different XML node

b. The site’s SSL certificate is exported as well as all the certificates from the certificate chain. The certificate chain is a chain of certificates up to the root CA. We have to export the whole chain as some of the certificates from the chain might not exist on the target machine. Here is an example: Root Certificate (RC): Verisgn Root; First Child: (FC): Microsoft Internal CA; SSL Cert (SSL): MyServer certificate. So the certificate chain is these 3 certificates: RC-FC-SSL. The root certificate (RC) will most probably exist on every machine. However the second one might not exist on the target machine and if we import only the SSL cert, it will be not valid as it’s root certificate will not be trusted on the target machine
c. The site’s content is exported. The site’s content is all the files from all the virtual dirs. The list of the virtual dirs is fetched from the XML doc (they are already there as they are part of the site’s configuration) and then the list is analyzed for nested dirs (for example you may have one virt dir mapped to c:\Data and another one mapped to c:\Data\MyData. In this case exporting both of the VDirs will export the C:\Data\MyData folder and all the files in it twice). So once we have the virt dirs we have to export we read each file bellow the virt dir root and store it in the the package file. Their DACls are also preserved. This is handled by the COutPkg class and it uses CFindFile class for easy access to the files. See Appendix A for more details about the tool classes.

d. The Post-process operations are exported. Which means that all the files from the post-process are written out to the package file in exactly the same way as the content files (with the only difference that DACLs of these files are not preserved). All the post-process commands are written to the XML DOC.

5. After all the site’s are in the package, the XML document is persisted in the package file (at the end if it) and that completes the export process.

During the export process, the _IExprotEvents::OnStateChange event is fired to provide progress info to the client. For more details see the enExportState enumeration.
When exporting file’s DACLs, there are some ACEs that are not exported. For an ACE to be exported it must not be a local user or group. Domain user/group(s), built-in accounts and the IUSR account (for the exported site) ACEs are exported. ACEs for local accounts does not have meaning on another machine and that’s why they are ignored. Another important detail is that in order to save time and space, only explicitly set ACEs are exported. Usually the access permissions for files/directories are applied to the root folder and all the children inherits them. So the too will export all the ACEs for the root directory and for all the children – only the ACEs they do not inherit from it’s parent. (On NT4 all the ACEs will be exported as there is no way to know which ACEs are inherited).

As the SIDs for all the ACEs are the same, they are written in the SID list separated from the ACEs themselves.

2. Import:

a. IImportPackage is obtained

b. A package file is loaded with LoadPackage. This is the first method that should be called. All other methods will not work without a package loaded. This method will also need the password with which the package was created. As this password is used to encrypt the secure data, it is not allowed to be empty and must always be provided.
c. All available kind of info about the package or the contained sites can be obtained with the appropriate methods of IImportPackage or ISiteInfo. The data is fetched directly from the XML doc, included in the package

d. ImprotSite is called to import a previously exported site. Options can be specified to control what and how is imported (for example content, certificate and post-process may be skipped)

e. ImortSite do this:

i. Gets an IXMlDomNode interface representing the web site’s node in the XML doc for the site being imported

ii. Imports the content – there are two ways to do that. If a path was passed to ImportSite, this path is used as a root dir for all the content. Under this path the root VDir directories are created. Each directory created will have the name of the Vdir. The Web Site’s root vdir will have the name ROOT. If a path was not specified – the content is imported in the same location where it was on the source machine. Obviously the target and source machine must have exactly the same VDir directory structure for this to work. The actual process of importing the files is to start from the VDir root XML node in the XML doc, create a directory for eacg <Dir> node, apply the exported attributes, security settings and then for each <File> under the <Dir> tag, create a file with the name, locate the file pointer (for the package file) at the specified position and read up to the specified number of bytes from the package file and store them in the imported file.
iii. Imports the certificate and all the certificates from the certificate chain. There is an option that says to reuse the existing certificates on the target machine if they match the ones from the chain. If this option is not specified – the certificates from the chain will replace the existing ones if they exist
iv. Improts the configuration. There is an option whether or not to import the inherited properties. If the inherited properties should be imported – they are applied to the root metabase node of the imported site as not inherited but they are marked as inheritable so all the child nodes inherit them

v. Executes the post-process operations. First all the post-process files (if any) are extracted to a temp directory. Then the commands are executed in the order they were added to the package. Each command consist of command text, timeout, and flag whether to continue if the command files. The command text is any text, understandable by the NT command processor. The timeout value specifies how long to wait for the command to execute (not that the command can actually be to run an external app). If the command is not finished when the timeout is reached – the process is terminated and exception is thrown depending in whether the IgnoreErrors flag is True or False. If the command finishes in time, the process exit code is obtained from the OS and if it is different then 0, the command is considered to be failed. Again, depending on the IgnoreErrors flag, an exception is thrown, or the execution continues with the next command.
The command text can include any environment variables which will be expanded prior of executing the command. At the time the command executes, Two additional variables will be defined – one is the location of the temp files and the other is the metabase SiteID of the site which was imported. The command can use the first one to address the post-process files and the second one if it needs to modify the imported site’s configuration.
When importing the file’s DACL, first the SID list is analyzed and recreated on the target machine. The tool will try to find exactly the same SID on the target machine. If there is no an exact much – the SID will be ignored. The only difference is the IUSR account – it’s SID will be fetched from the OS (on the source machine the IUSR account is IUSR_SourceMachineName and on the target – IUSR_TargetMachineName. So at import time, the tool will get the IUSR_TargetMachineName’s SID and use it for every ACE where the IUSR_SourceMachineName’s SID is used).
APPENDIX A
Utility classes description:

THandle
This class is designed for automatic resource management of all kind of Win33 handles. This is a template class with template parameters being the handle type, the function used to release the handle and the handle’s invalid value.

Here is an example which defines a class for automatic resource management of standard Win32 file handles.

typedef THandle<HANDLE, ::CloseHandle, INVALID_HANDLE_VALUE>
TFileHandle;
This class can be used for every handle-like type of pointer. Sometimes an adapting release wrapper is needed though.

The most important thing about this class is that it owns the handle. This means that although possible, it is an error for two instances of the same class to store one and the same handle value. The class takes care of this and will transfer the ownership when only the class is used.

CTempDir
This class is used for managing temp dirs. The constructor will automatically create a temp dir (subdir of the default user’s temp dir) and a template of the dir’s name can be provided. It will create a dir with unique name. The instance of the class can be used everywhere a path is needed and will return the full path to the owned temp dir.

At object destruction, the object will delete the temp dir as well as all the files contained.
CFindFile
This class is used for locating files/dirs under a specified path. It’s a lot like the Win32 FindFirstFile API with the difference that it has the ability for recursive search. When a search is initiated, the root path is specified as well as a bit mask which says what kind of file objects satisfy the search, as well as how to return the info about a found match

Convert
This class is used for converting data. It’s not in any means full but provides most of the functionality needed (conversions back and front between string, bool, DWORD, Int64, BLOB)
