[image: image1.jpg]Microsoft

-~
COMTeam
|

Project 42

Configuration API

Requirements

(Note until the App Server or Project 42 logo is available, the COM logo is a place holder)

June 23, 1999, Draft Rev 1.5A

Emily B. Kruglick

31.
Purpose of document

2.
Justification of programmatic configuration interface
4
2.1
Remote Administration
4
2.2
Unified Configuration
4
2.3
Ease of Navigation
4
2.4
Safety in Navigation
4
2.5
Grouping of Objects
4
2.6
Ease of UI Development
4
2.7
User Runtime code
4
2.8
Layer of indirection over data store
4
2.9
Method calls
5
2.10
Performance
5
3.
Usage of Interface
6
3.1
Customers
6
3.1.1
User configuration code
6
3.1.2
User runtime code
6
3.1.3
ISV Management Tools
6
3.1.4
Application Server and Universal Runtime Management Tools
6
3.2
Non-Customers
6
3.2.1
System runtime code
6
4.
Requirements
7
4.1
Internal (catalog infrastructure)
7
4.1.1
Schema dynamically read from IST.
7
4.1.2
Collections not tied to collection names
7
4.2
External (users interaction)
7
4.2.1
Scriptable Interface
7
4.2.2
Unified Configuration Model for IIS, COM+ Services, and COM+ Runtime
7
4.2.3
Ability to save changes to all objects in a collection with one call.
7
4.2.4
Expose both a managed interface and unmanaged interface.
7
4.2.5
Distributed, transacted, compose-able configurations.
8
4.2.6
Direct access to collections at any level.
8
4.2.7
Relationship Navigation
8
4.2.8
Direct property read/update
8
4.2.9
Uplevel/Downlevel Interoperability with URT 1.0 and App Server.
8
4.2.10
Automatic population for collections
8
4.2.11
Refresh collection
9
4.2.12
Automatic Re-Populate when changes to a collection are saved.
9
4.2.13
Way to not re-populate when collection save occurs is called.
9
5.
Requests
10
5.1
Internal (catalog infrastructure)
10
5.2
External (users interaction)
10
5.2.1
Using enumerations instead of strings for collection names and properties.
10
5.2.2
Expose configuration per a Standard API
10
DTC Administration
10
5.2.4
Error Handling
10
5.2.5
Wait for changes to a data store to be completed
10
5.2.6
Support for blob properties
11
5.2.7
Supporting a Direct Remove
11
5.2.8
Having add take properties
11
5.2.9
Supporting a Direct Add
11
6.
Rejections
12
6.1
Transactional configuration API methods
12
7.
Questions/Issues
13
7.1
Configuration Security
13
7.2
Asynchronous calls?
13
7.3
Thin Client – what requirements does this add?
13
7.4
Other passed over administration functionality from COM+ 1.0
13
7.5
Eventing and Monitoring
13
7.6
Performance
13
7.7
Application Server Requirements
14
7.8
URT Requirements
14
7.9
Customer Extensibility
14
8.
Revision History
15

Purpose of document

This document has three purposes:

1) Clearly express the requirements for the Project 42 configuration API (no matter what the implementation is). This means that these are the requirements for the URT Config API as well as the Application Server API.

2) Discuss the issues around these requirements.

3) To prioritize these requirements against each other so that the correct choices can be made to define the configuration API.

This document will merge into the configuration API Spec once there is a clear direction to what the interface will be.

Justification of programmatic configuration interface

While Project 42 configuration will be able to be done by updating XML documents and applying them to a machine’s configuration, there are many reasons why users may want to have a programmatic interface to access and configure machines.

1.1 Remote Administration

A remote object call is cleaner than a file update and a file copy. We can also provide a level of indirection in the way the user names the target machine. With XML the user has to figure out the physical machine name to put the updated file on.

1.2 Unified Configuration

Most administration today is done through APIs. It will be easier to move towards one common configuration model for all of AppServer (and other NT products) if the model is an API.

1.3 Ease of Navigation

XML is a pain for people that want to automate administration because they need to navigate into the file to get to the areas they want to update. This is also more error prone because the user's program has the entire file open and the potential to mess up any area of it if the user's program has a bug.

1.4 Safety in Navigation

While a user may want to only change a specific property on an application, say CRMEnabled. While they have the whole application file open in something like notepad they may easily hit an extra key and change the application to be a library app. If the user navigates and requests a specific property to change through an API, it is a lot harder to inadvertently change a wrong property.

1.5 Grouping of Objects

Customers may want to find all applications a machine knows about. They probably would prefer to have this returned by an API call or something equivalent than looking through the machine for all the XML files and then determine which ones represented an Application verses some other metadata.

1.6 Ease of UI Development

Navigating through an API designed in conjunction with the UI development team will be easier for the UI to write code to than if the code must navigate and update XML.

1.7 User Runtime code

The user may have code that needs to make decisions based on configuration settings. For instance if a particular component is registered on the machine the program may want to display a different option than if the component does not exist. Users are very use to dealing with API’s, so requiring them to retrieve a XML copy of the machines configuration and then parse it for the component would not be acceptable.

Some user code may also want to update the metadata during execution. For instance, it may want to turn the listener on for a Queued Component Application has several messages waiting to be processed.

1.8 Layer of indirection over data store

If some of the configuration data can not be stored in XML format then it may be necessary to store it in another type of data store. A configuration API will make the user oblivious of where the data is really stored. An example of this is the Password for an application. While users will want to set the property, they will not want to write it to a text file and leave it around for all to read. The catalog server will also not want to keep this private information in a publicly accessible format and thus will want to store it safely in the secured part of the registry.

1.9 Method calls

An API will provide a place to host functionality that does more than just direct data access. An example of this is the InstallComponent call in COMAdmin. Another example of this could be the “Kick” command that is needed to get the XML to be cooked down into our runtime data store.

1.10 Performance

Issue: Is XML updates or API updates faster? When are either faster?
Usage of Interface

Before going into the specific requirements and requests of the configuration interface it needs to be clear by whom this interface will be used. There are two possible users for this interface and one user, which should specifically be called out as not a customer.

1.11 Customers

1.11.1 User configuration code

This is basically setup code. It is usually scripts that are run to configure the system to run a certain way or to host a certain application. The configuration UI is the best (and probably most advanced) example of this type of user.

1.11.2 User runtime code

This is user code that is running during applications that a user built. It is most likely used to find out a specific piece of information about one or more object on the system or to toggle a specific property to change the behavior of an application at runtime.

1.11.3 ISV Management Tools

These are home grown management tools that ISVs will write to provide configuration ability in their chosen view.

1.11.4 Application Server and Universal Runtime Management Tools

This is the equivalent to the MMC COM+ Snap-in COM+ Services 1.0 currently ships. For more information on these tools see the Application Server User Interface specifications.

1.12 Non-Customers

1.12.1 System runtime code

This is Microsoft code (or possibly in the future other system runtime code) that needs to access information about objects in-order to support things like CoCreateInstance. In COM+ 1.0 this path was handled by the Catalog Queries. In Application Server it will be handled separately than by the configuration API.

Requirements

These requirements are agreed to as a must for the configuration API. The items listed in these areas are listed in order of priority from the most important down to the least.

1.13 Internal (catalog infrastructure)

1.13.1 Schema dynamically read from IST.

All metadata about collections and properties should be exposed to the configuration API from IST so that when a developer adds a property or table, he will simply add it to the XML schema and it will appear in the configuration API without requiring the configuration API to be rebuilt.

Why: This requirement exists to allow other teams to quickly extend the Catalog to support their tables and properties without having to re-compile the catalog dlls. It is a development time feature that will not affect our final code or our customers, since we will do “official” builds with the metadata compiled into the code for performance reasons.

1.13.2 Collections not tied to collection names

This basically means that we can have one collection name represent different views or queries of a collection. If we go with the configuration API, this is taken care of by the use of the query telling us what the collection’s parent is instead of the name of the collection.

Why: During COM+ 1.0 we had several collections that had multiple parent collections, because the name was the only identifying source we had to use separate names for each of the children collections even if they were the same “type” of collection. An example is RolesForInterface and RolesForMethod.

1.14 External (users interaction)

1.14.1 Scriptable Interface

By being a scriptable interface coders in VC, VB, VB Script, Java Script, and COM+ Runtime should all be able to code to it.

Why: Most users of configuration data are programming in scriptable environments. This also is in line with users writing to the URT.

1.14.2 Unified Configuration Model for IIS, COM+ Services, and COM+ Runtime

Why: Users want one way to administer a product, not several separate ones per the part they are using.

1.14.3 Ability to save changes to all objects in a collection with one call.

This is just like COMAdmin. It is batch update (per collection) instead of direct updates of changes to the data store.

Why: For performance and transaction reasons, updating all changes to a collection at one time makes a lot of sense. For COMAdmin you have this ability. All changes done in one SaveChange call, are done in one transaction (unless composed transactions are used and then multiple SaveChanges are done in one transaction).

1.14.4 Expose both a managed interface and unmanaged interface.

Why: Customers will want to code to the configuration API from both managed code and unmanaged code. This is also a requirement from the ducktape folks.

Issue: It is under debate if the config API will be written in managed code or unmanaged. Whichever way it is done, it must be wrap-able into the other type of interface, and the wrapper must be provided to the users.
1.14.5 Distributed, transacted, compose-able configurations.

This means allowing multiple updates to one or more configurations (same machine or different machine) to be composed into one transaction.

Why: This is a requirement, in order to manage both homogeneous (webfarms) and heterogeneous (multi-tier, app-to-app) distributed apps. It also provides for basic data integrity and avoids having to write recovery logic for the data stores.

1.14.6 Direct access to collections at any level.

A way of directly accessing collections off at most one main object. This is the no hierarchy approach.

Why: Customers grow tired very quickly of navigating collections to get to a collection that they can identify with a query from the beginning, without needing the parent collections.

1.14.7 Relationship Navigation

The public relationships between parent collections and children collections still need to be exposed to the users so they can write generic GUI’s.

Why: Some applications will still want to expose the configuration information in a generic way and there must be a way to tell them how that should be modeled.

1.14.8 Direct property read/update

This is direct property read/update for specific objects without navigating collections or having to call a save change method.

Why: Many customers want to get at information only about a specific object and don’t want to worry about the collections or hierarchies involved. An example of this is a user just wanting to know what the ProgId is for a specific CLSID that the user has.

Issue: Could we allow a multiple-row-returning query to be passed in when updating a property? Then update all the rows to that property value?
1.14.9 Uplevel/Downlevel Interoperability with URT 1.0 and App Server.

· 1.0 config clients should be able to see a reasonable subset of 2.0 servers/apps (local and remote).

· 2.0 config clients should be able to see all of a URT 1.0 servers/apps (local and remote).

The infrastructure for this should come from side-by-side operations. However, the API must be able to support this as well.

Why: Customers will want to be able to administer servers from client machines and clients from server machines.

1.14.10 Automatic population for collections

Users will be able to request an empty collection, but if they don’t then it will be populated when it is returned.

Why: In COMAdmin customers almost always wanted a populated collection so it makes sense to make this the default and not require them to do two separate steps.

1.14.11 Refresh collection

Users will need a way to refresh the data in a collection from the server.

Why: In COMAdmin today you have a populate method that you can recall to get the new data from the data store. Since we are killing Populate we should still have a way that would allow the user to ask for the data from the data store to be refreshed.

1.14.12 Automatic Re-Populate when changes to a collection are saved.

This means that when a user requests that changes to a collection be saved and the request succeeds, the collection will automatically be updated with the new data from the data store (including any changes that happened backdoor to the data).

Why: The majority of COMAdmin users call the “populate method” directly after successful SaveChanges, so it should be the default instead of requiring them to call two methods to get this functionality.

1.14.13 Way to not re-populate when collection save occurs is called.

Why: Since some users will want to stay on a static cache, the configuration API must provide a way to not re-populate when a save occurs.

Requests

These requests are functionality that people have requested be supported by the configuration API. They will not necessarily be supported, but we are evaluating if it makes sense to support them. The items listed in these areas are listed in order of priority from the most important down to the least.

1.15 Internal (catalog infrastructure)

1.16 External (users interaction)

1.16.1 Using enumerations instead of strings for collection names and properties.

This is under research. The basic idea is to use enumerators for arguments to functions. By doing this VB would be able to let users use statement completion to fill in the parameters to the functions.

Why: To enable argument list drop down in Visual Basic and to provide clear lists for the user of the options for arguments to method calls the configuration API could take enumerations instead of “Magic” strings. Today users are unhappy with having to know the “Magic” strings from the docs to use COMAdmin interfaces. This would also eliminate the question of localizing these “Magic” strings.

1.16.2 Expose configuration per a Standard API

This request takes the requirement of merging the IIS, COM+ Services and COM+ Runtime configuration models together one step further. It asks that the configuration interfaces be a Standard Microsoft interface or a Standard Industry interface. The main interface we are evaluating for this request is WMI.

Why: If the configuration data and functionality can be exposed by an existing standard API that users are all ready be familiar with and that is convenient for them to use then exposing our data and functionality via that path makes sense.

1.16.3 *DTC Administration

Why: DTC was part of COMAdmin’s scope to administer in COM+ 1.0. If it is still the configuration APIs responsibility then it should be exposed via the API. Customers want full control from the SDK, and in COMAdmin this is the biggest hole where programmatic control is lacking.

Issue: This is the biggest place where COMAdmin fails to provide administration interfaces.

Issue: Is the configuration API responsible for admin for DTC?
1.16.4 Error Handling

1) Using Error Objects to send back error info.

2) Localizing error strings

3) Possibly providing strings back or a look up for the strings.

Why: The error handling provided in COMAdmin has had many requests for improvements. The configuration API needs to do a much better job of providing errors and information about errors to the customers.

1.16.5 Wait for changes to a data store to be completed

This would basically let the user wait on, for instance, a RegDB file being written to disk before trying to use the data that he just updated in the RegDB.

Why: In COMAdmin today, if a user is using composed transactions, when the outer most transaction completes the RegDB file is updated. However, there is no guarantee that the changes are finished writing to the disk, so a user could try to access the information too quickly after the transaction finishes. Providing a way for the user to wait for the write to finish after the transaction completes would allow the user to know that the changes are ready for use. If a user is not using composed transactions, COMAdmin all ready will not return until the file has been written.

1.16.6 Support for blob properties

Why: In COMAdmin there were a few properties that could not be exposed since blob data was not supported. An example of this is the security descriptor.

Issue: COMAdmin did not expose any blob properties in COM+ 1.0, should the config API now do it?
1.16.7 Supporting a Direct Remove

This is the equivalent to doing Direct updates, only removing the object. It would remove all objects in a query and would not require a save on the collection to be called.

Why: To be consistent with the direct property gets and sets.

1.16.8 Having add take properties

This is just a short cut for doing an add and then setting some properties. This would still require a save on the collection to be called to save the new object.

Why: Customer request from devlab. They like being able to do this in ADO.

Recommendation: Reject, it will not buy the user that much and will be more confusing than it is worth.

1.16.9 Supporting a Direct Add

This is like the direct property get or set but for adding a whole row. It will take affect immediately and is equivalent to doing an add on a collection immediately followed by a SaveChanges.

Why: To be consistent with the direct property gets and sets.

Recommendation: Reject this, it is not necessary and it would be more complicated for the users than it would simplify their lives.

Rejections

These rejections are functionality that has been requested but that we do not plan on supporting in the configuration API. They are not listed in any specific order.

1.17 Transactional configuration API methods

This means giving the users a BeginTrans, AbortTrans, and CommitTrans methods.

Why: Instead of requiring users who want composed transactions to build another object to be marked as transaction required and then having this object call the configuration API, the configuration API could provide direct BeginTrans, AbortTrans and CommitTrans calls to the configuration API.

Why Rejected: The MTS programming model is all about removing transaction control from code and instead having the runtime control the transactions for the user. This would completely break that model.

Questions/Issues

These are questions or issues surrounding possible requirements or requests. If a requirement / request is not completely formed and needs more research to determine exactly what it means it will be listed here. They are not listed in any particular order and will be prioritized when/if they move to the requests or requirements section.

1.18 Configuration Security

This needs to be defined completely. Is it security per configuration of object, or collection, or subcollection?

It came from a response to this doc by Markush (listed here to help research what this should be in the end):

Fine grained, local and remote, administrative security. Per collection/subcollection in some cases (Ducttape Site), maybe even per column. This is probably more an infrastructure requirement, but the config API must at least not interfere with the underlying security model and/or return reasonable error codes/messages.

My response being:

I assume what this means is configuration security? I.E. Something like John Doe has permission to configure AppX and Jane Doe can configure AppY? Do to there not being anywhere else that this requirement should be caught right now I will add it to the spec. Is it actually a requirement (would we not ship if we did not do this) or is it a very important request?

1.19 Asynchronous calls?

Should the configuration API support any amount of asynchronous calls? Or should it remain the responsibility of the caller to use threads for this? Also is there an other approach we may want to use, one where we layer an Asynchronous provider on top of the configuration API?

1.20 Thin Client – what requirements does this add?

Ability to have a web client do AS Administration without any controls being downloaded to the client.

1.21 Other passed over administration functionality from COM+ 1.0

Need to look through raid and other sources to make sure we are not skipping anything that we should be doing.

1.22 Eventing and Monitoring

The eventing and monitoring story may affect the configuration API in that it would be nice to have a common data model between them.

Does any other part of the eventing or monitoring story affect the configuration API?

This question includes what becomes of tracking and whether or not the configuration API exposes it.

Auditing of changes: an infrastructure requirement? Should probably use terminology of the config APIs, rather than internal schema.

Change notifications being expressed in terms of the configuration API, but coming from the infrastructure.
1.23 Performance

Issue: What are the requirements and for what usage cases?

1.24 Application Server Requirements

Are there any Application Server features that may drive what our configuration API looks like in the end? For instance, can the clustering data information be modeled into our data access portion of the configuration APIs?

1.25 URT Requirements

Are there any URT features that may drive what our configuration API looks like in the end?

1.26 Customer Extensibility

Cut from email:

[Markush] Customer extensibility (for the real customers, not the internal ones), including custom consistency validation logic etc.: this requirement comes from at least URT Context and Ducttape/XSP (metabase feature parity).

[rcraig] Supporting name-value pairs will be important. Custom validation logic: that's a request, and I believe, a reject.

[Emily Kruglick] Markus I would like to know more about this one. Are you talking about users being able to add their own properties to say an application? And adding their own edit rules (basic and logic)? What exactly does URT Context and Ducttape/XSP support in this area that we have to match. I will add this as an issue for now.

Revision History

Date
Change By
Description

6/23/99
EmilyK
Very small updates and fixes

6/9/99
EmilyK
Updated with comments from first review

5/28/99
EmilyK
First Draft Released

* Requirement/Request is from previous versions of COM+ and MTSAdmin and has been shelved before so if it is still valid it may be important to get done.

Microsoft Confidential
Page 1
6/23/99

